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Unbounded Regions in an Arrangement
of Lines in the Plane
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Abstract. We take a set Ω of n points and an arrangement Σ of m lines in the
plane which avoid these points but separate any two of them. We suppose these
satisfy the following unboundedness property: for each point x ∈ Ω there is a
homotopy from Σ to Σ′ avoiding Ω so that x is in an unbounded component of
the complement of Σ′. It is proved that then n ≤ 2m. This result is required to
partially solve a problem in differential geometry which is described briefly.

1. Introduction

The object of this paper is to prove a result about arrangements of lines in the plane that is
required to deal with a problem in differential geometry. We first give a very brief discussion
of the differential geometry background.

We prove the result by a rather roundabout route using ideas about ordering. On the
way we describe a number of structures and prove results about them that are interesting in
themselves.

We concentrate on dimension 2, that is, to arrangements of lines in the plane. However,
the differential geometry background does not have this restriction and the required result can
be stated in terms of abstract arrangements of hyperplanes without such a restriction. Indeed
it seems very likely that it is true in any dimension. Therefore we state this as a conjecture
and discuss whether it is possible to generalise the methods we use in the 2-dimensional case
to prove the general case.

The author would like to thank Ilda da Silva for many useful discussions and for intro-
ducing him to the work done on oriented matroids and, in particular, for showing that the
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axioms given in this paper are equivalent to axioms used by workers in that field. He would
also like to thank Kevin Buzzard for suggesting the method used to prove Theorem 5.5. The
resulting proof is much shorter than the original.

2. Differential Geometry

Let f : M → Rm+d be a smooth immersion of a compact connected m-dimensional manifold
with flat, trivial, normal bundle N(f) ⊂ M ×Rm+d. Let η : N(f) → Rm+d be the end-point
map given by η(p, x) = f(p) + x. The set of critical points of η is Σ(f) ⊂ N(f). Thus
(p, x) ∈ Σ(f) means that η(p, x) = f(p) + x is a focal point of the immersed manifold (also
called a centre of curvature).

For any p ∈ M , Np(f) = {x ∈ Rm+d : (p, x) ∈ N(f)} is a d-dimensional subspace of
Rm+d and Σp(f) = Σ(f) ∩ Np(f) is an algebraic variety in Np(f). In our case the normal
bundle is flat and trivial. In other words, the normal holonomy group is trivial. This implies
two things.

First, the normal bundle is isomorphic to M × Rd and we can define the projection
Φ : N(f) ∼= M × Rd → Rd using parallel transport. This means that if x ∈ Rd then
Φ−1(x) ⊂ N(f) is a cross-section representing a parallel normal field (see [4]).

Secondly, for any p ∈ M the variety Σp(f) is the union of a set of m hyperplanes arranged
in the d-dimensional vector space Np(f) (allowing hyperplanes to coincide and including the
hyperplane at infinity).

Thus for each p ∈ M there is a corresponding arrangement Σp of m hyperplanes in Rd

such that Φ(Σp(f)) = Σp. The sets Σp clearly vary smoothly with p ∈ M .
Now a parallel immersion to f : M → Rm+d is given by a parallel normal field ν : M →

N(f) such that η◦ν is also an immersion. We think of η◦ν(M) as being obtained by pushing
out each point p of M to the end of the normal ν(p). The condition that η◦ν is an immersion
is that the cross-section ν(M) ⊂ N(f) does not intersect Σ(f).

Thus, in our case, the immersions parallel to f correspond precisely to the set of vectors
x ∈ Rd for which Φ−1(x)∩Σ(f) = ∅. That is, to the set Ω(f) = Rd \

⋃
{Σp : p ∈ M}. Notice

that 0 ∈ Ω. We call Ω(f) the push-out space for f and are interested in its topology and, in
particular, how many connected components it can have (see [2] and [3]).

Let γ(m, d) = 1 +
(

m
1

)
+

(
m
2

)
+ · · ·+

(
m
d

)
−

(
m−1

d

)
be the number of unbounded connected

components in Rd \ Σ where Σ is any arrangement of m hyperplanes in general position in
Rd.

Conjecture 2.1. Given an embedded manifold f : M → Rm+d with trivial normal holonomy
group the number of connected components of the push-out space Ω is at most equal to γ(m.d).

The reason this seems likely is because any x ∈ Ω(f) must have an “unboundedness property”
which we shall now briefly describe.

For any x ∈ Ω(f) let us write fx for the corresponding parallel immersion described
above. That is, fx = η ◦ ν where ν is given by Φ ◦ ν(p) = x for all p ∈ M . The normal
bundle N(fx) is again flat and trivial so Φx : N(fx) → Rd is defined in analogy to Φ. The
map Φx ◦ Φ−1 : Rd → Rd is the simple translation u 7→ u − x and Φ(Σp(f)) = Φx(Σp(fx)).
Hence Ω(fx) is just the translation of Ω(f).
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Since M is compact any non-degenerate height function for the immersion fx is bounded
and attains its bounds. So there must be a height function Lz for fx given by some z ∈ Sd−1

that attains its maximum at some q ∈ M . This is equivalent to saying that (q, z) ∈ N(fx)
and if t > 0 then (q, tz) /∈ Σ(fx). Thus, from the relation between Φ and Φx and between
Σp(f) and Σp(fx) above we deduce that x lies in an unbounded component of Rd \ Σq.

Thus for x ∈ Ω there is some homotopy Σp(t) of arrangements of hyperplanes with p(0) = p
and p(1) = q for which Ω∩Σp(t) = ∅ and x lies in an unbounded component of Rd \Σq. This
is the “unboundedness property”.

The ideas of a homotopy and of unboundedness arise here from a geometrical approach
but we need to formulate this in a more abstract way. For one thing Σp may contain hyper-
planes at infinity and hyperplanes that coincide and these are easier to make precise in a more
algebraic context. Also we are not really interested in Σp but only the connected components
of Rd \ Σp and we are not interested in the manifold M and the way the homotopy of Σp(t)
arises from parallel transport. We only need to keep track of the components of Rd \ Σp(t)
during the homotopy.

Thus we are given an open set Ω ⊂ Rd with 0 ∈ Ω and we choose a finite set S ⊂ Ω such
there is exactly one point of S in each connected component of Ω. We may choose S so that
0 ∈ S and, since Ω is open, no point in S lies on the hyperplane at infinity. We are also given
a collection of m hyperplanes Σ with Σ∩S = ∅ with the “unboundedness property” that for
each x ∈ S there is some collection of hyperplanes Σ′ which is homotopic to Σ in Rd \ S for
which x lies in an unbounded connected component of Rd \ Σ′.

Then Conjecture 2.1 will follow if we prove the following.

Conjecture 2.2. Let Σ be any arrangement of m hyperplanes in Rd and let S ⊂ Rd be a
finite set such that no connected component of Rd \ Σ contains two points of S. Suppose
that S has the “unboundedness property” that for each x ∈ S there is an arrangement of
m hyperplanes, Σ′, which is homotopic to Σ in Rd \ S, for which x lies in an unbounded
component of Rd \ Σ′. Then the number of points in S cannot exceed γ(m, d).

A hyperplane on Rd which does not go through the origin 0 is completely determined by
an element λ ∈ Rd. The hyperplane at infinity corresponds to λ = 0. A point v ∈ Rd

lies on the positive or negative side of the hyperplane according to whether < λ, v > +1
is positive or negative. Thus, given a set of m hyperplanes E = {λ1, λ2, . . . , λm} a con-
nected component of the complement of these hyperplanes is completely determined by a
map ω : E → {+1,−1}. Not every such map represents a connected component but given
an arrangement of hyperplanes Σ we have an associated set of such maps W .

