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Abstract. A problem is defined to be exactly solvable if its solution can be obtained
by solving a sequence of polynomials using radicals. Therefore, if a problem is
not exactly solvable, then we have to use approximation schemes for solving the
problem. It has been proved that the shortest network problem in space is not
exactly solvable even if the network spans only four points and even if the topology
is known. On the other hand, if the network spans three points, then obviously
the problem is exactly solvable. In a previous paper we have shown that the
shortest network problem for three points is still exactly solvable if only one point
is constrained on a straight line but it becomes non-exactly solvable if two points are
constrained on straight lines. In this paper we continue to reduce the gap between
the exact solvability and non-solvability by studying the shortest networks with
gradient constraints. The motivation of this study also comes from a practical net-

work problem: designing an underground mining network so that the ore in two
underground deposits can be extracted through tunnels either directly to a vertical
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shaft and then hauled up to the ground, or extracted to a tunnel in an existing
underground mining network and then transported to the ground. For technical
reasons the gradient of any tunnel cannot be very steep. We prove that in the
former case the shortest network problem is exactly solvable, while in the latter
case the exact solvability depends on edge gradients. Moreover, we show that there
are good iterative approximations for the non-exactly solvable shortest network
problems in space.

MSC 2000: 05C05, 94C15
Keywords: Steiner network, unsolvability

1. Motivation

Given a set of n points in Euclidean 3D-space, the shortest network problem, also called the
Steiner tree problem in the literature, asks for a minimum length network T interconnecting
the given points, possibly with some additional points to shorten the network [4]. The given
points are referred to as terminals, the additional points are referred to as Steiner points,
and T is called a Steiner minimal tree. A basic property of Steiner minimal trees is the angle
condition: Any angle α in a Steiner minimal tree T is at least 120◦, and α = 120◦ if α is an
angle at a Steiner point. The graph structure of a Steiner minimal tree is called a Steiner
topology. A tree with a Steiner topology is called a Steiner tree. The Steiner tree problem is
proved to be NP-hard [4]. A main reason for this proposition is that the number of possible
Steiner topologies is exponential in n. Therefore, for a Steiner tree problem with large n we
have to use some heuristics to get an approximate solution. However, there is another reason
for the necessity of approximation schemes, i.e. the non-existence of an exact solution to the
Steiner tree problem in space. A problem is defined to be exactly solvable if its solution can
be obtained by solving a sequence of polynomials using radicals although finding the solution
may take exponential time in the size of input data.

Now we investigate the Steiner tree problem from this point of view. As is well known,
when all n terminals lie in a plane and a Steiner topology is given, the Steiner tree can be
constructed in a time which is linear in n either by using Melzak’s algorithm improved by
Hwang [4] or by using the hexagonal coordinate method [11, 5]. Therefore the Steiner tree
problem in the Euclidean plane is exactly solvable although the time complexity is exponential
in n. However, the situation is quite different when the terminals lie in 3D-space. If there are
only 3 terminals, then the Steiner tree problem has an exact solution since the 3 terminals
lie in a plane. On the other hand, it has been proved that the Steiner tree problem for 4
points in 3D-space, the simplest non-planar Steiner tree problem in space, does not have an
exact solution [9, 8, 6]. Hence an interesting problem is if we can reduce the gap between
the exactly solvable and non-exactly solvable Steiner tree problems in 3D-space. Since the
Steiner tree problem with constraints is generally more complicated than the one without
constraints, we expect that some Steiner tree problems for 3 points with constraints are still
exactly solvable, and some are not. In a previous paper [1] we have shown that the Steiner
tree problem for 3 points with one point being constrained on a straight line, referred to
as two-point-and-one-line Steiner tree problem (or 2P1L Steiner tree problem for short) is
exactly solvable. In fact, in this case the length of the Steiner minimal tree can be computed
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Figure 1. A mining network.

by solving a quartic equation. In this paper we continue our study in this line. We investigate
two kinds of constraints:

1. some terminals lie on straight lines, and
2. the gradients of all edges have an upper bound m.

