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Abstract. In this paper we consider a dominating Finsler metric on a complete
Riemannian manifold. First we prove that the energy integral of the Finsler met-
ric satisfies the Palais-Smale condition, and ask for the number of geodesics with
endpoints in two given submanifolds. Using Lusternik-Schnirelman theory of crit-
ical points we obtain some multiplicity results for the number of Finsler-geodesics
between two submanifolds.
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Let M be a finite dimensional manifold and let M1 respectively M2 be two submanifolds of
M . Many authors studied the problem in the Riemannian case (see [8], [19], [13], [21], [18]
and [20]):

What is the number of geodesics with endpoints in M1 and M2 and which are
orthogonal to M1 and M2 ?

The purpose of our study is to examine the existence and the number of Finsler-geodesics
joining orthogonally M1 and M2 when a Finsler metric is given on a complete Riemannian
manifold. The existence of closed geodesics in the case of Finsler space has been studied by
F. Mercuri, see [11]. Following its considerations we shall extend some of the Riemannian
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results of K. Grove [8], J.P. Serre [19] and J.T. Schwartz [18] for geodesics of Finsler spaces
with endpoints in two given submanifolds. Using the methods of D. Motreanu [13], T. Wang
[21] and Cs. Varga – G. Farkas [20] it is possible to extend these results for locally convex
cases.

In the first section, following [11] we describe the Riemann-Hilbert manifold ΛNM of
absolutely continuous maps from the unit interval I = [0, 1] to M with endpoints in N ⊂
M×M . The second section is devoted to the study of energy integral of a Finsler metric. We
consider only such a Finsler metric which dominates the underlying Riemannian structure of
the manifold. We show that the energy integral L̃ is of class C2− on ΛNM , and the geodesics
of the Finsler metric F joining orthogonally M1 and M2 are just the critical points of the
energy integral L̃: ΛM1×M2M → R. In the third section we prove that the energy functional
L̃: ΛNM → R of a Finsler metric satisfies the Palais-Smale condition on a complete manifold
(Theorem 3). This generalizes the analogous result of [8] for Finsler metrics. In the last
section, applying the results of [19] and [18] we deduce some multiplicity results for geodesics
of Finsler spaces joining M1 and M2.

1. Preliminaries

Let M be an n-dimensional Riemannian manifold and I = [0, 1] the unit interval. Let
c ∈ C∞(I, M) and consider the pull-back diagram:

c∗TM
c∗π−→ TM

π∗c ↓ ↓ π

I
c−→ M

where π : TM → M is the canonical projection, and

c∗TM = {(t, y) ∈ I × TM | c(t) = π(y)}

c∗π(t, y) = y, π∗c (t, y) = t.

The Riemannian metric and connection on M can then be pulled back to a Riemannian
metric and a connection on π∗c and we will denote them by 〈, 〉c and ∇c, respectively.

Let Σ(π∗c ) = {s : I → c∗TM | π∗c ◦ s = id } be the set of all sections of π∗c , and we consider
the following spaces:

H0(c∗TM) = {X ∈ Σ(π∗c )| ‖X(t)‖c ∈ L2(I)}
H1(c∗TM) = {X ∈ Σ(π∗c )| ∇cX exists and ∇cX ∈ H0(c∗TM)}.

We have that H i(c∗TM), i = 0, 1 is a Hilbert space with respect to the scalar products:

〈X, Y 〉0 =

∫
I

〈X(t), Y (t)〉cdt

〈X, Y 〉1 = 〈X, Y 〉0 + 〈∇cX,∇cY 〉0.
We will denote by ‖ · ‖i the relative norms and ‖ · ‖∞ the sup norm in C0(c∗TM), where
Ck(c∗TM) will have the usual meaning for k = 0, 1, . . . ,∞.
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Proposition 1. [11] The following inclusions H1(c∗TM) ↪→ C0(c∗TM) ↪→ H0(c∗TM) are
continuous. More precisely:

(i) if ξ ∈ C0(c∗TM), then ‖ξ‖0 ≤ ‖ξ‖∞

and
(ii) if ξ ∈ H1(c∗TM), then ‖ξ‖2

∞ ≤ 2‖ξ‖2
1.