We can still simplify the problem because the set of arrangements of m hyperplanes which
do not intersect S is open in the set of all such arrangements. This means that we can always
assume that that the arrangements of hyperplanes, Σ, Σ′ are in general position and do not
include the hyperplane at infinity. In a homotopy Σt between them we can assume that Σt

never contains the line at infinity. So we can assume that the sets of maps, W , is obtained
from an arrangement of hyperplanes Σ in general position.

We can abstract axioms for a set of such maps, W , that must be satisfied when the maps
really do represent the connected components of the complement of such an arrangement
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of hyperplanes, Σ, and these probably contain sufficient information to prove the result we
require.

Given such a W , the axioms are not enough to reconstruct an arrangement of hyperplanes
which will give rise to the given maps. So we would definitely be throwing away information
in using the axioms only.

We can also assume that the homotopy Σt with Σ0 = Σ and Σ1 = Σ′ is such that for
some 0 = t0 < t1 < t2 · · · < tr+1 = 1 all the arrangements Σt for t ∈ (ti, ti+1) are in general
position and have the same set of maps, Wi, when 0 ≤ i ≤ r, and that the change from Wi

to Wi+1 is either the result of one hyperplane crossing the vertex formed by the intersection
of d other hyperplanes or the result of such a vertex going off to infinity.

Further, no hyperplane of Σt crosses a point in S so the points of S, which determine
a subset of Ω ⊂ W , always lie on the same side of each hyperplane in Σt. In other words
Ω ⊂ Wi ∩Wi+1.

Such a change in the arrangement is called an “elementary modificaton” in the set of
maps Wi.

A homotopy of an abstract arrangement W modulo S is then a finite sequence of such
elementary modifications.

Finally, it is easy to see that a map ω ∈ W represents an unbounded connected component
of Rd \ Σ if and only if the map −ω also represents a connected component of Rd \ Σ, that
is, −ω ∈ W also.

In this way the original problem from differential geometry depends on a problem about
the maps W associated with arrangements of hyperplanes in general position and elementary
modifications of them.

We are going to prove Conjecture 2.2 in the particular case when d = 2. We shall not
use an axiomatic approach but will point out where the axioms come from.

Let us give a sketch of the proof here. The basic tool is to consider the way the lines of
E split the set S. This is obviously invariant under the homotopies we consider. Using this
we pick out certain subsets that we call C-sets that have a natural cyclic ordering on them.
If C is a C-set then any line in E either does not split C or splits it into two connected arcs.
E(C) ⊂ E is the set of lines that split the edges of C. Since each line in E(C) splits precisely
two edges of C, it is easy to see that the number of elements in C is at most equal to twice
the number of lines in E(C). We pick out a collection of disjoint maximal C-sets and show
that at the same time the corresponding E(C) are disjoint.

We also pick out subsets of S which contain no C-set. These we call T-sets. If T is a
T-set we again define E(T ) ⊂ E as the set of lines that split T . Such a set can be given
the natural structure of a tree such that any line in E(T ) splits only one edge. So again the
number of elements of T is at most equal to twice the number of lines in E(T ). Again we
can choose a collection of disjoint T-sets such that the corresponding E(T ) are also disjoint
and so that, in fact, the T-sets are disjoint from the C-sets and the corresponding E(T ) and
E(C) are also disjoint.

Since every element of S lies either in a C-set or in a T-set the result follows.
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3. Arrangements of lines in the plane

Let E be a set of m lines arranged in the plane and let their union be Σ. To each connected
component of R2 \ Σ there corresponds a map ω : E → {−1, +1} that will be called the
corresponding region of the arrangement. The set of regions is W .

Definition 3.1. Let E and E ′ be sets of lines in the plane and with corresponding sets of
regions W and W ′. Let S ⊂ W ∩ W ′. If there is a homotopy Et from E to E ′ in R2 \ X
with corresponding regions Wt for which S ⊂ Wt we say that W is homotopic to W ′ modulo
S and write W ∼S W ′.

The set of regions W contains all the information we require about E. Indeed we could give
axioms for W and define ideas like “homotopy” entirely in terms of regions. However in our
case it is easier to use the geometry of the set of lines E to justify intuitive statements that
require a rather tedious derivation from these axioms alone.

Also we may assume in general that the lines E are in general position. In this case we
can characterise the unbounded regions as those ω ∈ W for which −ω ∈ W also.

This will not be true throughout a homotopy but we can think of a homotopy as a
modification of W to W ′ in which some regions which are bounded in W could become
unbounded in W ′.

Then Conjectures 2.1 and 2.2 in the case when d = 2 will follow from the following
theorem.

Theorem 3.2. Let W be the regions for a set of lines E in dimension 2 and let S ⊂ W
satisfy the following “unboundedness property”: for any ω ∈ S there exists W ′ such that
W ∼S W ′ and −ω, ω ∈ W ′. Then ]S ≤ 2× ]E.

This theorem is obviously true if ]E ≤ 2.

We shall assume throughout this paper that S has this “unboundedness property”. Notice
that if S has the “unboundedness property” then so does any subset of S and so also does
the “projection” Pχ(S) of S in the “projection” Pχ(S) of W given by simply restricting all
maps ω ∈ W to a subset χ ⊆ E. This idea of projection is so useful that we incorporate it
in a definition for reference.

Definition 3.3. Let W be the set of regions associated with the lines E in general position
in dimension 2. Let χ ⊂ E then if W̄ is the set of regions associated with χ we define the
projection Pχ : W → W̄ by letting Pχω ∈ W̄ be the restriction of ω to χ.

If λ ∈ E we also talk about the restriction of W to the line λ. This is an arrangement of
hyperplanes in dimension 1 where the “hyperplanes” are the points of intersection of λ with
the lines in E \{λ} and the regions represent the intervals between them. These intervals are
linearly ordered and correspond to the regions of u ∈ W with the property that u′ ∈ W also
where v(λ) = −u(λ) and v(i) = u(i),∀i ∈ E \ {λ}.

In the abstract setting in higher dimensions the ideas of projection and restriction are the
main tools. The fact that the regions of the restriction to a line are linearly ordered is the
basis of the betweenness axiom. In our geometrical setting this is obvious.
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The restriction to a line is mainly used in the application of the following lemma which
gives another characterisation of unboundedness.

Lemma 3.4. If x ∈ W is unbounded then there exists a line λ ∈ E such that x restricts to
an unbounded interval on λ.

Proof. The conditon for there to be an interval representing the restriction of x to λ is
that an interval on λ is part of the boundary of the connected component of R2 \ Σ that x
represents. When expressed geometrically in this way the result is obvious. 2

This result is not obvious in an axiomatic approach but needs a fairly long proof. This point
will be discussed later.

Definition 3.5. If A and B are two subsets of W we shall write (A | B) as an abbreviation
for the statement “there is a line in E that separates A from B”. That is, for some λ ∈ E
we have ∀a ∈ A, b ∈ B, a(λ) = −b(λ). A similar meaning is given to (a, b | c, d) where
a, b, c, d ∈ W .

Similarly, if λ ∈ E we shall say that λ splits a subset C ⊂ W if C can be written as the
disjoint union of two proper subsets which are separated by λ.

Note that if (A | B) with respect to W and A ∩ B ⊂ S then W ∼S W ′ implies that (A | B)
with respect to W ′ also. Thus it is the separation properties of S which are important to us.

For instance an elementary but important result is contained in the following lemma
which forms the basis for the “simplex axiom” satisfied by an abstract arrangement.

Lemma 3.6. Let σ ∈ E consist of just three lines (σ is a simplex). For any region x ∈ W
there is a line ` ∈ σ which does not separate x from the vertex defined by the other two lines
in σ.