Figure 1 is a simple example showing the two constraints. In this example tunnels are to be
designed so that the ore in two underground deposits can be extracted through tunnels either
directly to a vertical shaft L and then hauled up to the ground (Fig. 1(a)), or extracted to
a tunnel L in an existing underground mining network and then transported to the ground
(Fig. 1(b)). In these figures points A and B are the prescribed access points in deposits. In
practice, the gradient of any tunnel cannot be very steep. Let m be the maximal allowed
gradient and let g(e) be the gradient of an edge e in the underground mining network.
(Typically m ≤ 1/7). Then we need to find both the junction S and the access point D on L
so that the total length of the network is minimized and that the maximal gradient constraint
is satisfied, i.e. g(SA) ≤ m, g(SB) ≤ m and g(SD) ≤ m. In the case of Figure 1(b), the
gradient g(L) of L is no more than m since it is an existing tunnel.

This paper is organized as follows. Section 2 is an auxiliary section. To make the paper
self-contained, in Section 2 we review the problem of the shortest/longest distance from a
point or a straight line to an ellipse. In Section 3, using a result obtained in Section 2 we
give a new proof to the 2P1L Steiner tree problem. In Section 4 we show that the 1P2L
Steiner tree problem, i.e. the problem for constructing the shortest network connecting one
point and two straight lines, is not exactly solvable. The main aspect of this paper is laid on
Section 5, in which, again using the results in Section 2, we study the gradient-constrained
2P1L Steiner tree problem. We show that in the case where L is a vertical shaft as shown in
Figure 1(a), the problem is exactly solvable. However, if L is an existing tunnel as shown in
Figure 1(b), then depending on the gradients of edges, in some cases the problem is exactly
solvable but in some cases it is not. In the last section we show that the arguments for the
nonexistence of exact solutions given in Sections 4 and 5, can be used to construct iterative
approximation schemes for these problems. Table 1 summarizes all known exactly solvable
and non-exactly solvable Steiner tree problems in space.
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Steiner minimal trees for exactly solvable

3 points yes
2 points and 1 line yes

2 points and 1 vertical line, yes
gradient-constrained (Fig. 1(a))
2 points and 1 non-vertical line depending on
gradient-constrained (Fig. 1(b)) edge gradients

1 point and 2 lines no
4 points no

Table 1. A classification of exactly solvable/unsolvable cases

2. The shortest/longest distance to an ellipse

Let R̄ be an ellipse in a horizontal plane whose canonical form is

x2

a2
+

y2

b2
= 1. (1)

We investigate the shortest/longest distance from a point D or a straight line L in space
to R̄.

(1) From a point D to R̄.
Let D be a point in space whose projection to the plane is D̄ = (u, v). Suppose P = (x, y)

is the point on R̄ so that DP ⊥ R̄. Clearly it is equivalent to D̄P ⊥ R̄. There is an astroid
Ā, with equation

(ax)2/3 + (by)2/3 = (a2 − b2)2/3.

It is not difficult to see that Ā has the property that if D̄ lies inside Ā, then there are four
points P on R̄ so that D̄P ⊥ R̄. On the other hand, if D̄ lies outside Ā, then there are
two points P on R̄ so that D̄P ⊥ R̄ [3] (Fig. 2). In particular, if D̄ lies outside the ellipse,
then the two normals represent the shortest and the longest distance from D̄ to R̄. It can be
shown that P is the intersection of the ellipse with the hyperbolic [10]

(y − v)
x

a2
= (x− u)

y

b2
. (2)

That is, P is the solution of the set of equations (1) and (2), whose total degree is four.
Incidentally, it can be noted that the astroid passes through the point (0, (a2− b2)/b). Conse-
quently if a2 > 2b2, or equivalently, if the eccentricity of the ellipse exceeds 1/

√
2, then part

of the astroid lies outside the ellipse.

(2) From a line L to R̄.
If L is vertical, then it becomes the case studied in (1). Hence we assume L is not vertical.