Now, we consider the manifold L2
1(I, M) of absolutely continuous maps from the unit interval

I = [0, 1] to M with locally square integrable derivative. The space L2
1(I,M) has a natural

complete Riemannian-Hilbert structure given by

〈X, Y 〉′c =

∫
I

〈Xc(t), Yc(t)〉c(t) + 〈∇cXc(t),∇cYc(t)〉c(t)dt,

where X and Y are arbitrary elements of TcL
2
1(I, M) = H1(c∗TM), the set of all absolutely

continuous vector fields X along c with square integrable covariant derivative ∇cX.
Let P : L2

1(I, M) → M × M be the projection, defined by P (c) = (c(0), c(1)) for all
c ∈ L2

1(I,M) and let N ⊂ M ×M be a submanifold of M ×M of codimension k. From the
expression of local coordinate we get that P is submersion. Then we have that P−1(N) is a
submanifold of L2

1(I, M) of codimension k. We denote P−1(N) by ΛNM .
Let U be an open set containing the zero section in TM , c ∈ C∞(I, M) and Uc = (c∗π)−1(U).
The map φ̃c : H1(Uc) → ΛNM given by

φ̃c(x)(t) = exp c∗πx(t)

is injective.
For x ∈ TM, j = 1, 2 define (∇j exp)(x) : Tπ(x)M → Texp xM by

(∇1 exp)(x)y = (d exp)(x) ◦ (dπ|T hTM)−1y,

(∇2 exp)(x)y = (d exp)(x) ◦ k(x)−1y,

where k(x) : T v
x TM → Tπ(x)M is the canonical identification.

For any c ∈ ΛNM , ċ(t) ∈ H0(c∗TM). Let

H i(ΛNM∗TM) =
⋃

c∈ΛNM

H i(c∗TM).

c ∈ ΛNM gives a section ∂c : ΛNM → H0(ΛNM∗TM). For x ∈ TM , set θ(x) =
[∇2 exp(x)]−1 ◦ [∇1 exp(x)], and for c ∈ C∞(I,M), X ∈ H0(c∗TM)

θ̃c(X)(t) = (c∗π)−1 ◦ θ(c∗πX(t))∂c(t).

Then
∂cX = ∇cX + θ̃cX.
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2. The energy integral of a Finsler metric

Definition 1. A Finsler metric on a manifold M is a continuous function F : TM → R+

satisfying the following properties:

(a) F is C∞ on TM \ {0}.
(b) F (u) > 0, ∀ u ∈ TM \ {0}.
(c) F (tu) = |t|F (u), ∀t ∈ R, u ∈ TM .

(d) for any p ∈ M the indicatrix IF (p) = {u ∈ TpM | F (u) < 1} is strongly convex.

A manifold M endowed with a Finsler metric is called a Finsler space [1], [3], [12]. We
say that a Finsler metric F dominates a Riemannian metric g of the manifold if for some
H0 > 0: F (u) ≥ H0‖u‖ ∀u ∈ TM , where ‖ . ‖ denotes the Riemannian norm.

Remarks.
1. If we consider the function L = F 2, then L is of class C1 and dL is locally Lipschitz on

TM .

2. The function L is of class C2 if and only if F is a norm of a Riemannian metric.

3. The condition (d) implies that the second fibre derivative d2
vL derives a positive definite

quadratic form in the vertical bundle V τM . Then g := d2
vL: Sec V τM × Sec V τM →

C∞(M) makes the vertical bundle V τM a Riemannian vector bundle.

4. It is clear that if the manifold M is compact, then any Finsler metric dominates a
Riemannian metric on M . Namely, considering the Loewner ellipsoid of the indicatrix
in each tangent space we get a Riemannian metric on the manifold, dominated by the
Finsler metric, for

H0 = inf{F (u) | ‖u‖ = 1, u ∈ TM }
is positive due to the compactness of M .

5. It is known [2] that if F1 and F2 are Finsler metrics on a manifold then
√

F 2
1 + F 2

2 is a
Finsler metric as well. This means that for any Riemannian metric g on M the Finsler
metric

F̃ (u) =
√

F 2(u) + g(u, u)

dominates g with the constant H0 = 1.

Definition 2. The function L = F 2 induces a map L̃ : ΛNM → R defined by

L̃(c) =

∫
I

L(ċ(t))dt, ∀ c ∈ ΛNM

and is called the energy integral.

