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Faculty of Mathematical Studies, University of Southampton
Southampton SO17 1BJ, United Kingdom

e-mail: bk@maths.soton.ac.uk.

Abstract. We give an elementary, self-contained and quick proof of Belyi’s theo-
rem. As a by-product of our proof we obtain an explicit bound for the degree of
the defining number field of a Belyi surface.

MSC 2000: 14H30, 14H25, 12F10
Keywords: moduli field, field of definition, Galois descent

Introduction

The main purpose of this paper is to give an elementary, self-contained and quick proof of
the following famous theorem by Belyi (see [1]).

Theorem. A complex smooth projective curve X is defined over a number field, if and only
if there exists a non-constant morphism t : X → P1

C with at most 3 critical values.

While the only-if-direction is just a fairly elementary and short algorithm which is well ex-
plained in the literature and, once more, in Lemmas 3.4 through 3.6 below, I found it difficult
to understand the proofs of the if-direction existing in the literature. So, the main focus in
this paper is on the if-direction which is also called the “obvious part” which somebody famil-
iar with the results of Weil’s paper [14], in particular Theorem 4, and with the mathematical
language used there may consider as justified.

As already observed by Wolfart in his paper [15], the notion moduli field allows an elegant
way to split up the if-direction into two assertions. However, rather than using the (absolute)
moduli field of a complex smooth projective curve X as in [15], we will use the (relative)
moduli field of a finite morphism t : X → P1

C which, by definition, is the subfield CU(X,t)
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of C fixed by the subgroup U(X, t) of all automorphisms σ of C such that there is an
isomorphism between the curve Xσ and X compatible with the covering t, see Notation 1.1
and Definition 2.1. We will prove the following two assertions which obviously imply the
if-direction in Belyi’s theorem.

Let X be a complex smooth projective curve, and let t : X → P1
C be a finite morphism.

Then we have:

(a) If the critical values lie in {0, 1,∞}, then the moduli field of t is a number field.

(b) X and t are defined over a finite extension of the moduli field of t.

Assertion (a), a special case of Corollary 3.2, follows from the fact (see Proposition 3.1) that
there are at most finitely many isomorphism classes of coverings t : X → P1

C of given degree d
and given subset S of P1

C of critical values. This fact occurs implicitly at several places in the
literature. We include a short, self-contained and elementary proof which, in contrast to the
existing literature, avoids any non-standard or highly sophisticated notion or fact. A slightly
strengthened and generalized version of Assertion (b) will be given in Theorem 2.2. Its proof
is based on ideas going back to Grothendieck and Coombes/Harbater. Apart from being the
most original part in our proof of Belyi’s theorem, it also yields an interesting explicit bound
for the degree of the defining number field which seems to be new, see Corollary 3.7.

As indicated already above, it is obviously possible to replace, in the proof of the if-
direction, Assertion (b) by the following absolute analogue: Any complex smooth projective
curve is defined over a finite extension of its moduli field. This assertion is of independent
interest and can be strengthened in many cases, see Example 1.7 and Corollary 1.11. However,
it is probably fair to say that its proof is much more sophisticated, see Wolfart’s paper [15]
or the more recent paper [8] by Hammer and Herrlich. (In contrast to [15], the proof in the
latter paper does not use Weil’s language of generic points and also works for ground fields
of positive characteristic.)

Acknowledgments. I would like to thank my colleagues at Karlsruhe and Southampton
for their encouraging interest and for helpful hints. Furthermore, I would like to thank J.
Wolfart for extensive e-mail discussions. Finally, I would like to thank the referees for some
helpful comments improving the presentation of the paper.

1. The moduli field of a curve

In this paper, a curve over a field C means a smooth projective geometrically connected
variety of dimension 1 over C, and a variety over C is an integral separated scheme X
together with a morphism p : X → Spec(C) of finite type. (For the purposes of this paper it
is convenient and appropriate to describe everything in the language of schemes, but we will
not need any deeper insight into the theory of schemes. In particular, a reader familiar only
with the language of classical varieties will presumably be able to read this paper without
any difficulties.)