Without loss of generality, assume L intersects the plane at point P = (u, v, 0), and assume
the direction of L is determined by (i, j, k), where i2 + j2 + k2 = 1, k 6= ∞. Suppose the
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Figure 2. The normals from a point to an ellipse.

shortest/longest line joining L and R̄ is SD where S lies on R̄ and D lies on L. Then, we
may assume

S = (x, y, 0), D = (u + ti, v + tj, tk).

By minimality SD ⊥ L that implies SD · L = 0, i.e.

(u + ti− x)i + (v + tj − y)j + tk2 = 0,

t = (x− u)i + (y − v)j.

Hence the coordinates of the projection D̄ of D are

D̄ =
(
u + (x− u)i2 + (y − v)ij, v + (x− u)ij + (y − v)j2, 0

)
.

Note SD ⊥ R̄ if and only if SD̄ ⊥ R̄. As argued in (1), S is determined by the set of equation
(1) and

(v + (x− u)ij + (y − v)j2 − y) x

a2
=

(u + (x− u)i2 + (y − v)ij − x) y

b2
. (3)

The total degree of the set of Equations (1) and (3) is four. In particular, if k = 0, i.e. if L
is parallel to the horizontal plane, then the total degree of the equation set is two.

3. A new proof of the 2P1L Steiner tree problem

Suppose two distinct points A, B and a straight line L are given, with A, B not on L. Let T
be the Steiner minimal tree joining A, B, and joining L at a point D. Let S be the Steiner
point in T . Because the degenerate cases are easy to deal with, we discuss only the non-
degenerate case, i.e. the case in which S does not coincide with A and B, and does not lie on
L either. We want to show that the problem of computing T can be turned into a problem
of computing a normal of an ellipse. Therefore, the 2P1L Steiner tree problem is a quartic
algebraic equation problem that is exactly solvable.
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Figure 3. The Steiner minimal tree for two points and a vertical line.

Without loss of generality we may assume that after a transformation of coordinates, A =
(c, 0, h), B = (−c, 0,−h) with c > 0, h > 0, and L is vertical. From now on the projection
of an object X to a horizontal plane is denoted by X̄. Thus let D̄ = (x̄, ȳ) be the projection
of D to a horizontal plane, i.e. D̄ is the intersection of L with the horizontal plane. Let
R = RAB be the e-circle of AB whose center is the midpoint of AB and whose radius is√

3|AB|/2 [8]. By the Melzak construction let the extension of DS meet R at the e-point E
[8]. By the minimality of T (Figure 3)

1. DE ⊥ L, and hence, DE is parallel to the horizontal plane,

2. DE ⊥ R, and E is the farthest point from D to R since S lies in 4ABD and since
DE intersects AB.

Clearly, the projection R̄ of R to the horizontal plane is an ellipse whose major axis (on the
Y -axis) equals the diameter of R, i.e.

√
3
√

c2 + h2 and whose minor axis (on the X-axis)
equals

√
3h. Therefore the equation for R̄ is

x2

h
+

y2

√
c2 + h2

=

√
3

2
.

Let Ē = (x, y) be the projection of E. Then D̄Ē is perpendicular to R̄ since DE ⊥ L and
DE ⊥ RAB. It follows that D̄Ē is the longest normal from D̄ to the ellipse R̄. By the result
in Section 2(1), Ē can be found by solving a quartic equation. Once Ē is determined, then
E and S can be determined by solving quadratic equations. Note |D̄Ē| = |DE| = |T |. This
proves that the 2P1L Steiner tree problem is exactly solvable.

4. The 1P2L Steiner tree problem

Suppose a point A and two lines LP , LQ are given. Let T be the Steiner minimal tree joining
A, and joining LP at P and joining LQ at Q. After a transformation we assume that LQ

is parallel to the x-axis and meets the z-axis at Q0 = (0, 0,−h) and assume that LP meets
z-axis at P0 = (0, 0, h) and the angle between LP and LQ is θ. Let S = (x, y, z) be the Steiner
point in T . Then the problem is an optimization problem with a strictly convex objective
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function |T | = |SA|+ |SP |+ |SQ| and two linear constraints: P lies on LP and Q lies on LQ.
Hence, the problem has a unique solution. To prove that the problem has no exact solution
in general, we have an example as follows.