In the following we use the next result:

Lemma 1. [10] Let f : Rn → Rm be continuous, C∞ on Rn\{0}, and positively homogeneous
of degree α. Then
(a) if α = 1, there exists a constant k with

‖f(x)− f(y)‖Rm ≤ k‖x− y‖Rn ,
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(b) if α = 2, there exists constants k1, k2 with

‖f(x)− f(y)‖ ≤ k1‖x− y‖2 + k2‖x− y‖ · ‖y‖

for all x, y ∈ Rn.

Theorem 1. The energy integral L̃ is C2− on ΛNM , i.e. L̃ is of class C1 and the differential
of L̃ is locally Lipschitz.

Proof. Let c ∈ C∞(I,M) be a fixed element and (φc, H
1(Uc)) a local coordinate system

about c and L̃c = L̃ ◦ φc. Then L̃c is the composition of the following maps:

H1(Uc)
1×∂c−→ H1(Uc)×H0(c∗TM)

λ̃c−→ L1(I) → R,

where the last map is the integration and the λ̃c is induced by the fibre map λc : Uc⊕c∗TM →
I × R, defined by

λc(x, y) = (π∗cx, L((∇2 exp)(c∗πx)c∗πy)) for ∀ (x, y) ∈ Uc ⊕ c∗TM.

It is sufficient to show that λ̃c is of class C2−. We note that the function λ̃c is well-defined.
In fact, for (X, Y ) ∈ H1(Uc)×H0(c∗TM) we have the following inequality:∫

I

L(∇2 exp(c∗πX(t))c∗πY (t))dt ≤ k2

(∫
I

‖∇2 exp c∗πX(t)‖2 dt ·
∫

I

‖Y (t)‖2dt

) 1
2

.

Indeed, because of L(0̃) = 0, where 0̃ is the zero section of TM and using the main value
theorem and the fact that dL is locally Lipschitz we have:

L(∇2 exp(c∗πX(t)) · (c∗πY (t)))− L(0̃) ≤ k2‖∇2 exp(c∗πX(t)) · (c∗πY (t))‖.

Since (∇2 exp)(x) is isomorphism, see [9] and using the pull-back, we get:

‖∇2 exp(c∗πX(t)) · (c∗πY (t))‖ ≤ ‖∇2 exp(c∗πX(t)‖ · ‖c∗πY (t)‖.

Combining the above inequalities and integrating we get the inequality:∫
I

L(∇2 exp(c∗πX(t) · (c∗πY (t)))) dt ≤ k2

∫
I

‖∇2 exp(c∗πX(t))‖ · ‖Y (t)‖ dt ≤

k2

(∫
I

‖∇2 exp(c∗πX(t))‖2dt

) 1
2

·
(∫

I

‖Y (t)‖2dt

) 1
2

,

which is bounded since ‖X(t)‖∞ is small and Y (t) ∈ H0(c∗TM) = L2(c∗TM).
For any t ∈ I, consider the restriction of λc to the fibre λt : (Uc)t ⊕ (c∗TM)t → R. If we

denote by x, y the variable in the first and second factor, respectively, we have:

1. λt and
∂λt

∂x
are positively homogeneous of degree 2 in y, and

2.
∂λt

∂y
is positively homogeneous of degree 1 in y.
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We show that λ̃c is differentiable and (dλ̃c)(X, Y )(t) = (dfλc)(X(t), Y (t)), where df denotes
the fibre derivative. Let (X1, Y1) ∈ H1(Uc) × H0(c∗TM) be small enough. Then for some
θ ∈ [0, 1], we have

‖λ̃c((X + X1), (Y + Y1))− λ̃c(X, Y )− (dfλc)(X(t), Y (t))(X1(t), Y1(t))‖L1 =

=

∫
I

‖[(dfλc)[X(t) + θX1(t), Y (t) + θY1(t))− (dfλc)(X(t), Y (t))]](X1(t), Y1(t))‖dt ≤

≤
∫

I

∥∥∥∥∂λt

∂x
(X(t) + θX1(t), Y (t) + θY1(t))−

∂λt

∂x
(X(t), Y (t))

∥∥∥∥ · ‖X1(t)‖ dt+

+

∫
I

∥∥∥∥∂λt

∂y
(X(t) + θX1(t), Y (t) + θY1(y))− ∂λt

∂y
(X(t), Y (t))

