Zero-Dimensional Pairs

Driss Karim

Department of Mathematics, Faculty of Sciences Semlalia P. O. Box 2390 Marrakech, Morocco e-mail: ikarim@ucam.ac.ma

Abstract. If $\{(R_i, T_i)\}_{i=1}^n$ is a finite family of zero-dimensional pairs, then $(\prod_{i=1}^n R_i, \prod_{i=1}^n T_i)$ is zero-dimensional pair but this result fails for an infinite family of zero-dimensional pairs. We give necessary and sufficient conditions in order that an infinite product $(\prod_{\alpha \in A} R_\alpha, \prod_{\alpha \in A} T_\alpha)$ of zero-dimensional pairs $\{(R_\alpha, T_\alpha)\}_{\alpha \in A}$ is zero-dimensional pair.

1. Introduction

All rings considered in this paper are assumed to be commutative and unitary. If R is a subring of a ring S, we assume that the unity element of S belongs to R, and hence is the unity of R. We use the term dimension of R, denoted dimR, to refer to the Krull dimension of R. Thus dim R is the non negative integer n if there exists a chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of proper prime ideals of R, but no longer such chain; if there is no upper bound on the lengths of such chains, we write $\dim R = \infty$. This paper is concerned with zero-dimensional rings in which each proper prime ideal is maximal, and zero-dimensional pairs. We frequently use the fact that dimension is preserved under integral extensions (cf. [1, (11.8)]). In particular, an integral extension ring of a zero-dimensional ring is zero-dimensional. Let R be a ring, Ris said to be hereditarily zero-dimensional if each subring of R is zero-dimensional. We also consider this zero-dimensionality condition in a relative context: if R is a subring of T, we say that (R,T) is a zero-dimensional pair if each intermediate ring between R and T is zerodimensional. R. Gilmer and W. Heinzer have given in [4, Theorem 4.9], the necessary and sufficient conditions under what an arbitrary product of infinite hereditarily zero-dimensional rings is hereditary zero-dimensional. Since the notion of zero-dimensional pair is more general than the hereditarily zero-dimensionality, then one may ask:

0138-4821/93 2.50 © 2003 Heldermann Verlag

(Q) Let $\{(R_{\alpha}, T_{\alpha})\}_{\alpha \in A}$ be a family of zero-dimensional pairs. Under what conditions is $(\prod_{\alpha \in A} R_{\alpha}, \prod_{\alpha \in A} T_{\alpha})$ a zero-dimensional pair?

In Section 2, we give necessary and sufficient conditions to question (Q).

2. Zero-dimensional pairs

The main purpose of this section is to give an answer to question (**Q**). But first, we show that the homomorphic image of a zero-dimensional pair is a zero-dimensional pair and a finite product $(\prod_{i=1}^{n} R_i, \prod_{i=1}^{n} T_i)$ is a zero-dimensional pair if and only if each (R_i, T_i) is a zero-dimensional pair. Moreover, R. Gilmer and W. Heinzer have established that if dimR =0, then (R, T) is a zero-dimensional pair if and only if $R \hookrightarrow T$ is an integral extension [4, Corollary 4.2]. Before starting, we recall the polynomial over infinite product of rings. Let $\{R_{\alpha}\}_{\alpha \in A}$ be a family of rings and X be an indeterminate over $\prod_{\alpha \in A} R_{\alpha}$. Given $F \in$ $(\prod_{\alpha \in A} R_{\alpha})[X]$, then $F = f_n X^n + \cdots + f_1 X + f_0$, such that $f_i \in \prod_{\alpha \in A} R_{\alpha}$, as a function, for $i = 1, \ldots, n$; $f_i \in \prod_{\alpha \in A} R_{\alpha}$ means that $f_i(\alpha) \in R_{\alpha}$ for each $\alpha \in A$, for any $i \in \{1, \ldots, n\}$. We denote $F_{\alpha} = f_n(\alpha) X^n + \cdots + f_1(\alpha) X + f_0(\alpha) \in R_{\alpha}[X]$, for this reason we can regard each polynomial over an infinite product as $F = \{F_{\alpha}\}_{\alpha \in A} \in \prod_{\alpha \in A} R_{\alpha}[X]$.

Proposition 2.1. Let $\{R_i\}_{i=1}^n$ and $\{T_i\}_{i=1}^n$ be two finite families of rings. Then $(\prod_{i=1}^n R_i, \prod_{i=1}^n T_i)$ is a zero-dimensional pair if and only if each (R_i, T_i) is a zero-dimensional pair.