Example 1P2L. An example of the 1P2L Steiner tree problem.

Let A = (2, 1, 0), θ = 90◦, h = 1 and let LQ be parallel to the x-axis. By minimality
SP ⊥ LP , SQ ⊥ LQ. Hence, P = (0, y, 1), Q = (x, 0,−1). First we show that the Steiner
point S = (x, y, z) is non-degenerate, i.e. S 6= A and S does not lie on LP neither on
LQ. Let PA be the foot of the perpendicular from A to LP , and let QA be the foot of the
perpendicular from A to LQ. Then, PA = (0, 1, 1), QA = (2, 0,−1) and it is easy to show
that 6 PAAQA = 108.4◦. Therefore the Steiner point S 6= A by the 120◦ angle condition.
Note that Q cannot lie on the left side of Q0 since |SP | ≥ 0 and 6 ASP = 120◦. Computing
the Steiner point SP in the Steiner tree joining A, Q0 and LP by the method described in
Section 3, we find that SP does not lie on LP . It follows that S cannot lie on LP . Similarly,
S cannot lie on LQ.

Now we compute S. Clearly,

e = |SA|2 = (2− x)2 + (1− y)2 + z2,

f = |SP |2 = x2 + (1− z)2,

g = |SQ|2 = y2 + (1 + z)2,

and
l = |T | =

√
e +

√
f +

√
g.

Note that f ′
y = g′x = 0, and S minimizing |T | implies l′x = l′y = l′z = 0. Since

l′z =
e′z

2
√

e
+

f ′
z

2
√

f
+

g′z
2
√

g
= 0,

we have

l′x =
e′x + e′zz

′
x

2
√

e
+

f ′
x + f ′

zz
′
x

2
√

f
+

g′x + g′zz
′
x

2
√

g

=

(
e′x

2
√

e
+

f ′
x

2
√

f

)
+

(
e′z

2
√

e
+

f ′
z

2
√

f
+

g′z
2
√

g

)
z′x

=
e′x

2
√

e
+

f ′
x

2
√

f
= 0.

That is,

(e′x)
2f − (f ′

x)
2e = (16(1− x)z2 − 8(x− 2)2z + 4(4− 4x− x2y2 + 2x2y) = 0. (4)

Similarly, from l′y = 0 we obtain

(e′y)
2g − f(g′y)

2e = (4(1− 2y)z2 + 8(y − 1)2z + 4(1− 2y − 3y2 + 4xy2 − x2y2) = 0. (5)
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Because S lies on the plane determined by 4APQ, it is not hard to derive that

z =
x− 2y

xy − 2y − x
. (6)

Replacing z by equation (6), equations (4) and (5) become

4x2(y − 1)

(x + 2y − xy)2
Fx = 0,

4y2(x− 2)

(x + 2y − xy)2
Fy = 0,

where
Fx

def
= c2x

2 + c1x + c0,

Fy
def
= d3x

3 + d2x
2 + d1x

1 + d0,

c2 = (y3 − 3y2 + 2y + 2), c1 = −4(y3 − 2y2 + 4)x, c0 = 4(y3 − y2 + 14),

d3 = (y − 1)2, d2 = −2(3y2 − 4y + 1), d1 = 11y2 − 6y, d0 = −2(y2 + 8y − 4).

Because 0 < x < 2, 0 < y < 1, and because x + 2y − xy > 0 when 0 < x < 2 and 0 < y < 1,
x and y are determined by Fx = 0, Fy = 0. For solving y from this system, let

M =


0 0 c2 c1 c0

0 c2 c1 c0 0
c2 c1 c0 0 0
0 d3 d2 d1 d0

d3 d2 d1 d0 0

 .

The determinant of M is 8(y − 1)(y − 2)4f ∗, where

f ∗ def
= 2y8 − 14y7 + 37y6 − 44y5 + 11y4 + 8y2 + 160− 100.

Again since 0 < y < 1, det(M) = 0 implies f ∗ = 0. However, f ∗ is a degree 8 irreducible
polynomial with a non-square discriminant and its Galois group is the symmetrical group
S8. Hence, f ∗ = 0 cannot be solved by radicals, and the 1P2L Steiner tree problem is not
exactly solvable.