∥∥∥∥ · ‖Y1(t)‖dt ≤

≤ ‖X1‖∞
∫

I

∥∥∥∥∂λt

∂x
(X(t) + θX1(t), Y (t) + θY1(t))−

∂λt

∂x
(X(t), Y (t))

∥∥∥∥ dt+

+‖Y1‖0

(∫
I

∥∥∥∥∂λt

∂y
(X(t) + θX1(t), Y (t) + θY1(t))−

∂λt

∂y
(X(t), Y (t))

∥∥∥∥2

dt

) 1
2

≤

≤ ‖X1‖∞
(∫

I

k1‖X1(t)‖2dt +

∫
I

k2‖Y1(t)‖
[
‖Y1(t)‖+ ‖Y (t)‖

]
dt

)
+

+‖Y1‖0

{∫
I

k3‖X1(t)‖2dt +

∫
I

k4‖Y1(t)‖2dt

} 1
2

by the lemma.
Since (X1, Y1) is small, then λ̃c is differentiable. A similar calculation shows that λ̃c is

C2−. �

Now we generalize the notion that a curve orthogonally joins two submanifolds of a Finsler
manifold. Here we use the machinery of Abate and Patrizio’s book [1].

Definition 3. We say that a curve c: I → M orthogonally joins two submanifolds M1 and
M2 if 〈UH |TH〉ċ(0) = 0 and 〈V H |TH〉ċ(1) = 0 hold for all U ∈ Tc(0)M1, and V ∈ Tc(1)M2

respectively, where T = ċ.

Remark. This orthogonality property was given by H. Rund ([17], page 26), which is, of
course, not a symmetrical relationship, in general. The symmetry property of orthogonality
is, however, not required in this investigation.

We can prove now the following

Theorem 2. Let M1 and M2 be submanifolds of M . Then c ∈ ΛM1×M2M is a critical point
for L̃: ΛM1×M2M → R iff c is a Finsler-geodesic on M joining orthogonally M1 and M2.
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Proof. We consider a curve c : [0, 1] → M with unit speed F (ċ) = 1. The first variational
formula gives (see [1], page 36)

dL̃(c)(U) = 〈UH |TH〉ċ|10 −
∫ 1

0

〈UH |∇T HTH〉ċ dt.

If c ∈ ΛM1×M2M is a critical point for L̃: ΛM1×M2M → R and we consider regular fixed
variations, then we get ∫ 1

0

〈UH |∇T HTH〉ċ dt = 0.

Since U ∈ Tc(ΛM1×M2M) is arbitrary, it follows ∇T HTH = 0, which means c is a geodesic
curve. Then for an arbitrary (not fixed) variation U we obtain

〈UH |TH〉ċ(0) = 〈UH |TH〉ċ(1)

which implies that both sides vanish.
The converse statement simply follows from the first variation formula. �

3. The Palais-Smale condition

In this section we consider a dominating Finsler metric on a Riemannian manifold and prove
that the functional L̃ satisfies the Palais-Smale condition on ΛNM . This generalizes a result
of K. Grove [8] for the energy integral of a Finsler metric. For its proof we need the following

Lemma 2. Let S ⊂ L2
1(I, M) be a subset of L2

1(I, M) on which L̃ is bounded. Then S is an
equicontinuous family of curves on M with uniformly bounded length.

Proof. If we denote by dM(p, q) the distance function on M , i.e. the infimum of the lengths
of all piecewise differentiable curves joining p to q, then we have:

d2
M(ck(t0), ck(t1)) ≤

(∫ t1

t0

‖ċk(t)‖dt

)2

≤ (t1 − t0)

∫
I

‖ċk(t)‖2dt.

Because ck ∈ L2
1(I, M), we have

∫
I
‖ċk(t)‖2dt < ∞, and using the fact that F is a dominating

Finsler norm, then there exists a real number H0 > 0 such that∫
I

‖ċk(t)‖2dt ≤ H0

∫
I

F 2(ċk(t))dt = H0

∫
I

L(ċk(t))dt.