1.1. Notation. Let C be a field and let p : X → Spec(C) be a variety. For any σ ∈ Aut(C),
we denote by Xσ/C the variety consisting of the scheme X and the structure morphism

X
p−→ Spec(C)

Spec(σ)−→ Spec(C).
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Note that the scheme underlying the variety Xσ/C is the same as the scheme underlying the
variety X/C. In particular, the function field of Xσ/C is the same as the function field of
X/C, and an isomorphism between Xσ/C and X/C is an automorphism of the scheme X.
Unfortunately, the concept of changing the structure morphisms by Spec(σ) does not exist
in the language of classical varieties. However, the following remark shows that the variety
Xσ/C is isomorphic to that variety which is usually denoted by Xσ/C in the language of
classical varieties; the isomorphism is induced by σ.

1.2. Remark. Let C be a field, let σ ∈ Aut(C) and let X be a subvariety of Pn
C given by

the homogeneous polynomials f1, . . . , fm ∈ C[X0, . . . , Xn], i.e., X = V (f1, . . . , fm). Let σ
also denote the induced automorphism of C[X0, . . . , Xn]. Then the variety Xσ/C is given by
the polynomials σ−1(f1), . . . , σ

−1(fm) ∈ C[X0, . . . , Xn].

Proof. Let σ̄ denote the isomorphism between C[X0, . . . , Xn]/(σ−1(f1), . . . , σ
−1(fm)) and

C[X0, . . . , Xn]/(f1, . . . fm) induced by σ. Then Proj(σ̄) is the desired isomorphism between
the varieties V (f1, . . . , fm)σ/C and V (σ−1(f1), . . . , σ

−1(fm))/C. �

For readers not familiar with the language of schemes, the following explanation might also
help to understand the notation Xσ/C. It is well-known and we will frequently use that
a curve X/C is the same as a finitely generated field K of transcendence degree 1 over C
such that C is algebraically closed in K. It is important here that the embedding of C into
K belongs to the notion of a curve. Changing this embedding by an automorphism σ of C
yields a new curve which corresponds to the notation Xσ/C in 1.1.

From now on we assume that C is an algebraically closed field of characteristic 0.

1.3. Definition. The moduli field of a variety X/C is the field M(X) := CU(X) fixed by the
subgroup

U(X) := {σ ∈ Aut(C) : Xσ/C is isomorphic to X/C}
of Aut(C).

As usual, we say that a variety X/C is defined over the subfield K of C, iff there is a
variety XK/K such that X/C is isomorphic to XK ×K C/C, i.e., iff X/C can be covered
by affine varieties which are given by polynomials with coefficients in K. In this case, the
subgroup Aut(C/K) of Aut(C) is obviously contained in U(X), hence the moduli field M(X)
is contained in K by the following folklore lemma (which at the same time is a central
argument in the proof of Belyi’s theorem). In particular, if X/C is defined over its moduli
field M(X), then M(X) is the smallest field of definition for X/C.

1.4. Lemma. Let K be a subfield of C. Then, any automorphism of K can be extended to
an automorphism of C. Furthermore, we have:

CAut(C/K) = K.

Proof. The first assertion is well-known and easy to prove.
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The inclusion K ⊆ CAut(C/K) is a tautology. The reverse inclusion is equivalent to the
assertion that, for any x ∈ C\K, there is a σ ∈ Aut(C/K) with σ(x) 6= x. If x is transcendent
over K, then mapping x, for instance, to −x yields a K-automorphism of K(x) which does
not fix x. This automorphism can be extended to the desired automorphism σ of C by the
first assertion. If x is algebraic over K, we choose a y ∈ C\{x} which is K-conjugate to x.
Then, mapping x to y yields a K-embedding of K(x) into the normal closure L of K(x) over
K. This embedding can be extended to a K-automorphism of L and then, again by the first
assertion, to the desired K-automorphism σ of C. �

We call a subgroup U of Aut(C) closed, iff there is a subfield K of C with U = Aut(C/K).
Lemma 1.4 implies that we have a bijective Galois correspondence between the set of subfields
of C and the set of closed subgroups of Aut(C). In particular we have U = Aut(C/CU) for
any closed subgroup U of Aut(C). For any field C as above, there exist non-closed subgroups
of Aut(C) (even of finite index); in the case C = Q̄ this is a well-known fact in infinite
Galois theory; in the general case, the preimage of a non-closed subgroup of Aut(Q̄) under
the canonical epimorphism Aut(C) → Aut(Q̄) is a non-closed subgroup of Aut(C). It follows
from Lemma 1.5 and Theorem 1.8 below that the subgroup U(X) of Aut(C) introduced in
Definition 1.3 is closed, if X/C is a curve.

