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The Problem of Polygons with
Hidden Vertices
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Abstract. G. Ewald proved that it is possible for a polygon(al path) in R3 to hide
all its vertices behind its edges from the sight of a point M not on the polygon.
Ewald also stated that it takes at least 8 vertices to do the job and constructed an
example with 14 vertices. It was then suggested that the least number of vertices
nmin for such a configuration is closer to 14 than to 8. In this paper, we shall prove
that 11 ≤ nmin ≤ 12.

Let P = [P1P2 . . . Pn] be a polygon without self intersection in R3. So, P1, . . . , Pn are distinct
points, and P is the union of the (closed) line segments [P1, P2] , [P2, P3] , . . . , [Pn−1, Pn] such
that for all i 6= j, [Pj−1, Pj]∩(Pi−1, Pi) = ∅, where (Pi−1, Pi) denotes the relative interior of of
[Pi−1, Pi] . The points P1, . . . , Pn are called the vertices of the polygon, and the line segments
[Pi−1, Pi] the edges.

Ewald [1] proved that there is a polygon and a point M (not on the polygon) such that
all vertices are hidden from the sight of M, i.e., for all i, there exists j such that the line
segments [M, Pi] and [Pj−1, Pj] intersect at a point in (Pj−1, Pj) . More specifically, Ewald [1]
gave an example of such a configuration with n = 14. Ewald asked for the smallest number of
vertices nmin for which such a configuration exists, argued that 8 ≤ nmin ≤ 14,and suggested
that it should be closer to 14 than to 8. We shall prove that 11 ≤ nmin ≤ 12. Here, let us
first mention an example with 12 vertices:

M = (0, 0, 0)

P1 =

(
19,

17

2
, 5

)
= 5P8 +

7

2
P9

0138-4821/93 $ 2.50 c© 2004 Heldermann Verlag



218 J. M. Ling: The Problem of Polygons with Hidden Vertices

P2 = (−19,−8,−5) = 11P6 + 3P7

P3 = (0, 0, 1) = P7 +
19

3
P8

P4 = (0, 1, 0) = 2P1 + 2P2

P5 = (1, 0, 0) = 4P10 + P11

P6 = (0, 1, 1) = P3 + P4

P7 =

(
−19

3
,−19

3
,−16

3

)
=

4

3
P11 +

1

3
P12

P8 = (1, 1, 1) = P5 + P6

P9 = (4, 1, 0) = P4 + 4P5

P10 = (5, 2, 1) = P8 + P9

P11 = (−19,−8,−4) = P2 + P3

P12 = (57, 13, 0) = 13P4 + 57P5

Thus, nmin ≤ 12. In what follows, we shall prove that nmin ≥ 11.

To facilitate our discussion, we shall also denote the vertices by Q1, . . . , Qn, without any
implication that the endpoints of the edges [Qi, Qj] should have consecutive integral indices.
Thus, Q1, . . . , Qn is a permutation of P1, . . . , Pn, and [Qi, Qj] is an edge of the polygon
[P1P2 . . . Pn] if and only if there is some k such that {Qi, Qj} = {Pk−1, Pk} , but it is not nec-
essary that |i− j| = 1. However, we note that as P1, . . . , Pn are distinct, so are Q1, . . . , Qn.

We say that [Qi, Qj] blocks Qk if the line segment [M, Qk] intersects [Qi, Qj] at a point
in (Qi, Qj) , and that Qi helps block Qk if for some vertex Qj, [Qi, Qj] is an edge of the
polygon which blocks Qk. We denote the point of intersection of [M, Qk] and [Qi, Qj] by Rk

in case the values of i and j are clear from the context. (See Figure 1) Sometimes, we find
it convenient to say that a set S of points blocks or does not block a point Q according as
whether or not there is some line segment with endpoints in S that blocks Q.
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Figure 1

The plane that passes through three noncollinear points A, B, C will be denoted by πABC .
Thus, πABC = πACB = πBCA, etc. If A happens to be some Qj, we also write πABC as πjBC ,
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etc. Thus, πijk is the plane that passes through Qi, Qj, Qk, and πMij is the plane that pases
through M, Qi, Qj. We find it convenient to write πMijk... for the plane, when exists, that
passes through M, Qi, Qj, Qk, . . . .