Then we have d2
M(ck(t0), ck(t1)) ≤ (t1 − t0)H0S0, where L̃(ck) ≤ S0, k ∈ N. It follows that S

is an equicontinuous family of curves of M . �

Proposition 2. Let N ⊂ M×M be a closed submanifold of M×M with compact P1(N) ⊂ M
or P2(N) ⊂ M , and suppose that M is complete. Then any sequence {cn} in ΛNM on which
L̃ is bounded, has a subsequence converging uniformly to a continuous path h ∈ C0

N(M) in
M .
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Proof. Without loss of generality we can assume that P1(N) ⊂ M is compact. From Lemma
2 we have that {cn}n∈N is an equicontinuous family of curves on M of bounded length, i.e.
there exists a closed and bounded set K ⊂ M such that cn(I) ⊂ K for all n ∈ N since
cn(0) ∈ P1(N), ∀ n ∈ N. Since M is a complete manifold, from the Hopf-Rinow theorem,
see [1], we get that the set K is compact and hence we can apply Arzela-Ascoli’s theorem to
obtain the statement of the proposition. �

The main result of this section is the following.

Theorem 3. Let F be a dominating Finsler metric on a complete Riemannian manifold M ,
and N ⊂ M ×M be a closed submanifold of M ×M such that P1(N) ⊂ M or P2(N) ⊂ M
is compact. Then L̃ : ΛNM → R+ satisfies the Palais-Smale condition, i.e. any sequence
cn ∈ ΛNM with |L̃(cn)| < const. and ‖dL̃(cn)‖ → 0 as n → ∞ contains a convergent
subsequence.

Proof. Let {cn}n∈N be a sequence in ΛNM , on which L̃ is bounded i.e. L̃(cn) ≤ k, k ∈ R+,
∀ n ∈ N and for which ‖(grad L̃)(cn)‖ → 0, where grad L̃ is a C1−-vector field on ΛNM
induced by L̃ due to the Riesz representation theorem, i.e.

〈grad L̃(c), η〉1 = (dL̃)(c)η, for c ∈ ΛNM, η ∈ Tc(ΛNM).

We notice grad L̃ by dL̃. We want to show that {cn} has a convergent subsequence. Now by
Proposition 2 we can assume that cn converges uniformly to a continuous map h ∈ C0

N(M).
Let c ∈ C∞(I,M) be uniformly close to h ∈ C0

N(M) (C∞(I, M) is dense in ΛNM).
We can assume that all cn belong to a coordinate neighborhood φc(H

1(Uc)). Set Xn =
φ−1

c (cn), ∀ n ∈ N.
We show that the function L̃ is locally coercive, i.e. there exist α > 0 and c1, c2 ∈ R such

that

(dL̃c(Xn)− dL̃c(Xm))(Xn −Xm) ≥
≥ α‖Xn −Xm‖2

1 − c1‖Xn −Xm‖2
∞ − c2‖Xn −Xm‖∞.

We write

(dL̃c(Xn)− dL̃c(Xm))(Xn −Xm) = dL̃c(Xn)(Xn −Xm)− dL̃c(Xm)(Xn −Xm) =∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))(Xn(t)−Xm(t),∇c(Xn −Xm)(t) + dθ̃c(Xn)(Xn −Xm))dt

−
∫ 1

0

dλ̃c(Xm(t), ∂cXm(t))(Xn(t)−Xm(t),∇c(Xn −Xm)(t) + dθ̃c(Xm)(Xn −Xm))dt.

Remembering that ∂cX = ∇cX + θ̃cX, from the relation above we obtain

(dL̃c(Xn)− dL̃c(Xm))(Xn −Xm) =

=

∫ 1

0

dλ̃c(Xn(t), ∂cXn(t))((Xn−Xm)(t), ∂c(Xn−Xm)− θ̃c(Xn−Xm)+dθ̃c(Xn)(Xn−Xm))dt
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−
∫ 1

0

dλ̃c(Xm(t), ∂cXm(t))((Xn−Xm)(t), ∂c(Xn−Xm)−θ̃c(Xn−Xm)+dθ̃c(Xm)(Xn−Xm))dt=∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))(0, ∂cXn − ∂cXm)dt−
∫ 1

0

(dλ̃c)(Xm(t), ∂cXm(t))(0, ∂cXn − ∂cXm)dt

+

∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))((Xn −Xm)(t), θ̃c(Xm)− θ̃c(Xn) + dθ̃c(Xn)(Xn −Xm))dt−