An immediate consequence of this will be one of the the basic tools in using the unbounded-
ness property.

Lemma 3.7. Let σ ∈ E consist of just three lines (σ is a simplex). Suppose that x ∈ W is
a region such that no line ` ∈ σ separates x from the vertex defined by the other two lines in
σ. Then −x /∈ W .

This says that a simplex formed by three lines from the set E (which are in general position)
has an inside and any region inside this simplex is bounded. We do not give a proof as in
our situation it is obvious from the geometry. A vertex is the intersection of two lines so we
can identify a vertex with a subset {λ, µ} ⊂ W .

The lemma implies that four-element subsets in S must have certain separation properties
as given in the next lemma.

Lemma 3.8. Let S ⊂ W have the unboundedness property and let {a, b, c, d} ⊆ S. Then at
least one of the statements (a, b | c, d), (a, c | b, d) and (a, d | c, b) must be false.
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Proof. It will be sufficient to prove the following: Let {a, b, c, d} ⊆ S ⊂ W satisfy (a, b | c, d),
(a, c | b, d) and (a, d | c, b). Then there is one element x ∈ {a, b, c, d} such −x /∈ W ′ for any
W ′ with W ∼S W ′.

So we assume that there exists a line λ that separates a, b from c, d, a line ν that separates
a, c from b, d and a line µ that separates a, d from c, b.

Then the line ν separates the vertex {λ, µ} either from a, c or from b, d. Let us suppose
it separates this vertex from a, c.

Similarly, the line µ separates the vertex {λ, ν} either from a, d or from b, c. Let us
suppose it separates this vertex from b, c.

We now apply Lemma 3.6 to the simplex σ and the region d we see that it must be the
line λ that does not separate d from the vertex {ν, µ}. Then d satisfies the requirement for
x in Lemma 3.7 and so −x /∈ W . Further, since under any homotopy modulo S the same
lines separate the same points in S in the same way, this implies that −x /∈ W ′ for any
W ′ ∼S W . 2

Note that the result of Theorem 3.2 follows immediately from this lemma if ]E = 3.

4. T-sets

In this section we shall discuss T-sets. These cannot be very big and we do not need the
unboundedness property to prove this; a T-set is not necessarily a subset of S.

Definition 4.1. A subset T ⊆ W is called a T-set if T does not contain four points a, b, c, d
such that (a, b | c, d) and (b, c | a, d).

Let us start by proving the basic lemma about T-sets.

Lemma 4.2. Let E ′ ⊆ E split T into the subsets T1, T2, . . . , Tk and let λ ∈ E \ E ′ split Ti.
Then λ does not split Tj if i 6= j.

Proof. Suppose λ ∈ E \E ′ splits Ti into T 0
i and T 1

i and also splits Tj into T 0
j and T 1

j . There
must be some µ ∈ E ′ that separates Ti from Tj. So we can take a ∈ T 0

i , b ∈ T 1
i , c ∈ T 0

j and
d ∈ T 1

j such that λ separates b, c from a, d then µ separates a, b from c, d and this contradicts
the hypothesis. 2

Proposition 4.3. Let W be the regions for an arrangement of a set E of lines in dimension
2 and let T ⊂ W be a T-set. Then ]T ≤ ]E(T ) + 1 where E(T ) is the set of lines in E that
split T .

Proof. We use Lemma 4.2 and the following inductive hypothesis: if E ′ ⊂ E splits T into
n non-empty subsets then n ≤ ]E ′ + 1. This is obviously true if E ′ contains only one line.
But then Lemma 4.2 says that if we take another line λ ∈ E \E ′ this line splits at most one
of the sets Ti. In other words, when ]E ′ is increased by one the number of subsets of T is
increased by at most one. This proves the inductive step. So the hypothesis is true for all
subsets E ′ of E.

If we take E ′ = E(T ) we see that E(T ) splits T into those subsets which consist of a
single element of T . The hypothesis we have just proved then says that ]T ≤ ]E(T ) + 1. 2
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5. C-sets

The idea of a cyclic ordering on a subset of W that is compatible with the way E splits W
is crucial to our proof. Note that a cyclic ordering is inherited by subsets and that deleting
an edge of a cyclic ordering gives a linear ordering.

Definition 5.1. Let C ⊂ W have a cyclic ordering then a proper subset A ⊂ C is an arc of
C if it inherits a linear ordering from C that has the property that an edge in A is an edge
in C.

We shall often denote the cyclic ordering by writing C = 〈s1, s2, . . . , sp〉. An edge will be
denoted by 〈a, b〉.

Definition 5.2. We define a subset C ⊆ W with ]C ≥ 4 to be a C-set if it has a cyclic
ordering that satisfies the conditions:

(1) any line in E either does not split C or splits C into two arcs or, equivalently; any line
in E splits at most two edges of C;

(2) any two edges of C with no common end-points are separated by some line in E.

The reason that we require a C-set to have at least three elements is because any set with
fewer elements is clearly a T-set. If D ⊂ C then D clearly has an inherited cyclic ordering
but D may not be a C-set.

Let us consider the simple case when ]E = 3 and ]S = 4.

Lemma 5.3. Let {a, b, c, d} ⊂ W . Then 〈a, b, c, d〉 is a C-set if and only if (a, b | c, d) and
(b, c | a, d) but not (a, c | b, d).

Proof. The proof is just a matter of checking with the definition of a C-set. 2

Lemma 5.4. Let C ⊆ W be any C-set and let a, b ∈ C. Then one can find c, d ∈ C such
that a, b, c, d in some order, form a C-set.

Proof. There is some line λ ∈ E that separates a from b. The line λ splits precisely two
edges of C . Let them be 〈u, u′〉 and 〈v, v′〉. We may suppose λ separates u, a, v from u′, b, v′.
Since C is a C-set there is some µ ∈ E that separates u, u′ from v, v′. If µ separates a from
b we may choose the notation so that µ separates u, u′, a from v, v′, b. We then take c = u′

and d = v and see that by Lemmas 3.8 and 5.3 〈a, d, b, c〉 is a C-set.
On the other hand if µ does not separate a from b we can choose the notation so that µ

separates a, b, u, u′ from v, v′ and take c = v′ and d = v. Again, Lemmas 3.8 and 5.3 show
that 〈a, b, c, d〉 is a C-set. 2

The point of this lemma is that it shows that any T ⊆ W that does not contain a C-set must
be a T-set.

The next proposition shows that the cyclic ordering on a C-set is unique because it is
really determined solely by the way the lines of E split up the set C.

Theorem 5.5. Let C ⊆ W be a C-set. Then the compatible cyclic ordering is unique.
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Proof. Suppose that C is a C-set. Take any x ∈ W and for each λ ∈ E define A(λ) ⊂ C to
be all those elements of C that are separated from x by λ.

We now define a collection of subsets of C that we shall call (temporarily) A-sets by the
following rules.

(a) A(λ) is an A-set for all λ ∈ E,
(b) if A is an A-set then C \ A is an A-set,
(c) if A and B are A-sets and A ∩B 6= ∅ then A ∪B is an A-set.

The collection of A-sets is defined without using the cyclic ordering on C. However we claim
that the edges in this cylic ordering are precisely those A-sets that contain just two elements.

First observe that all proper A-sets are arcs of C. Then take any edge 〈u, v〉 of C. We
must show that this is an A-set. Let A be the largest A-set that contains neither u nor v.
Since by Lemma 5.4 C must contain at least four elements we may suppose that 〈u′, u, v, v′〉
is an arc of C. If u′, v′ ∈ A then 〈u, v〉 = C \ A is an A-set. So suppose either u′ or v′ is not
in A then we can find an edge 〈a, b〉 of C so that a ∈ A and b ∈ C \ A with b 6= u, b 6= v.