5. The gradient-constrained 2P1L Steiner tree problem

In this section we assume T is the gradient-constrained Steiner minimal tree joining two
points A, B and a straight line L. We assume L is infinitely long otherwise the access points
on L may be the endpoints of L. The latter case is not difficult to deal with and will be
omitted. In the first subsection we briefly review the basic properties of gradient-constrained
Steiner minimal trees [2]. In the second subsection we discuss the case where L is a vertical
shaft (Fig. 1(a)), and the case where L is an existing tunnel (Fig. 1(b)) is discussed in the
last subsection.
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5.1. Properties of gradient-constrained Steiner trees

Suppose T is a tree in which all edges have gradients no more than m. Let xP , yP , zP denote
the Cartesian coordinates of a point P in Euclidean space. As stated above, the gradient of
a line PQ is

g(PQ) =
|zP − zQ|√

(xP − xQ)2 + (yP − yQ)2
.

An edge PQ in T is called an f-edge or m-edge, or b-edge, and labeled ‘f’ or ‘m’, or ‘b’ if
g(PQ) is < m or = m, or > m respectively. Clearly, if g(PQ) ≤ m, then PQ is a straight
line segment and referred to as a straight edge, otherwise PQ can be any shortest zigzag line
in which each segment has gradient equal to m. In the latter case, the non-straight edge
can be represented in a canonical form which consists of two straight line segments PR,RQ.
Therefore, a non-straight edge is also referred as a bent edge and a point R is called a corner
point of the bent edge PQ. From another point of view, the length of PQ can be measured
in a special metric, called gradient metric and denoted by |PQ|g. It is easy to see that

|PQ|g =


√

(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2, if g(PQ) ≤ m;

(
√

1 + m−2|zP − zQ|, if g(PQ) ≥ m.

By the definition it is easy to see that |PQ| ≤ |PQ|g, where |PQ| is the Euclidean metric,
and that the gradient metric is convex though it is not strictly convex.

Suppose S is a non-degenerate degree 3 Steiner point in T , and its adjacent points are
A, B and C. Let HS be the horizontal plane through S. Then two edges of S, say SA
and SB, lie on one side of HS and the third edge, say SC, lies on the other side of HS [2].
Let gA, gB, gC denote the respective labels of these edges. Then we say the labeling of S is
(gAgB/gC). The following results have also been proved [2].

Theorem 5.1. Up to symmetry there are five feasible optimal labellings: (ff/f), (ff/m),
(fm/m), (mm/m) and (mm/b). Moreover, in the last case the two m-edges lie in a ver-
tical plane and S can be exactly determined by the two m-edges.

Finally, for any point P let CP be the vertical cone whose generating lines have gradient
m and whose vertex is P . Let L be a straight line not containing P . Let PD be the
gradient-constrained shortest line joining P and L. Then the following lemma is trivial.

Lemma 5.2. If L does not meet CP , then PD is an f-edge satisfying PD ⊥ L. Otherwise
assume Q′Q′′ is the part of L lying inside CP . Then D is the one of Q′, Q′′ that is near to P
if L is not horizontal, or D can be any point on Q′Q′′ if L is horizontal. In the latter case if
D = Q′ or D = Q′′ then PD is an m-edge, otherwise PD is a b-edge.

5.2. Vertical L

First, if both A, B are sufficiently close to L and if more than one access point on L is
permitted, then T consists of two horizontal straight lines ADA and BDB where DA, DB are
the perpendicular feet on L with respect to A, B separately. Trivially, this case is exactly
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solvable. Hence we assume that T has only one access point, say D, on L. Since L is vertical,
DS must be a horizontal f-edge.

Next suppose T is degenerate, i.e. either the Steiner point S in T collapses into A or B,
or S lies on L. If S collapses into A or B, say A, then T = AB ∪ADA. Clearly the problem
is exactly solvable in this case. If S lies on L, then AS, BS are either both f-edges or both
m-edges as a special case proved in the following lemma.