1.5. Lemma. Let U be a subgroup of Aut(C) such that there is a finite field extension
K/CU with Aut(C/K) ⊆ U . Then U is closed.

Proof. We may assume that K/CU is a finite Galois extension. Then CU is the field fixed by
the image B of U/Aut(C/K) under the canonical isomorphism

Aut(C/CU)/Aut(C/K) →̃ Aut(K/CU).

Thus, B = Aut(K/CU), and hence U = Aut(C/CU) is closed. �

For later purposes we record the following lemma.

1.6. Lemma. Let U be a subgroup of Aut(C) and let V be a subgroup of U of finite index.
Then the field extension CV /CU is finite. If V is a normal subgroup of U or if U is closed,
then we have [CV : CU ] ≤ [U : V ]. If V is closed, then we even have [CV : CU ] = [U : V ].

Proof. It is easy to see and well-known that there is a normal subgroup W of U of finite
index which is contained in V . Then we obviously have a canonical homomorphism U/W →
Aut(CW /CU). The field fixed by the image B of this homomorphism is CU . Thus CW /CU

is a finite Galois extension and we have B = Aut(CW /CU). Hence we obtain:

[CW : CU ] = ord(Aut(CW /CU)) ≤ ord(U/W ) = [U : W ].

This implies the first assertion of Lemma 1.6 and also the second assertion in the case that
already V is a normal subgroup of U . Furthermore we have:

[CV : CU ] =
[CW : CU ]

[CW : CV ]
=

ord(Aut(CW /CU))

ord(Aut(CW /CV ))
=

=

∣∣∣∣Aut(CW /CU)

Aut(CW /CV )

∣∣∣∣ =

∣∣∣∣∣∣
Aut(C/CU )
Aut(C/CW )

Aut(C/CV )
Aut(C/CW )

∣∣∣∣∣∣ =

∣∣∣∣Aut(C/CU)

Aut(C/CV )

∣∣∣∣ .
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This implies the second assertion in the case that U is closed and also the third assertion,
because, if V is closed, then also U is closed by Lemma 1.5 and by the first assertion. Thus,
Lemma 1.6 is proved. �

The rest of this section deals with the question how far the moduli field of a curve X/C is
away from being a field of definition for X/C. It is not used in the proof of Belyi’s theorem.
We start with the following well-known elementary example.

1.7. Example. Let X/C be a curve of genus 0 or 1. Then X/C is defined over its moduli
field M(X).

Proof. In the case g = 0, X is isomorphic to the projective line which is defined over Q,
the smallest field of characteristic 0. Now let g = 1. Then X/C is an elliptic curve. Let
j ∈ C denote the j-invariant of X/C. Then we have U(X) = {σ ∈ Aut(C) : σ(j) = j} =
Aut(C/Q(j)), thus M(X) = Q(j) by Lemma 1.4. Furthermore it is well-known that X/C is
defined over Q(j) (e.g., see Proposition 1.4 on p. 50 in [12]). �

In general we have:

1.8. Theorem. Let X/C be a curve. Then X/C is defined over a finite extension of its
moduli field M(X).

Proof. See Theorem 4 in [15] or Theorem 5 in [8]. �

The object of the following considerations is to strengthen Theorem 1.8. The basic tool for
this is the following theorem which is a slight weakening of Theorem 1 in Weil’s paper [14].
I hope that the given formulation and the given proof make this theorem easier to access.

1.9. Theorem. Let L be a field, let G be a finite subgroup of Aut(L) and let X/L be a
variety. We suppose that, for any σ ∈ G, we are given a birational map fσ : Xσ → X over
L such that

fστ = fσ ◦ fσ
τ for all σ, τ ∈ G.

Then there is a variety XK over the fixed field K := LG such that XK ×K L/L is birationally
equivalent to X/L.

Here, the notation fσ
τ means that we consider the (auto)morphism fτ (defined on some

open subscheme of X) as a rational morphism from the variety Xστ = (Xτ )σ to the variety
Xσ. In the language of classical varieties, the notation fσ

τ means that we apply σ−1 to the
polynomials defining fτ (cf. Remark 1.2).