Since C is a C-set there exists some line λ ∈ E that separates the edges 〈a, b〉 and 〈u, v〉.
Suppose 〈u, v〉 lies in A(λ) and 〈a, b〉 lies in C\A(λ). In this case we define A′ = A∪(C\A(λ))
and observe that since b ∈ A ∩ (C \ A(λ)) this is an A-set. Yet neither u nor v are in A′,
A ⊂ A′ and b ∈ A′ \ A. So A is not maximal.

On the other hand if 〈u, v〉 lies in C \A(λ) and 〈a, b〉 lies in A(λ) we define A′ = A∪A(λ)
and observe that since b ∈ A ∩ A(λ) this is an A-set. Yet again neither u nor v are in A′,
A ⊂ A′ and b ∈ A′ \ A. So A is not maximal.

We deduce that the edge 〈u, v〉 = C \ A and this edge is an A-set. 2

This theorem is useful when we are considering whether a C-set can be extended to a larger
C-set. We know that the ordering on the larger C-set must always be such that the ordering
inherited by the smaller C-set is the one given originally.

It also shows us that the structure of a C-set is completely determined by the way it
is separated by the lines in E that separate the edges of C. This leads us to the following
definition.

Definition 5.6. Let C ⊂ W be a C-set. We define E(C) to be the set of lines in E that split
C into two arcs each of which contains an edge of C.

Lemma 5.7. Let C ⊂ W be any C-set. Then ]C ≤ 2× ]E(C).

Proof. Clearly since any line in E(C) splits C into two arcs it splits exactly two edges of
C. Also any edge of C is split by a line in E(C). So the number of edges in C is less than
twice the number of lines in E(C). Since the number of edges in C is equal to ]C the result
follows. 2

The basic idea in defining a C-set is that it has an inside and any region inside a C-set is
bounded. Hence, if the C-set belongs to S and we take another region in S, this region
must lie outside the C-set. Of course this is an intuitive idea but it can be expressed by the
following central proposition which depends crucially on the assumption that all elements in
S have the unboundedness property.
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Proposition 5.8. Let C ⊂ S be a C-set and let x ∈ S \ C where S has the unboundedness
property. Then there is some edge of C that is separated from x by no line of E that splits C.

Proof. Suppose on the contrary that for every edge 〈u, u′〉 in C there is some λ ∈ E such
that λ splits C and separates u, u′ from x. This property and the property for C to be a
C-set are invariant under homotopies modulo S. So we can suppose that x is unbounded and
use Lemma 3.4.

Each line λ ∈ E will split C into two arcs; we define A(λ), to be the arc that is separated
from x by λ. For an edge 〈u, u′〉 in C there will, in general, be several lines that split C
and separate the edge 〈u, u′〉 from x. So we will start by reducing E to a subset that has no
superfluous lines.

We choose E ′ ⊂ E so that
(i) every line in E ′ splits C into two arcs,
(ii) for every edge 〈u, u′〉 in C there is some λ ∈ E ′ such that 〈u, u′〉 ⊆ A(λ),
(iii) the set E ′ is minimal (under inclusion) among such sets.

The first condition throws away all lines that play no part in the definition of C as a C-set.
The minimality condition is equivalent to the following condition.

(iiia) For every λ ∈ E ′ there is some edge that lies in A(λ) but lies in no other arc
A(µ), µ ∈ E ′.

The proof is divided into two parts. In the first part we consider the case when ]E ′ ≥ 3
and in the second part we consider the case when any such E ′ contains only two lines. We
will use the first part to prove the second part.

Part 1: Suppose that ]E ′ ≥ 3. In this case E ′ has some useful properties described in the
following lemma.

Lemma 5.9. Let E ′ be chosen as above. Then if λ ∈ E ′ and µ ∈ E ′ either A(λ)∩A(µ) = ∅
or their intersection is an arc that is split by no line in E ′. Each u ∈ C lies in at most two
arcs A(λ), λ ∈ E ′. Further for any λ ∈ E ′ there are precisely two lines µ, ν ∈ E ′ such that
A(λ) has non-empty intersection with A(µ) and A(ν).

Proof. Suppose λ, λ′ ∈ E ′ and A(λ)∩A(λ′) = D is an arc with at least two elements. (Note
that the condition ]E ′ ≥ 3 implies that D must be an arc.) Suppose there is some µ ∈ E ′

that splits D. The arc A(µ) cannot lie in either A(λ) or A(λ′) else µ would not satisfy (ii).
We can assume then that A(λ) ⊂ D ∪ A(µ). Now consider the edge 〈u, u′〉 of C given for λ
by condition (ii). This cannot lie in A(µ) or in D but it must lie in D∪A(µ). So, say, u ∈ D,
u′ ∈ A(µ) but u /∈ A(µ), u′ /∈ D which is impossible since µ splits D. This proves the first
result.

Now suppose that there are three lines λ, µ, ν ∈ E ′ such that A(λ) ∩ A(µ) ∩ A(ν) = D
is non-empty. Since the intersection of any two of these arcs cannot be split by the line
determining the other one we conclude that D has an end-point in common with two of these
arcs. But this means that one of these arcs must be a sub-arc of one of the others. This is
impossible as it contradicts condition (iiia). This proves the second result.

The last statement follows easily from the first two results and condition (ii). 2
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Now consider the projection PE′ . If x is unbounded in W then PE′x is unbounded in
PE′W . Take any line λ ∈ E ′. The results of Lemma 5.9 show that there are µ, ν ∈ E ′ so
that A(λ) is the union of two or three arcs D = A(λ) ∩ A(µ), D′ = A(λ) ∩ A(ν) and D∗

(which could be empty). The only line in E ′ that separates D∗ from x is λ so PE′D∗ and
PE′x have the same restriction to the line λ; call this interval I. Further the only lines in
E ′ that separate D from x are λ and µ and so PE′D has a restriction to the line λ which is
an interval distinct from I, but with the vertex {λ, µ} an end-point in common with I. The
same applies to PE′D′ where the common end-point is now the vertex {λ, ν}. Thus I has
two distinct end-points and cannot be unbounded. Since this applies to all λ ∈ E ′ we can
apply Lemma 3.4 and deduce that PE′x is bounded and this in turn implies that x ∈ S is
always bounded thus contradicting the unboundedness property.

Part 2: Now let us suppose that the only sets E ′ with properties (i), (ii), and (iii) have just
two lines. Let E ′ = {λ, µ} be such a set.

First consider the case when ]C = 4. We can write C = 〈a, b, c, d〉 where A(λ) = 〈a, b, c〉
and A(µ) = 〈c, d, a〉.

There must exist ν ∈ E that separates a, b from c, d and we can choose the notation so
that 〈a, b〉 ⊂ A(ν).

There must also exist ` ∈ E that separates b, c from a, d. If 〈b, c〉 ⊂ A(`) then we would
have (b, c | x, a), (x, c | a, b) and (b, x | a, c) from `, ν and µ which is impossible by Lemma
3.8. So 〈a, d〉 ⊂ A(`).

It is easy to check then that C∗ = 〈a, d, x, b〉 is a C-set. Further c ∈ S \ C∗ is separated
from every edge of C∗ by one of the lines λ, µ, ν, ` and these lines all split C∗. Furthermore
these lines form a set E ′ (with respect to C∗) that satisfies the above conditions (i), (ii), and
(iii) so we can apply the argument in Part 1 and derive a contradiction to the unboundedness
property.

Thus the required result is true if ]C = 4 in both cases so we are in a position to use
induction on ]C. Suppose then that the result is true for all C∗ with ]C∗ < ]C and we are
given E ′ = {λ, µ} as above.