Each plane π determines two closed half-spaces in R3, denoted by π≥ and π≤, with com-
mon boundary π. We denote the corresponding open half-spaces by π> and π<, respectively.
We note that the choice of designations < and > for the pair of half-spaces is arbitrary, and
the same applies to ≤ and ≥.

The following facts will be used frequently. We omit their easy proofs.
1. If (P, Q) intersects π, then P ∈ π> ⇒ Q ∈ π< (and P ∈ π< ⇒ Q ∈ π>). We also

describe this scenario by saying that (P, Q) pierces through π.

2. If Qi helps block Qj, then Qj does not help block Qi.

3. If M ∈ π and Q ∈ π>, then Q is not blocked by any line segments with endpoints in
π≤.

4. If M ∈ π and if Qk is blocked by [Qi, Qj], where (Qi, Qj) ⊆ π>, then Qk ∈ π>.

5. If all the vertices of a polygon are hidden from sight of M, then M must lie in the
interior of the convex hull of the polygon. (This was proved in [1].)

Below, we shall assume that [P1 . . . Pn] is a polygon whose vertices are hidden from the sight
of the point M.

To begin, it is quite easy to see that n ≥ 10.

Lemma 1. If π is any plane through M, then there are at least three vertices in π> and at
least three vertices in π<.

Proof. By [1] Theorem 1, not all vertices lie on the same plane. So, there is some vertex
P ∈ π>, say. But then, since M lies in the interior of the convex hull of the polygon, there
must be some vertex Q in π<. Since P is blocked from M, and since points in π≤ are not
sufficient to block P, there must be some P ′ in π> which helps block P. Now, as P ′ helps
block P, P cannot help block P ′. Thus, there must be yet another vertex P ′′ in π> which
helps block P ′. Thus, π> contains at least three vertices. The same argument applies to
Q ∈ π<. �

Theorem 1. nmin ≥ 10.

Proof. Since the polygon [P1 . . . Pn] has n vertices hidden behind n− 1 edges, at least one of
the edges must block more than one vertex. Suppose Q1, Q2 are two vertices that are blocked
by [Q3, Q4] . Then M, Q1, Q2, Q3, Q4 all lie on the same plane π. By Lemma 1, there are at
least three vertices in π> and at least three vertices in π<. So, the total number of vertices
is at least 4 + 3 + 3 = 10. �

We need another lemma to establish nmin ≥ 11.
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Lemma 2. If Qi, Qj, Qk are the only vertices in π> for some plane π through M, then
Qi, Qj, Qk will help block one another in a cyclical manner, i.e., either

Qi helps block Qk, Qk helps block Qj, Qj helps block Qi,

or

Qi helps block Qj, Qj helps block Qk, Qk helps block Qi.

Proof. One of Qi and Qj must help block Qk. If Qi helps block Qk, then Qk does not help
block Qi, and so Qj must help block Qi. Then Qi does not help block Qj, and so, Qk must
help block Qj. We arrive at the first scenario. Similarly, if Qj helps block Qk, we arrive at
the second scenario. (We may imagine the vertices Qi, Qj, Qk together with their blocking
edges forming something like a tripod. See Figure 2.) �
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Figure 2

Theorem 2. nmin ≥ 11.

Proof. As in the proof of Theorem 1, we suppose that Q1, Q2 are two vertices that are
blocked by [Q3, Q4] , and we denote the plane πM1234 by π. We look at various ways Q3 and
Q4 may be blocked. The cases are separated according to whether the line segments blocking
them lie on or pierce through the plane π. In each case, we prove that it is impossible for
the configuration to have just 10 vertices. In view of Lemma 1, this implies that no plane
through M can contain more than 4 vertices.