Proof. We have to show that there is a finitely generated field V over K such that L⊗K V is
L-isomorphic to the function field W of X. This follows from the following lemma applied to
the action G → Aut(W ), σ 7→ f ∗

σ , of G on W . Note that the fixed field V := WG is finitely
generated over K (being an intermediate field of W/K). �

1.10. Lemma (Galois descent). Let L be a field, let G be a finite subgroup of Aut(L),
and let W be a vector space over L together with a semilinear action of G on W (i.e.,
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σ(aw) = σ(a)σ(w) for all σ ∈ G, a ∈ L, and w ∈ W ). We set K := LG. Then the following
canonical L-homomorphism is bijective:

L⊗K WG −̃→ W.

Proof. The proof of the injectivity is rather straightforward and the surjectivity follows from
the linear independence of characters (see books on Galois theory for details). �

We recall that the automorphism group Aut(X/C) of a curve X/C of genus g ≥ 2 is finite
(see Exercise 5.2 on p. 348 in [9]). If g ≥ 3, then Aut(X/C) is even “generically trivial”
(see Exercise 5.7 on p. 348 in [9]); in particular, the following corollary implies that “almost
all” curves X/C of genus g ≥ 3 are defined over their moduli field. If C = Q̄, this corollary
is a special case of Theorem 3.1 in the paper [4] by Dèbes and Emsalem. If C = C, it is
mentioned in Wolfart’s paper [15], but without proof. We here give a complete proof.

1.11. Corollary. Let X/C be a curve of genus g ≥ 2. Then the quotient curve X/Aut(X/C)
is defined over M(X).

Proof. By Theorem 1.8, there is a model XL′/L′ of X/C over a finite Galois extension L′ of
M := M(X). By Lemma 1.5, we have U(X) = Aut(C/M) and the canonical homomorphism
U(X) → Aut(L′/M) is surjective. For any τ ∈ Aut(L′/M), we choose a preimage τ̃ ∈ U(X)
and an isomorphism fτ̃ : X τ̃ → X of curves over C. By Lemma 1.12 below, there is a
Galois extension L of M such that L′ is contained in L and such that all isomorphisms fτ̃ ,
τ ∈ Aut(L′/M), and all automorphisms of X/C are defined over L. We set XL := XL′ ×L′ L,
G := Aut(L/M), and write σ̄ for the image of σ ∈ G in Aut(L′/M) and gσ for the isomorphism
Xσ

L →̃ XL with gσ ×L C = f˜̄σ. The isomorphism gσ induces an isomorphism

hσ : Xσ
L/Aut(Xσ

L/L) → XL/Aut(XL/L)

between the quotient curves which does not depend on the choice of the isomorphism f˜̄σ :
X ˜̄σ → X. In particular, we have hτσ = hσ ◦ hτ for all σ, τ ∈ G. By Theorem 1.9, the curve
XL/Aut(XL/L) and hence the curve X/Aut(X/C) is defined over M = LG. �

I would like to thank J. Wolfart for the elementary main idea in the proof of the following
folklore fact from Algebraic Geometry.

1.12. Lemma. Let N be an algebraically closed subfield of C and let X/N and Y/N be
curves of genus ≥ 2. Then, any isomorphism between XC := X ×N C and YC := Y ×N C is
already defined over N . In particular, the following canonical homomorphism is bijective:

Aut(X/N) →̃ Aut(XC/C).

Proof. We choose t1, t2 ∈ K(Y )\N with K(Y ) = N(t1, t2) and denote the minimal polynomial
of t2 over N(t1) by g ∈ N(t1)[T2]. By the usual dictionary between curves and function fields,
we then have a natural bijection between the set of isomorphisms from XC/C to YC/C and the
set M of pairs (α1, α2) in K(XC)\C with K(XC) = C(α1, α2) and g(α1, α2) = 0. Since the
genus of X and Y is greater than or equal to 2, the set M is finite. On the other hand, if the
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set M contains (α1, α2), then it also contains (τ(α1), τ(α2)) for any τ ∈ Aut(K(XC)/N) with
τ(C) = C. Furthermore, the set {σ(x) : σ ∈ Aut(C/N)} is infinite, if x ∈ C\N (see the proof
of Lemma 1.4), and any σ ∈ Aut(C/N) can obviously be extended to a τ ∈ Aut(K(XC)/N).
Thus, any pair (α1, α2) as above comes already from K(X)\N . So, any isomorphism between
XC and YC is already defined over N . �

2. The moduli field of a covering

Let C be an algebraically closed field of characteristic 0 and let t : X → P1
C be a finite

morphism from a curve X/C to the projective line P1
C . We will denote the degree of t by

deg(t) and we will use term critical value for any point Q ∈ P1
C which has less than deg(t)

preimages under t.