We let A(λ) ∩ A(µ) = A ∪ B where A and B are disjoint arcs of C. There are unique
elements u, v, w, z ∈ C such that neither u nor v is in A(λ), neither w nor z is in A(µ) but
〈w, A, u〉 and 〈v, B, z〉 are arcs of C. It is possible that u = v or w = z but this is taken into
account in the argument.

Let us note first that no line ν ∈ E can separate 〈w,A, u〉 from 〈z, B, v〉. To see this, we
may suppose that ν is such a line and 〈w, A, u〉 ⊂ A(ν). Then we would have (x, u | w, b),
(x, w | b, u) and (w, u | b, x) from λ, µ and ν which is impossible by Lemma 3.8. A similar
argument applies if 〈z, B, v〉 ⊂ A(ν).

Let C∗ = A ∪ {u, x, w} have the cyclic ordering defined by specifying 〈w, A, u〉 and
〈u, x, w〉 to be arcs of C∗. We claim that C∗ is a C-set.

Let ` ∈ E split C∗. If ` does not split C it must split C∗ into the arcs {x} and 〈w, A, u〉.
If A(`) ∩ C∗ is not an arc of C∗it must contain both u and w but not the whole of A. Then
for any a ∈ A \ A(`) we would have (a, x | w, u), (a, w | x, u) and (a, u | w, x) from `, λ and
µ, which is impossible by Lemma 3.8. Thus A(`)∩C∗ is an arc and ` splits C∗ into the arcs
A(`) ∩ C∗ and C∗ \ A(`). This proves condition (1) of Definition 5.2. Condition (2) follows
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easily from the fact that λ separates 〈u, x〉 from A∪{w} and µ separates 〈w, x〉 from A∪{u}.
This shows that C∗ is a C-set. Similarly C∗∗ = B ∪ {z, x, v} is a C-set.

If ]C∗ < ]C or if ]C∗ = 4 we can apply the inductive hypothesis to C∗ and any b ∈ B. On
the other hand if ]C∗ = ]C we must have ]C∗∗ = 4 so we can apply the inductive hypothesis
to C∗∗ and any a ∈ A. By changing the labelling if necessary we may suppose that we can
apply the inductive hypothesis to C∗ and deduce that for any b ∈ B there is some edge 〈a, a′〉
of C∗ that is not separated from b by any line in E that splits C∗. Since λ and µ both split
C∗ and since b ∈ A(λ) ∩ A(µ) means that λ separates 〈u, x〉 from b and µ separates 〈w, x〉
from b we see that the edge 〈a, a′〉 must be an edge of 〈w, A, u〉.

Further, if 〈b, b′〉 is any edge of 〈z, B, v〉 that has no end-point in common with 〈a, a′〉,
then there is some ` ∈ E that separates 〈a, a′〉 from 〈b, b′〉 and so by the above cannot split
C∗. This means that ` separates C∗ from 〈b, b′〉. However ` cannot separate 〈w, A, u〉 from
〈z, B, v〉 so ` must split 〈z, B, v〉.

Take some a ∈ A and let E∗ ⊂ E be defined by ` ∈ E∗ whenever A(`) ∩C∗ = ∅. Clearly
all the lines in this set split C∗∗. Then the above says that every edge of C∗∗ \C∗ is separated
from a by a line in E∗. Note that the edges 〈v, x〉 and 〈x, w〉 are separated from a by λ and
µ respectively. So if C∗ ∩ C∗∗ = ∅ this means that every edge of C∗∗ is separated from a
by a line in E∗ ∪ {λ, µ}. Since all the lines in this set clearly split C∗∗ and any subset with
the same property must include λ, µ and a line in E∗ we can apply Part 1 and obtain a
contradiction.

Suppose however that w = z then there must exist an edge 〈a, a′〉 of 〈A, u〉 and a line
ν ∈ E that separates the edge 〈a, a′〉 from the edge 〈w, b〉 of 〈w,B〉 since both these edges
are also edges of C. Similarly if u = v there must be a line ν̄ ∈ E that separates the edge
〈b̄, u〉 of 〈B, u〉 from a. If C∗ ∩ C∗∗ 6= ∅ all we have to do is to repeat the above argument
after increasing the set of lines E∗ ∪ {λ, µ} by adding ν or ν̄ or both as necessary.

We obtain a contradiction in every case and this proves the proposition. 2

We need to consider maximal C-sets and so we need to consider when we can add new elements
to a given C-set to make another C-set. That is the purpose of the following propositions.

Proposition 5.10. Let C ⊂ W be a C-set and let x ∈ S \C. Suppose there are at least two
edges which are not separated from x by any line in E that splits C. Then there are are just
two such edges with a unique common end-point v ∈ C.

Further, the point v ∈ C is completely determined by the property that no line in E(C)
separates x from v.

Proof. We define A(λ) as the set of edges of C that are separated from x by λ. By hypothesis
there are at least two edges that lie in no A(λ), λ ∈ E. However C is a C-set so if these
edges are distinct there is some λ ∈ E that separates them and hence one of them must lie in
A(λ). We conclude that there can only be two edges and they have a common end point v.

To prove the last statement let v have the given property and let 〈u, v, w〉 be an arc of C.
Consider a line that separates u, v from x. It cannot split C \ {v} else it would belong to
E(C). So since u ∈ C \ {v} it must separate C from x and hence cannot split C. We can
apply the same argument to v, w so both the edges 〈u, v〉 and 〈v, w〉 are such that no line in
E that separates the edge from x also splits C.
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Conversely, suppose the two edges have this property and a line separates x from v. If it
separates either u, v from x or v, w from x it cannot split C and so cannot belong to E(C).
On the other hand if such a line separates v from u, x, w it must separate C into the two arcs
v and C \ {v} and so cannot belong to E(C). Thus no line in E(C) separates x from v and
the proposition is proved. 2

Lemma 5.11. Let C ⊂ W be a C-set and let x ∈ W . Then the following two statements are
equivalent.

There is no line in E(C) that separates x from v ∈ C.
There is no line that separates x from v ∈ C that also splits C \ {v}.

Proof. Suppose the first statement holds. Then a line that separates x from v cannot belong
to E(C) and so clearly cannot split C \ {v}. So the second statement holds.

Suppose the second statement holds then if a line belongs to E(C) it splits C \ {v} and
so cannot separate x from v. So the first statement holds. 2

There are either just two edges as described by Proposition 5.8 or such an edge is unique. In
the first case (C \ {v}) ∪ {x} is a C-set and in the second case C ∪ {x} is a C-set. This is
proved in the following two propositions. Of course if C is not a subset of S or x /∈ S there
may be no such edges even though C is a C-set.

Proposition 5.12. Let C ⊂ W be a C-set and let x ∈ W \ C. Then C ∪ {x} is a C-set if
and only if there is a unique edge that is separated from x by no line of E that splits C.

Proof. Suppose that C ∪ {x} is a C-set. If there is more than one edge that is separated
from x by no line of E that splits C Proposition 5.10 tells us that we can find an arc of C,
〈u, v, w〉 such that there is no z ∈ C such that (u, v | x, z) or (v, w | x, z).

Now there must be some edge 〈a, b〉 of C such that 〈a, x, b〉 is an arc of C ∪ {x}. But
then any λ ∈ E that splits C ∪ {x} cannot separate a, b from x. This means that 〈a, b〉 must
be one of the edges 〈u, v〉 or 〈v, w〉.

Suppose that 〈u, x, v, w〉 is an arc of C ∪ {x}. Then since C ∪ {x} is a C-set there is
some λ ∈ E that separates v, w from x, u, which is impossible. The same argument applies if
〈u, v, x, w〉 is an arc of C ∪{x}. We deduce that the edge given by Proposition 5.8 is unique.

