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Abstract. We show that a honeycomb circle packing in R2 with a linear gap
defect cannot be completely saturated, no matter how narrow the gap is. The
result is motivated by an open problem of G. Fejes Tóth, G. Kuperberg, and
W. Kuperberg, which asks whether of a honeycomb circle packing with a linear
shift defect is completely saturated. We also show that an fcc sphere packing in
R3 with a planar gap defect is not completely saturated.
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1. Introduction

A packing of unit spheres in Rn is k-saturated if it is not possible to replace k − 1 spheres
by k and still have a packing; it is completely saturated if it is k-saturated for all k [2].
Every completely saturated packing has maximum density, and every periodic packing with
maximum density is completely saturated [2]. Thus the densest lattice packing of circles in
R2 (the honeycomb circle packing) is completely saturated. This motivates the question: Is
the honeycomb circle packing the only one which is completely saturated?
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Figure 1. Honeycomb circle packing with a shift defect

G. Fejes Tóth, G. Kuperberg, and W. Kuperberg [1] asked whether a honeycomb circle
packing with a linear shift defect, as in Figure 1, is completely saturated. This question
appears to be closely related to the (still open) conjecture of L. Fejes Tóth [3] asserting that
the same packing is solid, meaning that if you obtain another packing by rearranging finitely
many circles, it is congruent to the original one.

In this paper we will instead consider packings with a linear or planar gap defect in which
the spheres on opposite sides of the gap do not touch.

Definition. Let S be a sphere packing in Rn, let H ⊂ Rn be a hyperplane, let H+ be a closed
half-space bounded by H, and let ~v be a vector perpendicular to H in the direction of H+. Let
S̃ be the packing obtained from S by moving all spheres with centers in H+ by the vector ~v.
(Note that S̃ is a packing because the motion does not decrease the distances between sphere

centers.) Then S̃ is a sphere packing with a hyperplane gap defect and ‖~v‖ is the width of
the gap.

Figure 2. Honeycomb circle packing with a gap defect

Figures 2 and 5 show a honeycomb circle packing with a linear gap defect.

Theorem 1. A honeycomb circle packing in R2 with a linear gap defect is not completely
saturated, regardless of the width and direction of the gap. An fcc (face-centered cubic lattice)
packing of spheres in R3 with an arbitrary planar gap defect is also not completely saturated.

Since the honeycomb circle packing in R2 [6] and the fcc sphere packing in R3 [4] are the
unique densest lattice sphere packings in 2 and 3 dimensions, we obtain the following corollary.
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Corollary 2. In R2 and R3, no lattice sphere packing with a hyperplane gap defect is com-
pletely saturated.

Remark. In contrast to the above corollary, in which the width of the gap can be arbitrarily
small, the corresponding problem for circle packings with a shift defect is still open, even
with the largest possible size of the defect.

2. Honeycomb packing with gap defects

2.1. Gap along a lattice line

By a lattice line we understand here a line determined by two closest points of the lattice.
Let C be the honeycomb circle packing in R2 with a circle center at every point of the

form (2i + j,
√

3j), with i, j ∈ Z. Let d > 0 and move all circles with center on or above the

x-axis by the vector ~v = (0, d) to obtain the packing C̃.

Figure 3. Five triangular blocks

We will show that C̃ is not completely saturated. It suffices to rearrange finitely many circles
in C̃ to create enough empty space for an extra circle. To achieve that, we will widen the
gap in a sufficiently large finite region. If we can create a gap of width d′ = d + δ, with δ
a non-decreasing function of d, then by repeating the operation we can create a gap of any
width. In the end, if the width is at least 2, there is room for another circle.

We define a triangular block of size n to be a set of n(n+1)/2 circles whose centers lie in
an equilateral triangle of edge length 2n− 2, i.e., with n circles along each edge. Note that a
triangular block in C̃ must lie entirely on one side of the gap. If the block points up, we will
call it a ∆n-block; otherwise we will call it a ∇n-block. The rearrangement to widen the gap
is as follows: Take two ∆n-blocks, two ∇n-blocks, and one ∆n−1-block that form a trapezoid,
as in Figure 3. Move the two outer ∆n-blocks down by a distance of d1 ≤ d, then move the
two ∇n-blocks at 60 degree angles from vertical by d2, then move the middle ∆n-block up by
d3, as in Figure 4. If we choose the distances d1, d2, and d3 to maximize d3, then d3 is at least
weakly monotonic in d, because increasing d relaxes the constraints on the other parameters.
Thus the gap is widened by δ monotonic in d, as desired. Since the parameter n is arbitrary,
it can be taken large enough to repeat the operation with smaller blocks to reach any desired
width.
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Figure 4. The rearrangement in three moves