2.1. Definition. The moduli field of t is the field M(X, t) := CU(X,t) fixed by the subgroup
U(X, t) of U(X) consisting of all σ ∈ Aut(C) such that there exists an isomorphism fσ :
Xσ → X of varieties over C such that the following diagram commutes:

Xσ

tσ

��

fσ // X

t
��

(P1
C)σ Proj(σ) // P1

C ;

here, Proj(σ) means the automorphism of the scheme P1
C = Proj(C[T0, T1]) induced by the

extension of the automorphism σ ∈ Aut(C) to C[T0, T1] (denoted σ again).

Obviously we have M(X) ⊆ M(X, t). The following theorem is the analogue of Theorem
1.8 but much easier to prove. We will merely use the Riemann-Roch theorem for curves and
basic facts of the ramification theory for curves. More precisely, we combine some ideas of
the proof of Proposition 2.1 on p. 10 in the book [10] by Malle and Matzat (going back to
Grothendieck) with an idea by Coombes and Harbater (see Proposition 2.5 on p. 830 in [3]).
In fact, if C = C, the second assertion of Theorem 2.2 is Proposition 2.5 in [3].

2.2. Theorem. The curve X/C and the morphism t are defined over a finite extension of
M(X, t). If t is a Galois covering (i.e., if the corresponding extension of function fields is
Galois), then X/C and t are defined over M(X, t) itself.

Proof. We choose a Q-rational point Q of P1
C which is not a critical value of t, and we choose

a point P in the fibre t−1(Q). By the theorem of Riemann-Roch (see Theorem 1.6 on p.
362 in [9]) applied to the divisor D := (genus(X) + 1)[P ], there is a meromorphic function
z ∈ K(X)\C such that P is the only pole of z. Then we have K(X) = C(t, z) where, here,
t is considered as a meromorphic function on X; for the field extension K(X)/C(t, z) is a
subextension of K(X)/C(t) and of K(X)/C(z), hence the corresponding morphism of curves
is both unramified and totally ramified at P . We assume furthermore that we have chosen z
in such a way that the pole order m := −ordP (z) ∈ N is minimal. Then we have

V := {x ∈ K(X) : ordP (x) ≥ −m} = C ⊕ Cz;
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for, for any x1, x2 ∈ V with ordP (xi) = −m, i = 1, 2, there is a constant α ∈ C with
−ordP (x1 − αx2) < m, and then x1 − αx2 is a constant function, since m was minimal. By
the choice of Q, the meromorphic function t − Q on X is a local parameter on X in P ; if
C = C, this means, in the language of Riemann surfaces, that t−Q yields a chart of X(C) in
a neighborhood of P which maps P to 0. There is obviously a unique function z′ ∈ V such
that the leading coefficient (i.e., the coefficient of (t−Q)−m) and the constant coefficient (i.e.,
the coefficient of (t−Q)0) in the Laurent expansion of z′ with respect to the local parameter
t − Q are equal to 1 and 0, respectively. (In the language of Algebraic Geometry, the term
“Laurent expansion of z′” means “the image of z′ in the quotient field of the completion
ÔX,P = C[[t − Q]] of the local ring OX,P ”). We may and we will assume that z = z′. We
now claim that the minimal polynomial of z over C(t) has coefficients in k(t) where k is a
finite extension of M(X, t) (respectively k = M(X, t), if t is a Galois covering). Then, the
field extension K(X)/C(t) is defined over k. By the usual dictionary between curves and
function fields, this means that Theorem 2.2 is proved.
For the proof of the above claim, we denote by U(X, t, P ) the subgroup of U(X, t) consisting
of all σ ∈ Aut(C) such that there is an isomorphism fσ : Xσ → X of curves over C such that
the diagram