Lemma 5.3. If S does not collapse into A and B, then AS, BS are either both f-edges or
both m-edges.

Proof. Without loss of generality assume g(AS) ≤ g(BS). First, since DS is an f-edge, by
Theorem 5.1 neither AS nor BS is a bent edge. Next, suppose g(AS) is an f-edge. Let L∗ be
the vertical line through S. If g(BS) = m, then BS is a straight edge, and if g(BS) > m, then
BS is a bent edge with a corner point R so that g(RS) = m. In any case the angle between
BS (or RS) and L∗ is strictly less than the angle between AS and L∗ since g(AS) < g(BS).
It follows that when S is perturbed along L∗ to approach B, BS shrinks faster than AS
stretches by the variational argument [7]. Note that the length of SD does not change in
this perturbation. Hence, T is shortened, contradicting the minimality of T . This proves
that BS must be an f-edge, too. Finally, suppose g(AS) is an m-edge. Then BS must be an
m-edge since it is not an f-edge nor a b-edge. The proof is complete. 2

Now suppose T is not degenerate. By the above lemma, T has only two possibilities. If
both AS, BS are f-edges, then the problem becomes not constrained, and S can be exactly
determined as described in Section 3. If both AS, BS are m-edges, we claim that S can
be exactly determined, too. After a transformation we can assume that A = (c, 0, h), B =
(−c, 0,−h) as before. Note that g(SA) = g(SB) = m and S being non-degenerate imply
that g(AB) > m and h > 0. Hence S = (x, y, z) lies on the intersection RAB = CA ∩CB and
satisfies

(x− c)2 + y2 =
(z − h)2

m2
, (x + c)2 + y2 =

(z + h)2

m2
. (7)

It is easily seen [2] that the intersection RAB is an ellipse lying on the plane P̃ determined
by

z = m2 c

h
x =

m2

k
x, (8)

where k = h/c = g(AB). The projection R̄AB of RAB on the horizontal plane (Fig. 4) is also
an ellipse determined by

x2

a2
+

y2

b2
= 1, a =

h2

m2
, b =

(k2 −m2)u2

m2
.

Because SD ⊥ RAB and SD ⊥ L by minimality, and because L is vertical, we conclude that
SD is horizontal and S̄D̄ is a normal from the point D̄ to the ellipse R̄AB. As proved in
Section 2(1), S̄ can be found by solving a quartic equation. This proves that the case of
g(AS) = g(BS) = m is also exactly solvable.
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Figure 4. The gradient-constrained Steiner minimal tree for two points and a vertical line.

case 1 2 3 4 5 6 7 8
g(AS)= f f f f m m m m
g(BS)= f f m m m m m b
g(DS)= f m f m f m b m

Table 2. 8 possible labellings for non-vertical L

5.3. Non-vertical L

Now we investigate the case where L is an existing tunnel but the gradient of L is not
necessarily restricted, i.e. g(L) is arbitrary. We omit the two access point case and all
degenerate cases since they are similar to, though a little more complicated than, the ones
when L is a vertical line. Below, we assume that S is non-degenerate in the Steiner minimal
tree T and assume that the access point on L is D. The type of T can be classified according
to its labelling. Without loss of generality assume G(AS) ≤ g(BS). Note that A, B are fixed
terminals but D is only constrained on L. Because of this non-symmetry between AS, BS
and DS, up to symmetry there are 8 different labellings of T as shown in Table 2.

We first show 4 cases that are easily seen to be exactly solvable:

Case 1: All three edges are f-edges. In this case the problem is a 2P1L problem without
gradient-constraint and is exactly solvable as proved in Section 3.

Case 5: Both AS, BS are m-edges and DS is an f-edge (Fig. 5(a)). As argued in Subsection
5.2, S lies on the ellipse RAB in the plane P̃ . After a transformation we may assume P̃ is
the xy-plane in the new coordinate system. Then the problem becomes that of finding the
shortest edge joining an ellipse on the plane and a non-vertical straight line L. Hence, by
Section 2(2), the problem is exactly solvable.