CASE 1. Q3 and Q4 are blocked by two edges piercing through the plane π = πM1234, and
that the two edges share a vertex. That is, there are points Q5, Q6, Q7 /∈ π such that [Q5, Q6]
blocks Q3 and [Q6, Q7] blocks Q4. (See Figure 3.) Since (Q5, Q6) and (Q6, Q7) pierce through
π, we may assume without loss of generality that Q6 ∈ π< and Q5, Q7 ∈ π>. In view of
Lemma 2, we have vertices Q8, Q10 ∈ π< and we may assume that

Q6 helps block Q8; Q8 helps block Q10; Q10 helps block Q6.

Also, there is a vertex Q9 ∈ π>. Suppose that Q1, . . . , Q10 are all the vertices. Since
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[Q5, Q6] blocks Q3, [Q6, Q7] blocks Q4, and [Q3, Q4] blocks Q1 and Q2, π567 strictly sepa-
rates Q1, Q2, Q3, Q4 from M, i.e., M ∈ π>

567 and Q1, Q2, Q3, Q4 ∈ π<
567. (See Figure 4.) Since

Q6 helps block Q8 and the edges in the polygon that connect to Q6 are [Q5, Q6] and [Q6, Q7] ,
Q8 must be blocked by one of [Q5, Q6] and [Q6, Q7] . In either case, the plane π567 strictly
separates Q8 from M. So, the vertices Q1, . . . , Q8 are all in π≤567 whereas M ∈ π>

567. So, if π//

denotes the plane through M parallel to π567, then one of the half-spaces π>
// and π<

// contains
no more than two vertices Q9 and Q10. This contradicts Lemma 1. This completes CASE 1.

M
4

Q

Q

Q

Q

Q

Q
6

5

2

1

7

π

3
Q

π

π
π

567

567

567
>

<

Figure 4



222 J. M. Ling: The Problem of Polygons with Hidden Vertices

CASE 2. Q3 and Q4 are blocked by two edges piercing through the plane π = πM1234, and
that they do not share a common vertex. That is, there are (distinct) points Q5, Q6, Q7, Q8

not on π such that [Q5, Q6] blocks Q3 and [Q7, Q8] blocks Q4. (See Figure 5.)
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Figure 5

We may assume that Q5, Q7 ∈ π> and Q6, Q8 ∈ π<. In view of Lemma 1, we have Q9 in π>,
Q10 in π<, and we assume that

Q5 helps block Q7; Q7 helps block Q9; Q9 helps block Q5.

Now, suppose that these are all the vertices. We shall derive a contradiction.
Consider the plane πM478. Since Q7 /∈ π = πM34, we have Q3 /∈ πM478. Suppose Q3 ∈

π<
M478. Then (Q3, Q4) ⊆ π<

M478. It follows that Q1, Q2 ∈ π<
M478. Also, R3 = (M, Q3)∩[Q5, Q6] ∈

π<
M478. This implies that at least one of Q5, Q6 is in π<

M478. But then, Q1, Q2, Q3, Q4, Q7, Q8,
and at least one of Q5, Q6 are in π≤M478. It follows by Lemma 1 that Q9, Q10 ∈ π>

M478, and
exactly one of Q5 and Q6 must be in each of π>

M478 and π<
M478. As a summary,

Q1, Q2, Q3, and one of Q5, Q6 ∈ π<
M478;

Q9, Q10, and one of Q5, Q6 ∈ π>
M478.

By a similar argument,

Q1, Q2, Q4, and one of Q7, Q8 ∈ π<
M356;

Q9, Q10, and one of Q7, Q8 ∈ π>
M356.

Subcase 2(a). Q5 ∈ π<
M478 (and so Q6 ∈ π>

M478).
As Q5 helps block Q7, Q7 must be blocked by [Q5, Qi] for some Qi ∈ π>

M478. So, i = 6, 9, or 10.
Since Q7 helps block Q9, Q9 does not help block Q7, and so, i 6= 9. Also, since Q5, Q6 ∈ πM356

but Q7 /∈ πM356, [Q5, Q6] does not block Q7. So, i 6= 6, and we conclude that i = 10, and so

[Q5, Q10] blocks Q7.
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This in turn implies that

Q7 ∈ π>
M356, and so Q8 ∈ π<

M356.