Xσ

tσ

��

fσ // X

t
��

(P1
C)σ Proj(σ) // P1

C

commutes and such that fσ(P σ) = P ; here, P σ denotes the point on Xσ/C corresponding to
P . Note that fσ is unique since Aut(t) acts freely on the fibre t−1(Q). Thus, mapping σ to
the automorphism of the function field K(X) induced by fσ yields an action of U(X, t, P )
on K(X) by C-semilinear field automorphisms which fix t ∈ K(X). Being the stabilizer of
[P ] under the (well-defined!) action (σ, [P ]) 7→ [fσ(P σ)] of U(X, t) on t−1(Q)/Aut(t), the
subgroup U(X, t, P ) has finite index in U(X, t). If t is a Galois covering we in fact have
U(X, t, P ) = U(X, t) since then t−1(Q)/Aut(t) has only one element. The meromorphic
function z ∈ K(X) and hence the minimal polynomial of z over C(t) are invariant under the
action of U(X, t, P ) defined above since the image of z under σ ∈ U(X, t, P ) has the same
three defining properties as z, as one easily checks. Now, Lemma 1.6 implies the above claim.
Thus, the proof of Theorem 2.2 is now complete. �

2.3. Remark. Let C = Q̄ and let t be a Galois covering. Then the second assertion of
Theorem 2.2 can be proved more quickly as follows.
There is obviously a model tL : XL → P1

L of t over a finite Galois extension L of Q such that
XL has an L-rational point P with Q-rational and unramified image Q := tL(P ), such that
all automorphisms of t are defined over L, and such that, for any σ ∈ G := Image(U(X, t) →
Aut(L)), there is an isomorphism fσ : Xσ

L → XL of varieties over L such that the following
diagram commutes:

Xσ
L

tσL
��

fσ // XL

tL
��

(P1
L)σ Proj(σ) // P1

L.
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Since Aut(tL) acts freely and transitively on t−1
L (Q), there is a unique isomorphism fσ as

above with fσ(P σ) = P . Then we have fστ = fσ ◦ fσ
τ for all σ ∈ G. Now, the second

assertion of Theorem 2.2 follows from the comparatively elementary Theorem 1.9.

3. The Theorem of Belyi

We begin with the following proposition. It occurs implicitly at several places in the lit-
erature and it is the analogue of a well-known theorem in Algebraic Number Theory (e.g.,
see Theorem 2.13 on p. 214 in [11]). For the convenience of the reader we include a short,
self-contained and elementary proof which uses only standard facts of the theory of Riemann
surfaces and of the theory of unramified topological coverings. Another proof using triangle
groups can be found in §1 in Wolfart’s paper [15].

3.1. Proposition. Let S be a finite set of (closed) points of the projective line P1
C, and let

d ≥ 1 be a natural number. Then there are at most finitely many isomorphism classes of
pairs (X, t) where X/C is a curve and t : X → P1

C is a finite morphism of varieties over C
of degree d whose critical values lie in S.

Here, two pairs (X1, t1), (X2, t2) as above are called isomorphic, iff there is an isomorphism
f : X1 →̃ X2 of varieties over C with t2 ◦ f = t1.

Proof. By passing from a finite morphism t : X → P1
C to the continuous map t(C) : X(C) →

P1(C) between the corresponding Riemann surfaces and by restricting t(C) to the preimage
of the punctured sphere P1(C)\S, we obtain a map from the set of isomorphism classes of
pairs as above to the set M of homeomorphism classes of unramified topological coverings
of P1(C)\S of degree d. This map is injective. To see this, let (X1, t1) and (X2, t2) be
two pairs as above and let g : X1(C)\t−1

1 (S) → X2(C)\t−1
2 (S) be a homeomorphism with

t2(C) ◦ g = t1(C) on X1(C)\t−1
1 (S); then g is biholomorphic, since ti(C)|Xi(C)\t−1

i (S), i = 1, 2,

are locally biholomorphic; by an elementary fact in Complex Analysis (e.g., see Satz 8.5
on p. 48 in [6]), the map g can be extended to a biholomorphic map h : X1(C) → X2(C)
with t2(C) ◦ h = t1(C); now we apply the not very deep fact that any biholomorphic map
between complex curves is algebraic (see section IV.11 in [5] or Lecture 9 in [2]) to get
an isomorphism f : X1 → X2 of varieties over C with t2 ◦ f = t1; i.e, the pairs (X1, t1)
and (X2, t2) are isomorphic. Thus, it suffices to show that the set M is finite. Since any
unramified topological covering of P1(C)\S is a quotient of the universal covering p by a
subgroup of Aut(p) ∼= π1(P1(C)\S), we are reduced to showing that there are at most finitely
subgroups of index d of the fundamental group π1(P1(C)\S). This follows from the facts that
π1(P1(C)\S) is finitely generated (in fact, π1(P1(C)\S) ∼= 〈γQ, Q ∈ S :