−
∫ 1

0

(dλ̃c)(Xm(t), ∂cXm(t))((Xn −Xm)(t), θ̃c(Xm)− θc(Xn) + dθ̃c(Xm)(Xn −Xm))dt

We introduce the following notations

M1 =

∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))(0, ∂cXn − ∂cXm)dt

M2 =

∫ 1

0

(dλ̃c)(Xm(t), ∂cXm(t))(0, ∂cXn − ∂cXm)dt

M3 =

∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))((Xn −Xm)(t), θ̃c(Xm)− θ̃c(Xn) + dθ̃c(Xn)(Xn −Xm))dt

M4 =

∫ 1

0

(dλ̃c)(Xm(t), ∂cXm(t))((Xn −Xm)(t), θ̃c(Xm)− θ̃c(Xn) + dθ̃c(Xm)(Xn −Xm))dt,

then we get

(dL̃c(Xn)− dL̃c(Xm))(Xn −Xm) =
4∑

i=1

(−1)i+1Mi.

In the following we estimate M3, respectively M4. Since the functions ∂λt

∂x
(Xn, ∂cXn)(·) and

∂λt

∂y
(Xn, ∂cXn)(·) are continuous on the interval [0,1] they attain their minimum and maxi-

mum, therefore we get

|M3| ≤ k1

∫ 1

0

‖Xn(t)−Xm(t)‖dt + k2

∫ 1

0

‖θ̃c(Xm)− θ̃c(Xn) + dθ̃c(Xn)(Xn −Xm)‖dt.

Using the fact that the function θ̃c is differentiable, ‖Xn−Xm‖∞ is sufficiently small and the
inequality ‖ξ‖0 ≤ ‖ξ‖∞ from Proposition 1 we obtain:

|M3| ≤ k1‖Xn −Xm‖0 + k2ε1‖Xn −Xm‖∞ ≤ k‖Xn −Xm‖∞.

In the same way we have
|M4| ≤ k∗‖Xn −Xm‖∞.

In the next we estimate the expression

M5 =

∫ 1

0

(
∂λt

∂y
(Xn(t), ∂cXm(t)

)
(0, ∂cXn − ∂cXm)dt−M2.



56 L. Kozma et al.: Critical Point Theorems on Finsler Manifolds

In this case we have

M5 =

∫ 1

0

[
∂λt

∂y
(Xn(t), ∂cXm(t))− ∂λt

∂y
(Xm(t), ∂cXm(t)

]
(∂cXn − ∂cXm)dt.

Since ‖∂cXn − ∂cXm‖0 is bounded, see [11, p. 240], and ∂λt

∂y
is positively homogeneous, we

get that

|M5| ≤ k3

∫ 1

0

‖Xn(t)−Xm(t)‖dt ≤ k3‖Xn −Xm‖0 ≤ k3‖Xn −Xm‖∞.

Using the main value theorem and condition (d) from Definition 1, we estimate the following
expression:

M6 =

∫ 1

0

(dλ̃c)(Xn(t), ∂cXn(t))(0, ∂cXn(t)− ∂cXm(t))−

−(dλ̃c)(Xn(t), ∂cXm(t))(0, ∂cXn(t)− ∂cXm(t))dt =

=

∫ 1

0

(
∂λt

∂y

)
(Xn(t), ∂cXn(t))(∂cXn(t)− ∂cXm(t))−

−
(

∂λt

∂y

)
(Xn(t), ∂cXm(t))(∂cXn(t)− ∂cXm(t))dt =

=

∫ 1

0

∂2λt

∂y2
(Xn(t), s∂cXn(t) + (1− s)∂cXm(t))(∂cXn(t)− ∂Xm(t))(∂cXn(t)− ∂cXm(t))dt ≥

≥ α‖∂cXn − ∂cXm‖2
0,

where α is a positive constant. Because we have the inequality

‖Xn −Xm‖2
1 = ‖Xn −Xm‖2

0 + ‖∇cXn −∇cXm‖2
0 ≤

≤ ‖Xn −Xm‖2
0 + 2‖θ̃c(Xn)− θ̃c(Xm)‖2

0 + 2‖∂cXn − ∂cXm‖2
0

and θ̃c is differentiable and dθ̃(sXn + (1− s)Xm) is linear and continuous, we get

‖θ̃c(Xn)− θ̃c(Xm)‖0 ≤ ‖dθ̃c(sXn + (1− s)Xm)(Xn −Xm)‖0 ≤

≤ k4‖Xn −Xm‖0 ≤ k4‖Xn −Xm‖∞.