Conversely, suppose that 〈u, v〉 is the unique edge with the property that no line in E
that splits C separates u, v from x. We claim that C ∪ {x} is a C-set in which 〈u, x, v〉 is an
arc.

Let λ ∈ E. If λ splits C but does not split 〈u, v〉 it splits C ∪ {x} into two arcs, one of
which contains the arc 〈u, x, v〉. On the other hand if it does split 〈u, v〉 it splits C ∪{x} into
two arcs one of which has x as an end-point. If it does not split C then it either does not
split C ∪ {x} or splits it into the arcs {x} and C.

It is clear that we only have to check that the two “new” edges 〈u, x〉 and 〈x, v〉 are
separated from edges of C.

Consider first those edges which do not have u or v as an end-point. There is some line
E that separates such an edge from 〈u, v〉 since C is a C-set. Since this line splits C it cannot
separate u, v from x so it separates the edge from the arc 〈u, x, v〉.
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Consider now the edge 〈v, w〉 in C that has v but not u as an end-point. We have to show
that (u, x | v, w). By the uniqueness of the edge 〈u, v〉 there must exist some λ ∈ E that
splits C and separates v, w from x. Now λ cannot separate u, v from x so it must separate
x, u from v, w. We show similarly that (w̄, u | x, v) if 〈w̄, u〉 is the edge of C that has u but
not v as an end-point.

This is enough to prove that C ∪ {x} is a C-set with arc 〈u, x, v〉. 2

Proposition 5.13. Let C ⊂ W be a C-set and let x ∈ W \ C. Suppose that v ∈ C is such
that no line in E(C) separates x from v. Then (C \ {v}) ∪ {x} is a C-set and the ordering
must be that in which x replaces v.

Proof. Write C ′ = (C \ {v}) ∪ {x} and consider the cyclic ordering on C ′ obtained by just
replacing v ∈ C by x ∈ C ′ in the ordering on C. Let λ ∈ E split C into two arcs A and B
where v ∈ B. Then by definition A is an arc of C ′ and (B \ {v}) ∪ {x} is an arc of C ′. If
λ ∈ E does not split C then either it does not split C ′ or it separates x from C in which case
λ splits C ′ into {x} and C \ {v} which are arcs of C ′. So the first condition for C ′ to be a
C-set is satisfied.

We now have to show that C ′ satisfies the second condition. Let 〈u, v, w〉 be an arc of C
so that 〈u, x, w〉 is an arc of C ′. Then by Proposition 5.10 the condition that no line in E(C)
separates x from v means that there are just the two edges 〈u, v〉 and 〈v, w〉 that are not
separated from x by a line of E that splits C; that is, there is no z ∈ C such that (u, v | x, z)
or (v, w | x, z).

Clearly we only have to check that there are lines in E separating the “new” edges in C ′;
that is, those edges with x as an end-point. So let 〈a, a′〉 be an edge of C ′ for which x is not
an end-point then it is an edge of C.

If u is not an end-point of a, a′ we know, since C is a C-set, that (u, v | a, a′) and we
cannot have (u, v | x, a) so (u, v, x | a, a′). Similarly, if w is not an end-point of a, a′ we can
show (x, v, w | a, a′). Thus we have shown (u, x | a, a′) and (x, w | a, a′) and the fact that C ′

is a C-set follows easily.
Theorem 5.5 shows that the ordering must be the one obtained by replacing v by x. 2

In the next propositions we show that C-sets are not necessarily obtained by adding on one
point at a time.

Proposition 5.14. Let C be a C-set and let x, y ∈ W . Suppose that u, v ∈ C are such that
no line in E(C) separates x from u or separates y from v. Suppose also that (x, y | C). Let B
be an arc of C with end-points u and v such that the complementary arc A = C \B contains
at least one edge. Let C ′ = A ∪ 〈u, x, y, v〉. Then C ′ is a C-set.

Proof. The edges of C ′ are the edges of A, the edges of the arc 〈u, x, y, v〉 together with
the edges of C 〈ū, u〉 and 〈v, v̄〉 where ū, v̄ are the end-points of A. We will use Lemma 5.11
without comment.

Let λ ∈ E split C. Suppose λ splits A then it splits both C \{u} and C \{v} so it cannot
separate u from x or v from y. If it also splits B it separates u from v and hence u, x from
v, y thus it must split one edge in A and the edge 〈x, y〉. So it splits C ′ into two arcs. If it
does not split B then it does not separate u from v so it does not separate u, x from v, y and
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hence does not split 〈u, x, y, v〉 and so splits just two edges of C ′ ; they are in A. So it splits
C ′ into two arcs.

Suppose λ does not split A but splits both C \ {u} and C \ {v}. If it does not separate
u from v then it does not separate u, x from v, y so it could split C ′ into the two arcs A and
〈u, x, y, v〉. If it separates u from v it separates u, x from v, y and splits just two edges of C ′;
〈x, y〉 and either 〈ū, u〉 or 〈v, v̄〉. So it splits C ′ into two arcs.

The only other possibilities are that λ separates u from C \ {u} so it splits C \ {v} and
must split off one of the arcs u or 〈u, x〉 from C ′. There is a similar case with u and v
interchanged. Finally λ may not split C at all. So either it does not split C ′ or it splits off
one of the arcs 〈x, y〉 or {x} or {y} from C ′.

We now have to show that we can separate any two edges of C ′. By hypothesis we do
not have to worry about 〈x, y〉. Also (ū, u | v, v̄) implies (ū, u, x | y, v, v̄). Again, if 〈a, b〉 is
any edge of A, (ū, u | a, b) implies (ū, u, x | a, b) and (a, b | v, v̄) implies (a, b | y, v, v̄). This
proves the result. 2

The elements of B apart from u, v, if there are any, all lie “inside” the new C-set C ′ and are
bounded. So this proposition is a little misleading because we are going to be concerned only
with C ⊂ S and x, y ∈ S when this would contradict the “unboundedness” property. This is
partly proved in the following lemma.

Lemma 5.15. In the situation of Proposition 5.14 if B 6= 〈u, v〉 there is some z ∈ B, z 6= u,
z 6= v such that each edge of C ′ is separated from z by a line of E that splits C ′.

Proof. We take z ∈ B so that 〈u, z〉 is an edge of B. For any edge 〈a, b〉 of C we have
(a, b | u, z) so we only have to consider the “new edges” 〈x, y〉, 〈y, v〉 and 〈u, x〉. The first
follows from (x, y | C). The second follows because (u, z | v, v̄) implies (u, z | y, v, v̄) For the
last we take the edge 〈z, z̄〉 of B with z̄ 6= u and apply the same argument. This completes
the proof. 2

6. Maximal C-sets

We are going to consider here C-sets that are maximal under inclusion. If C is a maximal
C-set and x is any element of S \ C then clearly C ∪ {x} cannot be a C-set. Hence by
Propositions 5.10 and 5.12 there is a unique v ∈ C such that no line in E(C) separates x
from v.

Definition 6.1. Let C be a maximal C-set. We define FC : S → C by putting, for any
x ∈ D, FC(x) = v ∈ C where v is the unique element such that no line in E(C) separates x
from v.

Given x, y ∈ S, we say that x ∼ y if for each maximal C-set C we have FC(x) = FC(y).

Given two maximal C-sets C and C ′ we say that C ∼= C ′ if FC |′C, that is FC restricted to C ′,
is a monomorphism.

By Proposition 5.13 if FC(x) = v ∈ C then C ′ = (C \ {v}) ∪ {x} is a C-set. We are going to
use this often so we shall call it simply the “replacement property”. In the case of maximal
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C-sets we show that C ′ is again maximal and so the replacement process can be repeated and
the result is always a maximal C-set.