∏
Q∈S γQ = 1〉 is a

free group of rank |S| − 1, see Aufgabe 5.7.A2 in [13]) and that a finitely generated group
has only finitely many subgroups of a given finite index (well-known and easy to prove; it
also follows from Theorem 7.2.9 on p. 105 in [7]). So, Proposition 3.1 is proved. �

3.2. Corollary. Let X/C be a curve, let t : X → P1
C be a finite morphism and let K be a

subfield of C such that the critical values of t are K-rational. Then the moduli field of t is
contained in a finite extension of K.
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Proof. For any σ ∈ Aut(C/K), the critical values of t(σ) : Xσ tσ−→ (P1
C)

σ Proj(σ)−→ P1
C lie in

S, too, and the degree of t(σ) is the same as the degree of t. So, by Proposition 3.1, the orbit
of the isomorphism class of the pair (X, t) under the obvious action of Aut(C/K) is finite.
Hence, the stabilizer is of finite index in Aut(C/K). Furthermore, it is obviously contained
in U(X, t). Now, Lemma 1.4 and Lemma 1.6 imply that the moduli field M(X, t) = CU(X,t)

is contained in a finite extension of CAut(C/K) = K. �

We are now ready to prove Belyi’s theorem. The if-direction is a consequence of Theorem
2.2 and Corollary 3.2 (see below). For completeness sake, we also give a proof of the only-if-
direction (see Lemmas 3.4 through 3.6).

3.3. Theorem. (Belyi, 1979) A complex curve X is defined over a number field, if and only
if there exists a finite morphism t : X → P1

C of varieties over C with at most 3 critical values.

Proof. First, we assume that there is a morphism t : X → P1
C as above. After composing t

with an appropriate fractional linear transformation, we may assume that the critical values of
t lie in S := {0, 1,∞}. Then the moduli field M(X, t) is a number field by Corollary 3.2. Now,
Theorem 2.2 shows that X is defined over a (may be, bigger) number field. This proves the
if-direction of Theorem 3.3. To prove the only-if-direction, we introduce the notation Crit(f)
for the set of critical values of any morphism f between curves. We first choose an arbitrary
morphism t′ : X → P1

C defined over Q̄ and apply Lemma 3.4 below to N := Q̄ and t := t′, we
then apply Lemma 3.5 to S := Crit(t′) which yields a certain morphism p : P1

C → P1
C, and we

finally apply Lemma 3.6 to T := Crit(p)∪ p(S) which yields another morphism q : P1
C → P1

C.
Then the composition t := q ◦ p ◦ t′ has at most 3 critical values since, for any composition
g ◦ f of morphisms between curves, we obviously have Crit(g ◦ f) = Crit(g) ∪ g(Crit(f)).
This completes the proof of Theorem 3.3. �

3.4. Lemma. Let X/C be a curve defined over an algebraically closed subfield N of C and let
t : X → P1

C be a finite morphism defined over N . Then the critical values of t are N-rational.

Proof. Let tN : XN → P1
N denote a model of t over N , and let α : X → XN and β : P1

C → P1
N

denote the canonical projections. Then we have:

Crit(t) = t(supp(Ω1
X/P1C

)) = t(supp(α∗(Ω1
XN/P1N

)))

⊆ t(α−1(supp(Ω1
XN/P1N

))) ⊆ β−1(tN(supp(Ω1
XN/P1N

))).

This proves Lemma 3.4 since the projection β maps each point of P1
C which is not N -rational

to the generic point of P1
N . �

3.5. Lemma. Let S be a finite subset of Q̄. Then there is a non-constant polynomial
p ∈ Q[z] such that p(S) and the critical values of p : P1

C → P1
C lie in Q ∪ {∞}.

Proof. We may and we will assume that S is closed under conjugation and use then induction
on the number n of elements in S. If n ≤ 1, we may take p = z. So, let n > 1. There is
a polynomial p1 ∈ Q[z] of degree n such that p1(S) = 0 (namely the product of minimal
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polynomials of the elements in S). We set S1 := p1({r ∈ Q̄ : p′1(r) = 0}). Then S1 ∪ {∞}
is the set of critical values of p1, S1 has at most n − 1 elements, and S1 is closed under
conjugation again. By the induction hypothesis, there is a polynomial p2 ∈ Q[z] such that
p2(S1) and the critical values of p2 lie in Q∪{∞}. Then the composition p := p2 ◦p1 satisfies

Crit(p) = Crit(p2) ∪ p2(Crit(p1)) = Crit(p2) ∪ p2(S1 ∪ {∞}) ⊆ Q ∪ {∞}

and p(S) = p2(p1(S)) = p2({0}) ⊆ Q, as desired. �

3.6. Lemma. Let T be a finite subset of Q. Then there is a non-constant morphism
q : P1

C → P1
C such that q(T ) and the critical values of q lie in {0, 1,∞}.