Case 7: DS is a b-edge (Fig 5(b)). Then, by Theorem 5.1 both AS and BS are m-edges lying
on a vertical plane. Therefore, S can be determined by this condition and the conditions
g(AS) = g(BS) = m.
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Figure 5. Exactly solvable gradient-constrained Steiner minimal trees for two points and a
non-vertical line.

Case 8: One of AS or BS, say BS, is a b-edge (Fig. 5(c)). Then, again by Theorem 5.1
AS and DS are m-edges lying on a vertical plane. Let L∗ be the horizontal line, through S
and perpendicular to this plane. When S is perturbed along L∗, by the definition of gradient
metric, the variation of |AS|g and |BS|g is zero. Hence, by minimality of T , the variation of
|DS|g must be zero, too. Note that the move of S induces a move of D along L to minimize
|T |. Hence, SD ⊥ L∗ and L/L∗. It follows that L is horizontal, and it is perpendicular to the
vertical plane. This condition determines D. Then, similar to the above case S is determined
by g(BS) = g(DS) = m.

In general, the gradient-constrained 2P1L problem is not exactly solvable. To prove this
claim we need only to show that one of Cases 2,3,4 and 6 is not exactly solvable. Below is
an example of Case 2 in which AS, BS are f-edges and DS is an m-edge.

Example gc2P1L. An example of gradient-constrained 2P1L Steiner tree problem.

Let m = 1, A = (2, 5,−1), B = (2, 0, 0), L is parallel to the y-axis and through the point
(0, 2, 0). Let S0 be the Steiner point joining A, B and L without gradient constraint. Then we
can compute S0 as described in Section 3 and find g(S0D) > m, g(S0A) < m, g(S0B) < m.
It suggests that S = (x, y, z) should satisfy g(SD) = m, g(SA) < m, g(SB) < m. In the
next section we will show that a numerical calculation proves these equations and inequalities.
For this labelling, the problem can be regarded as an optimization problem in the Euclidean
metric with a strictly convex objective function |T | = |SA| + |SP | + |SQ| and a linear
constraint that S lies in the plane through L with slope m. Hence, the problem has a unique
solution.

Since L is horizontal, it follows by minimality that SD ⊥ L and D = (0, y, 2). Since
g(SD) = m = 1, we have

z = 2− x. (9)

Let
l = |T | =

√
e +

√
f +

√
g,

where

f = |SA| = (2− x)2 + (5− y)2 + (1 + z)2 = (2− x)2 + (5− y)2 + (3− x)2,
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g = |SB| = (2− x)2 + y2 + z2 = 2(2− x)2 + y2,

e = |SD| = x

√
1 +

1

m2
.

Then

l′y =
f ′

y

2
√

f
+

g′y
2
√

g
,

√
f =

−f ′
y

√
g

g′y
. (10)

Note f ′
y, g

′
y are linear in x and y. Hence, by equation (10) l′y = 0 is equivalent to

Fy
def
= g(f ′

y)
2 − f(g′y)

2 = c2y
2 + c1y + c0 = 0, (11)

where
c2 = 8x− 20, c1 = −80(x− 2)2, c0 = −80(x− 2)2.

On the other hand, again by equation (10)

l′x =

√
1 +

1

m2
+

f ′
x

2
√

f
+

g′x
2
√

g
=

√
1 +

1

m2
−

f ′
xg

′
y

2f ′
y

√
g

+
g′x

2
√

g
.

Hence l′x = 0 is equivalent to

Fx
def
=

g

4

(
1 +

1

m2

)
(f ′

y)
2 − 1

16
(f ′

yg
′
x − f ′

xg
′
y)

2

= d4y
4 + d3y

3 + d2y
2 + d1y + d0 = 0, (12)

where

d4 = 2, d3 = −20, d2 = 4x2 − 16x + 65, d1 = −20(x− 2)(2x− 5), d0 = 0.

For solving x from the system Fx = Fy = 0, let

M =



0 0 0 c2 c1 c0

0 0 c2 c1 c0 0
0 c2 c1 c0 0 0
c2 c1 c0 0 0 0
0 d4 d3 d2 d1 d0

d4 d3 d2 d1 d0 0


.