Proposition 6.2. The relation ∼ is an equivalence relation and each equivalence class is a
T-set.

Proof. The fact that ∼ is an equivalence relation follows immediately from the way it is
defined.

Let T be an equivalence class. Each element of a maximal C-set must belong to a different
equivalence class, since the cyclic ordering on a C-set is unique. Thus T contains no C-set
and thus by Lemma 5.4 and Definition 4.1 T is a T-set. 2

We have already defined E(C) when C is a C-set but we repeat it here to emphasise that
E(T ) where T is a T-set is defined differently.

Definition 6.3. For each C-set C ∈ S we define E(C) ⊆ E to be those lines that split C
into two arcs each of which contains an edge of C.

For each T-set we define E(T ) ⊂ E to be those lines that split T .

Note that E(C) is the set of lines that determines uniquely the structure of a C-set on C.
The projection PE(C) defined by restricting the elements of W to E(C) (recall that these
elements are defined as maps from E to {−1, +1}) is an isomorphism when restricted to C
and preserves all the separation properties of C.

Proposition 6.4. Let C be a C-set and let x ∈ S. Then E(C) and E([x]) are disjoint.

Proof. Suppose that λ ∈ E([x]) so λ separates x from y where FC(x) = FC(y) = v ∈ C.
We may suppose that λ separates x from y, v. By definition of FC this means that λ cannot
split C \ {v}.

Now consider C ′ = (C \ {v}) ∪ {y} which is a C-set by the replacement property. Since
C \ {v} = C ′ \ {y} the defining property for FC(y) = v that no line in E can separate y from
v and also split C \ {v} tells us that FC′(v) = y.

Further since any line in E(C) splits C \ {v} and hence cannot separate x from v it
also belongs to E(C ′). By the symmetry we have just pointed out we also deduce that
E(C ′) ⊂ E(C). Hence E(C) = E(C ′). So we may assume y = v. However in this case we
know that λ does not split C \ {v} and so cannot belong to E(C) which is what we wanted
to prove. 2

Proposition 5.14 and Lemma 5.11 when applied to maximal C-sets have very strong conse-
quences. For example, they imply that ∼= is an equivalence relation. They also imply that
replacement can be carried out repeatedly and in any order and the result is still a maximal
C-set. The crucial result is contained in the next proposition.

Proposition 6.5. Let C ⊂ S be a maximal C-set and suppose that x, y ∈ S where FC(x) = u,
FC(y) = v and u 6= v. Then no line in E separates x, y from C.



A. West: Unbounded Regions in an Arrangement of Lines in the Plane 149

Proof. Let C ⊂ S be a maximal C-set and suppose (x, y | C).
If 〈u, v〉 is an edge of C we appeal to Proposition 5.14 which says that C ∪ {x, y} is a

C-set. This would contradict the maximality of C.
If 〈u, v〉 is not an edge of C we appeal to the same proposition and Lemma 5.11 which

would contradict the unboundedness property. We deduce that such a line does not exist.
Hence the result. 2

Proposition 6.6. Let x, y ∈ S and suppose [x] 6= [y]. Then E([x]) and E([y]) are disjoint.

Proof. Since [x] 6= [y] there is some maximal C-set C so that FC(x) = u 6= v = FC(y).
Now suppose λ ∈ E splits both [x] and [y]. Then we may suppose that x, y are chosen so
that λ separates x, y from u, v. Proposition 6.5 says that this is impossible. This proves the
result. 2

Proposition 6.7. Let C be a maximal C-set and let D∗ ⊂ S be such that FC restricted to
D∗ is a monomorphism with FC(D∗) = D. Define C∗ = (C \D)∪D∗. Then C∗ is a maximal
C-set, E(C) = E(C∗) and FC ◦ FC∗ = FC.

Proof. Let λ ∈ E(C). Then λ splits C \ {v} for every v ∈ C. Hence it cannot separate x
from FC(x) for any x ∈ S. Hence λ separates x ∈ C∗ from y ∈ C∗ if and only if it separates
FC(x) ∈ C from FC(y) ∈ C. Since the property of being a C-set (and, by Theorem 5.5, the
cyclic ordering) is completely determined by the way it is separated we conclude that C∗ is
also a C-set and E(C) = E(C∗).

To show that C∗ is maximal we suppose on the contrary that C ′ is another C-set with
C∗ a proper subset of C ′. Then E(C) = E(C∗) ⊂ E(C ′) and the same argument shows that
we can replace C∗ by C in C ′ and obtain another C-set which contains C as a proper subset.
Since this is impossible we conclude that C∗ is also maximal.

Finally we observe that, given z ∈ S, the fact that there is no line in E(C) that separates
z from v defines FC(z) = v. But if x ∈ C∗ is given by FC(x) = v no line that belongs to
E(C) can separate x from v. So no line in E(C) = E(C∗) separates z from x which means
FC∗(z) = x. Hence FC ◦ FC∗ = FC as required. 2

Corollary 6.8. Let C ⊂ S and C ′ ⊂ S be C-sets such that FC |C′ is a monomorphism. Then
FC |C′ is an isomorphism with inverse FC′|C’ and E(C) = E(C ′).

Proof. Apply the above proposition with D∗ = C ′. Since C ′ ⊂ C∗ and C ′ is maximal
we deduce that C ′ = C∗. So FC |C′ is an isomorphism. The relation FC ◦ FC′ = FC when
restricted to C gives FC |C′ ◦ FC′|C = idC so FC′|C is the inverse of FC |C′ .

The fact that E(C) = E(C ′) is also given by the above proposition since C∗ = C ′. 2

Proposition 6.9. The relation ∼= is an equivalence relation between maximal C-sets. Fur-
ther C ∼= C ′ if and only if E(C) = E(C ′).

Proof. We see from the above Corollary 6.8 that C ∼= C ′ if and only if FC |C′ is an
isomorphism and then E(C) = E(C ′).
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It follows from Proposition 6.7 that if C∗ is also a maximal C-set then FC |C∗ ◦ FC∗|C′ =
FC |C′ . It follows immediately that ∼= is an equivalence relation.

Suppose that E(C) = E(C ′) but FC |C′ is not a monomorphism. Then there is some
x, y ∈ C ′ with FC(x) = FC(y) = v, but x 6= y. However there must be some line in E(C ′)
that separates x from y and so separates one of them, say x, from v. Since this line is in
E(C) also this is impossible. So FC |C′ is a monomorphism and C ∼= C ′. 2

In fact the condition E(C) = E(C ′) could have been taken as the definition of C ∼= C ′ which
perhaps throws some light on the meaning of this equivalence relation.

On the other hand the next result shows that if C 6∼= C ′ then E(C) and E(C ′) are disjoint.
We could also have proved that, in this case, FC |C′ is a constant map but this is not necessary
for our main theorem.

Proposition 6.10. Let C, C ′ ⊂ S be maximal C-sets where C 6∼= C ′. Then E(C) and E(C ′)
are disjoint.

Proof. Since C 6∼= C ′ neither FC nor FC′ is a monomorphism by Corollary 6.8. There
must be some v ∈ C such that D = F−1

C (v) contains at least two elements. Suppose that
C ′ \D also has more than one element. Then we can find edges 〈x, x′〉 and 〈y, y′〉 of C ′ which
have no common end-point such that x, y ∈ D and x′, y′ /∈ D. There exists λ ∈ E(C ′) that
separates these edges and we may suppose that λ separates x, x′, v from y, y′. Then λ cannot
split C \ {v}.