Proof. It is well-known that $Spec(\prod_{i=1}^{n} T_i) = \{\prod_{i=1}^{n} S_i : S_{j_0} = M_{j_0} \in Spec(T_{j_0}) \text{ and } S_i = T_i \text{ for each } i \in \{1, \ldots, n\} \setminus \{j_0\}\}$. Since each (R_i, T_i) is a zero-dimensional pair, according to [2, Result 1.6], $\prod_{i=1}^{n} T_i$ is an integral extension of $\prod_{i=1}^{n} R_i$. Moreover, $\dim \prod_{i=1}^{n} T_i = \dim \prod_{i=1}^{n} R_i = 0$; on account of [4, Corollary 4.2], $(\prod_{i=1}^{n} R_i, \prod_{i=1}^{n} T_i)$ is a zero-dimensional pair. Conversely, T_i is integral over R_i for each $i = 1, \ldots, n$; because $\prod_{i=1}^{n} T_i$ is integral over $\prod_{i=1}^{n} R_i$ (cf. [2, Result 1.6]) and $\dim \prod_{i=1}^{n} R_i = 0$ imply $\dim R_i = 0$. According to [4, Corollary 4.2], each (R_i, T_i) is a zero-dimensional pair.

On the other hand, Proposition 2.1 fails for an infinite family of zero-dimensional rings as shows the next example.

Example 2.2. Let \mathbb{Q} be the field of rational numbers and p be a prime integer. Let ξ_i be a primitive p^i -th root of 1 for each $i \in \mathbb{Z}^+$. We have $(\mathbb{Q}, \mathbb{Q}(\xi_i))$ is zero-dimensional pair for each $i \in \mathbb{Z}^+$. Nevertheless, $(\prod_{i \in \mathbb{N}^*} \mathbb{Q}, \prod_{i \in \mathbb{N}^*} \mathbb{Q}(\xi_i))$ is not zero-dimensional pair. In fact, let $\xi = \{\xi_i\}_{i \in \mathbb{N}^*}$ be an element of $\prod_{i \in \mathbb{N}^*} \mathbb{Q}(\xi_i)$. Since there exists no monic polynomial of $\prod_{i \in \mathbb{N}^*} \mathbb{Q}[X]$ that vanishes ξ , we have ξ is transcendental over $\prod_{i \in \mathbb{N}^*} \mathbb{Q}$.

Let T be an integral extension of a ring R, and x be an element of T. We denote $I_x = \{f \in R[X] : f \text{ is a monic polynomial which vanishes on } x\}$. We use also $degI_x$ to denote $Min\{deg.f : f \in I_x\}$, where deg.f is the degree of f. Next, we give our main result in this section which answers question (Q). Initially we note that if $R = \prod_{\alpha \in A} R_{\alpha}$ is the direct product of zero-dimensional rings R_{α} , by [5, Proposition 2.5], R need not be zero-dimensional.

Theorem 2.3. Let $\{(R_{\alpha}, T_{\alpha})\}_{\alpha \in A}$ be a family of zero-dimensional pairs. If $\dim \prod_{\alpha \in A} T_{\alpha} = 0$, then the following statements are equivalent.

- (i) $(\prod_{\alpha \in A} R_{\alpha}, \prod_{\alpha \in A} T_{\alpha})$ is a zero-dimensional pair;
- (ii) For each $x = \{x_{\alpha}\}_{\alpha \in A} \in \prod_{\alpha \in A} T_{\alpha}$, there exists $k_x \in \mathbb{N}^*$ such that $\{\alpha \in A : degI_{x_{\alpha}} > k_x\}$ is finite.

Before proving this theorem, we establish the following lemma.

Lemma 2.4. Let R be a subring of a ring T and $\varphi : T \longrightarrow T$ be a ring-homomorphism. If (R,T) is a zero-dimensional pair, then so is $(\varphi(R), \varphi(T))$.

Proof. Let S be a ring such that $\varphi(R) \subseteq S \subseteq \varphi(T)$. Let A be the inverse image of S by φ , so $R \subseteq A \subseteq T$. Since $\dim(S) \leq \dim(A) = 0$, then $\dim(S) = 0$.

Proof of Theorem 2.3. (i) \Longrightarrow (ii). Let $x = \{x_{\alpha}\}_{\alpha \in A} \in \prod_{\alpha \in A} T_{\alpha}$, then x is integral over $\prod_{\alpha \in A} R_{\alpha}$, i.e., there exists a monic polynomial $G = \{f_{\alpha}\}_{\alpha \in A} \in (\prod_{\alpha \in A} R_{\alpha})[X]$ such that G(x) = 0; and deg. $G = k \in \mathbb{N}^*$, then deg $I_{x_{\alpha}} \leq k$ for each $\alpha \in A$.