The determinant of M is 640000(x− 2)4f ∗, where

f ∗ def
= 9792x6 − 142080x5 + 852864x4 − 2706640x3

+4775500x2 − 4419300x + 1661375. (13)

Since 0 < x < 2, det(M) = 0 implies f ∗ = 0. However, f ∗ is a degree 6 irreducible polynomial
with a non-square discriminant and its Galois group is the symmetrical group S6. Hence,
f ∗ = 0 cannot be solved by radicals. This proves that this example has no exact solution.

Remark 5.1. In the example we choose m = 1 only for simplicity. We can construct a non-
exactly solvable example for m equal to 1/7 or other values for practical mining networks
but such an m leads to an irreducible polynomial of degree much higher than 6.
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6. Iterative Approximations

Now we show that there exist good iterative approximation schemes for the non-exactly
solvable Steiner problems discussed in Sections 4 and 5.

(1) In Example 1P2L, we have shown that the coordinates x, y of the Steiner point S are
determined by

Fx = (y3 − 3y2 + 2y + 2)x2 − 4(y3 − 2y2 + 4)x + 4y3 − 4y2 + 16 = 0,

Fy = (x3 − 6x2 + 11x− 2)y2 − 2(x3 − 4x2 + 3x + 8)y + x3 − 2x2 + 8 = 0.

Solving Fx = 0 with respect to x, we have

x =
2y3 − 4y2 + 8− 2

√
8− 8y − 2y2 + 4y3 − y4

y3 − 3y2 + 2y + 2
, (14)

and

x∗(y) =
2y3 − 4y2 + 8 + 2

√
8− 8y − 2y2 + 4y3 − y4

y3 − 3y2 + 2y + 2
.

However, x∗(y) is an extraneous root because x∗(y) achieves the minimum when y = 1 and
x∗(1) = 4 is outside the domain 0 < x < 2. Similarly, solving Fy = 0, and ignoring the
extraneous root we have

y =
x3 − 4x2 + 3x + 8− 2

√
80− 40x− 11x2 + 8x3 − x4

x3 − 6x2 + 11x− 2
. (15)

Hence we have the following iteration formulae:

xi =
2y3

i−1 − 4y2
i−1 + 8− 2

√
8− 8yi−1 − 2y2

i−1 + 4y3
i−1 − y4

i−1

y3
i−1 − 3y2

i−1 + 26 + 2
,

yi =
x3

i−1 − 4x2
i−1 + 3xi−1 + 8− 2

√
80− 40xi−1 − 11x2

i−1 + 8x3
i−1 − x4

i−1

x3
i−1 − 6x2

i−1 + 11xi−1 − 2
.

Let x0 = 0, then the sequence (xi, yi) converges to the solution of the example since the
solution is unique as we have proved. In fact, after 10 iterations we obtain the solution

x = 1.467369, y = 0.610682,

with error less than 10−5.

(2) Similarly in Example gc2P1L, we have shown that the coordinates x, y of the Steiner
point S are determined by

Fy = (8x− 20)y2 − 80(x− 2)2y + 200(x− 2)2 = 0,

Fx = 2y4 − 20y3 + (4x2 − 16x + 65)y2 − 20(x− 2)(2x− 5)y = 0,
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and the latter can be rewritten as

Fx = (4y2 − 40y)x2 + (−16y2 + 180y)x + 2y4 − 20y3 + 65y2 − 200y = 0.

Solving Fx = Fy = 0, and ignoring the extraneous roots we obtain the following iteration
formulae:

xi =
8yi−1 − 90 + 2

√
25 + 490yi−1 − 249y2

i−1 + 40y3
i−1 − 2y4

i−1

4yi−1 − 40
,

yi =
(xi−1 − 2)(10xi−1 − 20 + 5

√
4x2

i−1 − 20xi−1 + 26)

2xi−1 − 5
.

Let x0 = 0, then the sequence (xi, yi) converges to the solution of the example since the
solution is unique as we have proved. In fact, after 5 iterations we obtain the solution with
accuracy to ten digits

x = 1.227023368, y = 1.805490566.
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