2.2. Gap along an arbitrary line

Figure 5. A triangular block split by the gap

Let C be the above honeycomb circle packing and let ` be any line, and now let C̃ be the
packing C with a gap along `. Our plan in this case is to create another (finite) gap parallel
to a lattice line of C and reduce to the case of Section 2.1. The gap can be made any length
without sacrificing width. For each n ≥ 3, we can choose a triangular block T in C of length
n so that ` intersects the triangle formed by its circle centers, moreover so that ` does not
meet the vertices. Then ` divides T into two sub-blocks T1 and T2, one of which, say T1, has
only one corner of T . In C̃, these two sub-blocks are separated by the gap, as in Figure 5. In
C̃, then, T1 can be moved towards T2 to introduce gaps on its other two sides. The length
n is arbitrary and the width of the new gaps does not depend on n. This completes the
reduction.

3. The fcc packing with a gap

The fcc sphere packing in R3 decomposes into honeycomb layers, and, as noted by Kepler
[5], it also decomposes into square-lattice layers. We prove below that the fcc-lattice sphere
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packing with a gap defect is never completely saturated, no matter how narrow the gap is
and no matter along which plane the gap is formed. As before, we first establish special
cases.

3.1. Gap parallel to a square layer

Let B be the fcc packing in R3 whose sphere centers are at (2i+k, 2j+k,
√

2k) with i, j, k ∈ Z.

Let B̃ be the packing B with sphere centers in the upper half-space moved by ~v = (0, 0, d)
for some d > 0. In this model the square-lattice layers are parallel to coordinate planes of
R3, so B̃ has a square-layer gap.

Figure 6. A square pyramid block and two simplex blocks (top view)

To show that B̃ is not completely saturated, we will delete finitely many spheres, then re-
arrange finitely many others to create a void large enough to accommodate more spheres
than the ones deleted. We define a square pyramid block of size n to be a collection of
n(n + 1)(2n + 1)/6 spheres in B̃ whose sphere centers lie in a square pyramid of edge length
2n− 2, i.e., with n spheres along each of its edges. We define a simplex block of size n to be
a collection of n(n + 1)(n + 2)/6 spheres in B̃ whose spheres centers lie in a regular simplex
of edge length 2n− 2. Both kinds of blocks have n spheres along each edge; see Figure 6 for
examples.

Figure 7. Nine blocks forming a cross gable roof

By analogy with Section 2.1, we will widen the gap by moving 5 square pyramid blocks and
4 simplex blocks forming a cross gable roof, as in Figure 7. The bases of the square pyramid
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blocks lie on the gap. We move the four outer square pyramid blocks down, then move the
simplex blocks down and out, then move the middle square pyramid up after removing its top
sphere. As before, we choose the motions in order to maximize the size of the last motion; in
this arrangement the last motion is weakly monotonic in d. Thus the gap widens by δ with
δ weakly monotonic in d. As before, δ does not depend on n.

As in Section 2.1, n can be large enough to iterate the procedure many times. Let k be
the number of iterations needed to widen the gap to 2; k only depends on d. One sphere is
deleted in each iteration, for a total of k spheres removed. Since the void at the end grows
with n, we can choose n large enough to accommodate these k spheres and then some.

3.2. Gap parallel to a honeycomb layer

Our strategy in this case is to expose a square-layer gap in a large finite region by moving a
large block that abuts the honeycomb gap. This reduces the problem to the case considered
in Section 3.1. The shape of the block is a cuboctahedron sawed in half to expose a regular
hexagon face, as in Figure 8. As the figure indicates, the three square faces lie in square-lattice
directions. Moving the block creates gaps along these faces.

Figure 8. A half-cuboctahedron block, exploded into layers and assembled

3.3. Gap parallel to an arbitrary plane

Assume now that the plane of the gap does not belong to any of the four parallel classes
of the honeycomb layers. In a manner similar to that of Section 2.2, we construct a large
tetrahedron block which is cut by the gap into two sub-blocks T1 and T2. If the plane is
not parallel to a square-lattice layer, then we can arrange that T1 contains one vertex of the
tetrahedron and T2 contains three vertices. The sub-block T1 can then be moved towards
the opposite face, which creates a honeycomb-layer gap and reduces the problem to that of
Section 3.1.
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4. Open problems and conjectures

1. Is there a sphere packing in Rn (n > 1) that has a gap defect and still is completely
saturated?

2. Let S be the densest lattice packing of spheres in R4, which is composed of fcc layers.
Let H be a hyperplane in an fcc direction and let Ŝ be a sphere packing obtained
from S by introducing a gap defect along H. We conjecture that Ŝ is not completely
saturated.

3. Let T be a tiling of R2 with regular hexagons, and let T̂ be a packing obtained from
T by introducing a gap. If the gap is sufficiently narrow, is T̂ completely saturated?
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