Proof. We use induction on the number r of elements in T . If r ≤ 3, there is a fractional
linear transformation q with q(T ) ⊆ {0, 1,∞}. So, let r > 3. After composing with an
appropriate fractional linear transformation, we may assume that 0, 1,∞ ∈ T and that there
is a fourth point in T which lies in the interval between 0 and 1, i.e., which is of the form

m
m+n

where m,n ∈ N. We now consider the polynomial

q1(z) :=
(m + n)m+n

mmnn
zm(1− z)n ∈ Q[z].

Then q1 maps the set of four points 0, m
m+n

, 1,∞ onto {0, 1,∞} and the critical values of q1 lie
in {0, 1,∞} since the derivative q′1(z) equals zm−1(1− z)n−1((m+n)z−m) up to a constant.
By the induction hypothesis applied to q1(T ), there is a morphism q2 : P1

C → P1
C such that

q2(q1(T )) and the critical values of q2 lie in {0, 1,∞}. Then the composition q := q2 ◦ q1

satisfies

Crit(q) = Crit(q2) ∪ q2(Crit(q1)) = Crit(q2) ∪ q2({0, 1,∞}) ⊆ {0, 1,∞}

and q(T ) = q2(q1(T )) ⊆ {0, 1,∞}, as desired. �

The following statement is a corollary of our proof of the if-direction of Belyi’s theorem. It
gives a bound for the degree of the field of definition of a complex curve which allows a finite
morphism to the projective line with at most 3 critical values. For this, let Md denote the
number of subgroups of index d in a free group of rank 2. We have the following recursion
formula for Md:

Md = d(d!)−
d−1∑
i=1

(d− i)!Mi

(see Theorem 7.2.9 on p. 105 in [7]).

3.7. Corollary. Let X/C be a curve and let t : X → P1
C be a finite morphism of degree d

with Crit(t) ⊆ {0, 1,∞}. Let a denote the number of elements in Aut(t). Then X and t are
defined over a number field K with [K : Q] ≤ d

a
Md.

Proof. The fundamental group of the punctured sphere P1(C)\{0, 1,∞} is a free group of
rank 2 (see the proof of Proposition 3.1). Thus, the orbit of the isomorphism class of the



264 B. Köck: Belyi’s Theorem Revisited

pair (X, t) under the action of Aut(C) has at most Md elements (see the proof of Proposition
3.1). This implies that [M(X, t) : Q] ≤ Md as in the proof of Corollary 3.2. By the proof of
Theorem 2.2, X and t are defined over CU(X,t,P ) and the index of the subgroup U(X, t, P ) in
U(X, t) is less than or equal to d

a
. Now, Lemma 1.6 proves Corollary 3.7; note that U(X, t)

is closed by Lemma 1.5 and Theorem 2.2. �

3.8. Remark. In Corollary 3.7, the number Md may of course be replaced be the (smaller)
number of isomorphism classes of pairs (X ′, t′) where X ′ is a curve and t′ : X ′ → P1

C is a
finite morphism of degree d such that Crit(t′) ⊆ {0, 1,∞} and such that, in addition, the
ramification indices of t′ are the same as those of t. Besides the ramification indices, one may
also take into account further Galois invariants of a Belyi surface (like the monodromy group
or the cartographic group). It would be interesting to get explicit formulas for these (much)
sharper bounds or to get at least explicit estimations which substantially improve the bound
Md.
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[4] Dèbes, P.; Emsalem, M.: On fields of moduli of curves. J. Algebra 211 (1999), 42–56.
Zbl 0934.14019−−−−−−−−−−−−

[5] Farkas, H. M.; Kra, I.: Riemann surfaces. Graduate Texts in Mathematics 71,
Springer-Verlag, New York 1980. Zbl 0475.30001−−−−−−−−−−−−
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