Suppose it separates x, x′, v from y, y′, C \ {v}. Then we can put FC(x′) = u 6= v and λ
separates x′ from u so it cannot split C \ {u} either. This is impossible so we conclude that
λ does not split C but separates x, x′, C from y, y′. We can then apply Proposition 6.5 and
get a contradiction. We conclude that C ′ \D has at most one element.

Now any line in E(C) ∩ E(C ′) would have to split D and at the same time it must not
separate any x ∈ D from FC(x) = v. Clearly this is impossible so E(C) ∩ E(C ′) = ∅. 2

Theorem 6.11. Let W be the regions for an arrangement of a set E of lines in dimension
2 and let S ⊂ W have the “unboundedness property”. Then ]S ≤ 2× ]E.

Proof. For each x ∈ S we know from Proposition 6.2 that [x] is a T-set and has the structure
of a connected tree. We take in each equivalence class a “base point” a ∈ [x] which is just
any element which is the end-point of only one edge. If the equivalence class only contains
one point we let a be that point. Thus T = [x] \ {a} is either empty or is a T-set. Let T be
the collection of all these non-empty T-sets and let D be the set of all the chosen base points.
Associated with T ∈ T is the set E ′(T ) = E([x]) ⊂ E. By Proposition 6.6, if T, T ′ ∈ T and
T 6= T ′ then E ′(T ) and E ′(T ′) are disjoint. Further Proposition 4.3 tells us that ]T ≤ ]E ′(T )

Now consider an equivalence class [C] of maximal C-sets. By the replacement property
given by Proposition 6.7 we can choose a representative of each equivalence class that lies
in D. Let C be the set of these representatives. Then if C ∈ C and T ∈ T we know from
Proposition 6.4 that E(C) and E ′(T ) are disjoint. Also if C, C ′ ∈ C and C 6= C ′ Proposition
6.10 tells us that E(C) and E(C ′) are disjoint. Further Lemma 5.7 says that ]C ≤ 2×]E(C).
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Every element of S occurs either as an element of some T ∈ T or as an element of D and
hence as an element of some C ∈ C so clearly

]S ≤
∑
S∈C

]C +
∑
T∈T

]T .

Also ⋃
C∈C

E(C) ∪
⋃
T∈T

E(T ) ⊆ E.

We noted above that the sets E(C) for C ∈ C and the sets E(T ) for T ∈ T are all disjoint,
consequently ∑

C∈C

]E(C) +
∑
T∈T

]E(T ) ≤ ]E.

So we obtain

]S ≤
∑
S∈C

]C +
∑
T∈T

]T ≤ 2×
( ∑

C∈C

]E(C)
)

+
∑
T∈T

]E(T ) ≤ 2× ]E.

This completes the proof of the theorem. 2

7. Higher Codimensions

It is clear that the majority of the results we have obtained do not really depend on the fact
that E is a set of lines in general position in the plane and that the elements of W correspond
to the region in the complement of the union Σ of these planes. They depend only on the
fact that each element of E corresponds to a subdivision of W into two subsets and on the
corresponding subdivisions of S ⊂ W .

This can be axiomatised and extended to higher codimensions as follows. We let K =
{−1, +1} and let Pr(E) be the collection of all subsets of E with r elements. For any χ ⊂ E
we let Pχ : KE → Kχ denote the map ϕ 7→ ϕ|χ.

Definition 7.1. Given a set E, an abstract arrangement of E in dimension d is a subset
W ⊆ KE satisfying the following axioms if d ≤ ]E:

(1) for all ω ∈ W , there exists v ∈ Pd(E) such that Pvω
′ = Pvω implies that ω′ ∈ W ;

(2) for all v ∈ Pd(E) there exists θ(v) ∈ KE\v such that PE\vω = θ(u) implies that ω ∈ W ;

(3) (the simplex axiom) for all σ ∈ Pd+1(E) and all ω ∈ W there exists i ∈ σ such that
Piω = Piθ(σ \ {i});

(4) (the betweenness axiom) for any λ ∈ Pd−1(E) any three distinct elements in E \ λ can
be labelled i, j, k so that if we write vi = λ ∪ {i}, vj = λ ∪ {j} and vk = λ ∪ {k} then

Piθ(vj) = Piθ(vk),

Pjθ(vi) = −Pjθ(vk),

Pkθ(vi) = Pkθ(vj).

If ]E ≤ d we put W = KE.
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The idea is that E represents a set of hyperplanes in general position in Rd so that v ∈ Pd(E)
represents a vertex that is the intersection of d hyperplanes. Similarly λ ∈ Pd−1(E) represents
a line and so on. The definition can be expressed entirely in terms of the correspondence
v ∈ Pm(E) 7→ θ(v) ∈ KE\v that we shall call the vertex map.

We define an element ω ∈ W to be unbounded if −ω ∈ W also. The concept of a
homotopy is represented by a finite sequence of elementary modifications which are defined
as follows.

Definition 7.2. Let W and W ′ be two abstract arrangements of E in d dimensions with
vertex maps θ and θ′. Then W ′ is an elementary modification of W in either of the following
two situations.

(1) There is some σ ∈ Pd+1(E) such that a unique ω ∈ W satisfies Piω = θ((E \ σ) ∪ {i})
for all i ∈ σ and W \ {ω} = W ′ \ {ω′} where ω′ ∈ W ′ is defined by Pjω

′ = Pjω if j /∈ σ
and Piω

′ = −Piω if i ∈ σ.

(2) There is some ω ∈ W such that a unique v ∈ Pd(E) satisfies PE\{v}ω = θ(v) and
W \ {ω} = W ′ \ {ω′} where ω′ ∈ W ′ is defined by Pjω

′ = −Pjω if j /∈ v and
Piω

′ = Piω if i ∈ v.

Definition 7.3. Given S ⊂ W the equivalence relation ∼S is generated by W ∼S W ′ when
W ′ is an elementary modification of W and S ⊂ W ∩W ′.

Then Conjecture 2.2 has an abstract version which should be easier to prove.

Conjecture 7.4. Let E be a set with m elements and let W be an abstract arrangement of
E in d dimensions. Suppose S ⊂ W has the unboundedness property: for all ω ∈ S there
exists W ′ ∼S W such that ω,−ω ∈ W ′. Then ]S ≤ γ(m, d).

The author is grateful to Ilda da Silva for drawing his attention to the fact that the ideas of
Definitions 7.1 and 7.2 are equivalent to ideas in [1] and results proved there could well be
useful in proving this conjecture.

It is not too difficult to prove directly from the axioms in Definition 7.1 that γ(m, d) =
1 +

(
m
1

)
+

(
m
2

)
+ · · ·+

(
m
d

)
−

(
m−1

d

)
is the number of elements in W ∩ (−W ).

These axioms enable one to generalise many of the results of this paper to the abstract
situation in d dimensions. For instance Lemma 3.4 generalises. It is possible to generalise
Proposition 5.8. We need to replace the idea of a C-set by a set which has a structure
representing a piece-wise linear representation of Sd−1 compatible in some way with the
structure of the abstract arrangement. It does seem that Proposition 5.8 contains the essential
information about the effect of the unboundedness property so some sort of generalisation of
this proposition is going to be necessary.

It is not clear how this should be done but it is clear that some aspect of homology will
be involved. We need to do it in such a way that we obtain a generalisation of Propositions
6.5, 6.6 and 6.10.

Note however that, since γ(r, d) + γ(m − r, d) ≤ γ(m, d), we only have to consider the
situation where the problem cannot be reduced to the case when S = S1∪S2 and E1∩E2 = ∅
where there are enough lines in E1 ⊂ E to separate any two elements of S1 and enough lines
in E2 ⊂ E to separate any two elements of S2.
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