Therefore we have the inequality

α‖Xn −Xm‖2
1 ≤ α(1 + 2k2

4)‖Xn −Xm‖2
∞ + 2α‖∂cXn − ∂cXm‖2

0,

where α > 0 is the constant from the estimation for M6.
Using the estimations above we get

(dL̃c(Xn)− dL̃c(Xm))(Xn −Xm) ≥

α‖Xn −Xm‖2
1 − c1‖Xn −Xm‖2

∞ − c2‖Xn −Xm‖∞,

where c1, c2 ∈ R are constants.
Because ‖Xn−Xm‖∞ → 0, dL̃c(Xn) → 0 and dL̃c(Xm) → 0 if m, n →∞, from the above

relation we obtain ‖Xn−Xm‖1 → 0. Using the fact that ΛNM is a complete Riemann-Hilbert
manifold we get that the sequence {Xn} contains a convergent subsequence. �
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Corollary 1. Let F be a dominating Finsler metric on a complete Riemannian manifold M ,
V and V ′ be two closed submanifolds of M . Then the following holds:

(a) L̃ : ΛV×V ′M → R+ satisfies the Palais-Smale condition if V or V ′ is compact.

(b) L̃ : Λ{p}×V M → R+ satisfies the Palais-Smale condition.

(c) L̃ : Λ{p}×{q}M → R+ satisfies the Palais-Smale condition ∀ p, q ∈ M .

4. Multiplicity results

In this section we generalize some results of K. Grove [8], J.P. Serre [19] and J.T. Schwartz
[18] for Finsler manifolds. The next result is a generalization of Theorem 2.6. in [8] for Finsler
metrics.

Theorem 4. Let M be a smooth, complete, finite dimensional Riemannian manifold with a
dominating Finsler metric F and let M1 and M2 be closed submanifolds of M with say M1

compact. Then in any homotopy class of curves from M1 to M2 there exists a Finsler-geodesic
joining orthogonally M1 and M2 with length smaller than that of any other curve in this class.
Furthermore, there are at least catΛM1×M2M geodesics joining orthogonally M1 and M2.

Proof. Since ΛM1×M2M is a complete Hilbert-Riemann manifold and the energy functional
satisfies the Palais-Smale condition it follows that the energy integral attains its infimum
on any component of ΛM1×M2M and its lower bound. Since any critical point c for L̃ is a
geodesic curve of the Finsler metric F , which joins M1 and M2 orthogonally, see Theorem 2,
we obtain the first part of our theorem.

We note that an infimum of the energy functional is an infimum of the length by using the
proof of Lemma 2 and the fact that a change of parameter does not affect the homotopy class
of the curve. Using [15, Theorem 7.2] we get easily the second assertion of our theorem. �

Theorem 5. Let M be a smooth, compact, connected, finite dimensional Finsler manifold.
We suppose that M is simply connected and let M1, M2 be two closed submanifolds of M
such that M1 ∩M2 = ∅, M1 is contractible. Then there are infinitely many Finsler-geodesics
joining orthogonally M1 and M2.

Proof. Since M is compact, the Finsler metric dominates some Riemannian metric on M (see
Remarks following Definition 1), and therefore M is a complete Riemannian manifold. Using
the inequality cat ΛM1×M2M ≥ 1+cuplong ΛM1×M2M and the fact that cuplong ΛM1×M2M =
∞, see [19], from Theorem 4 the statement follows. �

Theorem 6. Let M be a smooth, complete, non-contractible, finite dimensional Riemannian
manifold endowed with a dominating Finsler metric F and let M1 and M2 be two closed and
contractible submanifolds of M such that M1 or M2 is compact. Then there exist infinitely
many Finsler-geodesics joining orthogonally M1 and M2.

Proof. Since M1×M2 is a submanifold of M×M, the inclusion ΛM1×M2M ↪→ C0
M1×M2

(M) =
{σ ∈ C0([0, 1], M) : σ(0) ∈ M1, σ(1) ∈ M2} is a homotopy equivalence, see [8, Theorem 1.3].
Since M1 and M2 are contractible subsets of M, the sets C0

M1×M2
(M) and M1 ×M2 ×Ω(M)
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are homotopically equivalent, see [7, Proposition 3.2]. Since M is non-contractible, from [7,
Corollary 1.2] we have cat Ω(M) = ∞. Therefore, cat ΛM1×M2M = ∞ and we can apply again
Theorem 4 to obtain the desired relation. �
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