(ii) \Longrightarrow (i). Let $x = \{x_{\alpha}\}_{\alpha \in A} \in \prod_{\alpha \in A} T_{\alpha}$, since every T_{α} is integral over R_{α} there exists $f_{\alpha} \in I_{x_{\alpha}}$ such that $f_{\alpha}(x_{\alpha}) = 0$, for each $\alpha \in A$. We denote $B = \{\alpha \in A : degI_{x_{\alpha}} > k_x\} = \{\alpha_1, \ldots, \alpha_n\};$ we put deg. $f_{\alpha} = n_{\alpha}$ for each $\alpha \in A$. Let $F = \{f_{\alpha}\}_{\alpha \in A} \in (\prod_{\alpha \in A} R_{\alpha}[X])$ and $s = Sup\{deg.f_{\alpha} : \alpha \in A\}$. Since B is finite, s is a finite integer. Let $g_{\alpha} = X^{s-n_{\alpha}}f_{\alpha}, G = \{g_{\alpha}\}_{\alpha \in A} \in \prod_{\alpha \in A} (R_{\alpha}[X])$ be a monic polynomial of degree equal to s with G(x) = 0. Therefore, x is integral over $\prod_{\alpha \in A} R_{\alpha}$. On the other hand, $\dim_{\alpha \in A} R_{\alpha} = 0$ [3, Theorem 3]. By [4, Corollary 4.2], $(\prod_{\alpha \in A} R_{\alpha}, \prod_{\alpha \in A} T_{\alpha})$ is a zero-dimensional pair, and the proof is complete.

Example 2.5. Let $\{p_i\}_{i\in\mathbb{N}^*}$ be a family of prime positive integers, X be an indeterminate and m be a positive integer. We consider $R_i = (\mathbb{Z}/p_i\mathbb{Z})^i \otimes_{\mathbb{Z}/p_i\mathbb{Z}} GF(p_i^2)(X)$, the tensor product, where $GF(p_i^2)$ is the finite field with p_i^2 elements, for each $i \in \mathbb{Z}^+$; and $T_i = (\mathbb{Z}/p_i\mathbb{Z})^i \otimes_{\mathbb{Z}/p_i\mathbb{Z}} GF(p_i^{2m})(X)$, where $GF(p_i^{2m})$ is the finite field with p_i^{2m} elements. According to [8, Theorem 3.7], dim $R_i = \dim T_i = 0$. Since $GF(p_i^2)(X) \hookrightarrow GF(p_i^{2m})(X)$ is an algebraic extension, the ring T_i is integral over R_i for each $i \in \mathbb{Z}^+$. We remark that $GF(p_i^{2m}) = GF(p_i^2)(\xi_i)$, where ξ_i is a generator of the cyclic group $GF(p_i^{2m}) \setminus (0)$ [7, Théorème 2.2, page 75], for each $i \in \mathbb{Z}^+$; and we have deg $I_x \leq m$ for each $x \in T_i$. We see via Theorem 2.3, that $(\prod_{i\in\mathbb{N}^*} R_i, \prod_{i\in\mathbb{N}^*} T_i)$ is a zero-dimensional pair.

If $x \in N(R)$, we denote by $\eta(x)$ the index of nilpotency of x – that is, $\eta(x) = k$ if $x^k = 0$ but $x^{k-1} \neq 0$. We define $\eta(R)$ to be $\sup\{\eta(x) : x \in N(R)\}$; if the set $\{\eta(x) : x \in N(R)\}$ is unbounded, then we write $\eta(R) = \infty$. From [4, Theorem 3.4], we have $\dim \prod_{\alpha \in A} T_\alpha = 0$ if and only if $\{\alpha \in A : \eta(T_\alpha) > k\}$ is finite for some $k \in \mathbb{Z}^+$, where $\{T_\alpha\}_{\alpha \in A}$ is a family of zero-dimensional rings.

Proposition 2.6. Let $\{R_{\alpha}\}_{\alpha \in A}$ and $\{T_{\alpha}\}_{\alpha \in A}$ be two infinite families of rings such that $R_{\alpha} \hookrightarrow T_{\alpha}$ is a ring extension and for each α and each maximal ideal M_{α} of T_{α} , T_{α}/M_{α} is a finite separable algebraic field extension of $R_{\alpha}/\mathfrak{m}_{\alpha}$, where $\mathfrak{m}_{\alpha} = M_{\alpha} \cap R_{\alpha}$. If $(\prod_{\alpha \in A} R_{\alpha}, \prod_{\alpha \in A} T_{\alpha})$ is a zero-dimensional pair, then each (R_{α}, T_{α}) is a zero-dimensional pair and there exists $k \in \mathbb{Z}^+$ such that $\{\alpha \in A : \text{ there exists } M_{\alpha} \in Spec(T_{\alpha}) \text{ with } [T_{\alpha}/M_{\alpha} : R_{\alpha}/\mathfrak{m}_{\alpha}] > k\}$ is a finite set.