Now, Q9, Q10, Q7 are the only vertices in π>
M356, and as Q10 helps block Q7, it follows from

Lemma 2 that

Q7 helps block Q9, and Q9 helps block Q10.

Then, as the only vertices in π>
M478 are Q9, Q10, Q6, and as Q9 helps block Q10, it follows from

Lemma 2 again that

Q10 helps block Q6, and Q6 helps block Q9.

Next, as the only vertices in π< are Q6, Q8, Q10, and as Q10 helps block Q6, it follows once
more from Lemma 2 that

Q6 helps block Q8, and Q8 helps block Q10.

So, Q6 helps block the vertices Q3, Q8, and Q9. As there are only two edges connecting Q6,
one of them is going to block two of Q3, Q8, Q9.

Sub-subcase 2(a)(i): [Q6, Qi] blocks both Q8 and Q9 for some i.
Consider the plane πMi689. Certainly, i 6= 6, 8, 9. As Q6 ∈ π< and Q9 ∈ π>, i 6= 1, 2, 3, 4, 10.
If i = 5, then [Q5, Q6] blocks Q3, Q8, Q9, and so πM56 contains at least five vertices, a
contradiction. If i = 7, then [Q6, Q7] blocks Q4, Q8, Q9 and we have five vertices on the
same plane πM67, a contradiction again.

Sub-subcase 2(a)(ii): [Q6, Qi] blocks Q3 and one of Q8 and Q9, for some i.
Since [Q5, Q6] blocks Q3, we have Qi ∈ πM356, and so one of Q8 or Q9 must be on πM356. But
this contradicts the basic setup of Subcase 2(a), in which Q8 ∈ π<

M356 and Q9 ∈ π>
M356.

This completes Subcase 2(a).

Subcase 2(b). Q5 ∈ π>
M478 (and so Q6 ∈ π<

M478).
Since Q5, Q9, Q10 are the only vertices in π>

M478, and as Q9 helps block Q5, it follows from
Lemma 2 that Q5 helps block Q10, and Q10 helps block Q9. But then Q5 helps block
Q3, Q7, Q10. As Q5 is connected to at most two vertices, there must be some i such that
[Q5, Qi] blocks two of the vertices Q3, Q7, Q10.

Sub-subcase 2(b)(i): [Q5, Qi] blocks Q7 and Q10.
Certainly, i 6= 5, 7, 10. Since Q5 ∈ π> and Q10 ∈ π<, it is easy to see that i 6= 1, 2, 3, 4, 9.
Since Q5 ∈ π>

M478, [Q5, Q8] does not block Q7. So, i 6= 8. Finally, if [Q5, Q6] blocks Q7, Q10,
then πM356 contains five vertices, a contradiction. Thus, i 6= 6.

Sub-subcase 2(b)(ii): [Q5, Qi] blocks Q3 and one of Q7, Q10.
One of Q7, Q10 will then be in πM356. This contradicts the basic setup of Subcase 2(b) in
which Q7 /∈ πM356 and Q10 ∈ π>

M356.
This completes Subcase 2(b), and hence CASE 2.

CASE 3. Q3 and Q4 are blocked by two edges at least one of which lies on the plane
π = πM1234.
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The plane π must contain a fifth vertex, a contradiction.
This completes CASE 3, and hence the proof of Theorem 2. �

Remarks. 1. We conjecture that nmin = 11.

2. Our proof relies on the fact that the polygon does not close up onto itself: there are n− 1
edges connecting n vertices. In the example given in Ewald [1], the line segment joining P1

and P14 does not intersect any of the edges [Pi−1, Pi] , 2 ≤ i ≤ 14. Thus, we get a closed
polygon with all vertices hidden from the sight of M. For such a configuration, a pigeon-hole
argument does not apply to allow us to conclude that some edge blocks more than one vertex.
The natural starting point is then with one edge blocking one vertex. The total number of
vertices is at least 3 + 3 + 3 = 9. The above argument may be repeated to conclude that
the number of vertices is at least 10. On the other hand, in our example with 12 vertices,
the polygon can also be closed up without introducing a self-intersection Thus, for closed
polygons, we may say 10 ≤ nmin ≤ 12.
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