Proof. Since $(R_{\alpha}, T_{\alpha}) = (p_{\alpha}(\prod_{\alpha \in A} R_{\alpha}), p_{\alpha}(\prod_{\alpha \in A} T_{\alpha}))$, where $p_{\alpha} : \prod_{\alpha \in A} R_{\alpha} \to R_{\alpha}$ is the canonical projection homomorphism, by Lemma 2.4, (R_{α}, T_{α}) is a zero-dimensional pair, for each $\alpha \in A$. Assume that for each $k \in \mathbb{Z}^+$ the set $\{\alpha \in A :$ there exists $M_{\alpha} \in Spec(T_{\alpha})$ with $[T_{\alpha}/M_{\alpha} : R_{\alpha}/\mathfrak{m}_{\alpha}] > k\}$ is infinite. Let $\{\alpha_i\}_{i\in\mathbb{Z}^+}$ be a countably infinite subset of A such that there exists $M_{\alpha_i} \in Spec(T_{\alpha_i})$ with $[T_{\alpha_i}/M_{\alpha_i} : R_{\alpha_i}/\mathfrak{m}_{\alpha_i}] > i$ for each $i \in \mathbb{Z}^+$. Set $L_i = T_{\alpha_i}/M_{\alpha_i}$ and $K_i = R_{\alpha_i}/\mathfrak{m}_{\alpha_i}$, then L_i is an algebraic extension of K_i . Since each L_i is separable of finite degree over K_i , by the Primitive Element Theorem [6, Theorem 5.6, page 55], there exists $x_i \in L_i$ such that $L_i = K_i(x_i)$ and hence $[K_i(x_i) : K_i] > i$ for each $i \in \mathbb{Z}^+$. It follows that $\prod_{i=1}^{\infty} K_i(x_i)$ is transcendental over $\prod_{i=1}^{\infty} K_i$, since there is no monic polynomial $f \in (\prod_{i=1}^{\infty} K_i)[X]$ such that f(x) = 0, where x is the element given by $\{x_i\}_{i=1}^{\infty}$, a contradiction with $(\prod_{i=1}^{\infty} R_i, \prod_{i=1}^{\infty} T_i)$ being a zero-dimensional pair.

Since the proof of the following corollary is the same as of Proposition 2.6, we omit it.

Corollary 2.7. Let $\{(R_{\alpha}, T_{\alpha})\}_{\alpha \in A}$ be a family of zero-dimensional pairs. If $(\prod_{\alpha \in A} R_{\alpha}, \prod_{\alpha \in A} T_{\alpha})$ is a zero-dimensional pair, then there exists $k \in \mathbb{Z}^+$ such that $\{\alpha \in A : \text{there exists } x_{\alpha} \in T_{\alpha} \text{ and there exists } M_{\alpha} \in Spec(T_{\alpha}) \text{ with } [R_{\alpha}/M_{\alpha} \cap R_{\alpha}(\overline{x}_{\alpha}) : R_{\alpha}/M_{\alpha} \cap R_{\alpha}] > k\}$ is a finite set.

References

- [1] Gilmer, R.: *Multiplicative Ideal Theory*. Dekker, New York 1972. Zbl 0248.13001
- Gilmer, R.: Zero-dimensional subrings of commutative rings. Abelian groups and modules (Padova 1994), 209–219, Math. Appl. 343, Kluwer Acad. Publ., Dordrecht 1995.

- [3] Gilmer, R.; Heinzer, W.: On the imbedding of a direct product into a zero-dimensional commutative ring. Proc. Amer. Math. Soc. 106 (1989), 631–637.
 Zbl 0709.13003
- [4] Gilmer, R.; Heinzer, W.: Products of commutative rings and zero-dimensionality. Trans. Amer. Math. Soc. 331 (1992), 662–680.
 Zbl 0760.13005
- [5] Maroscia, P.: Sur les anneaux de dimension zéro. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 (1974), 451–459.
 Zbl 0318.13011
- [6] Morandi, P.: Field and Galois Theory. GTM 167, Springer 1996. Zbl 0865.12001
- [7] Malliavin, M.-P.: Algèbre commutative, applications en géométrie et théorie des nombres. Masson 1985.
 Zbl 0584.13001
- [8] Wadsworth, A.: The Krull dimension of tensor products of commutative algebras over a field. J. London Math. Soc. 19 (1979), 391–401.
 Zbl 0398.13008

Received October 1, 2001

Zbl 0859.13005