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Abstract. Let k be a perfect field, H a irreducible cocommutative Hopf k-algebra
and P (H) the space of primitive elements of H, R a k-algebra on which acts locally
finitely H and R#H the associated smash product. Assume that H is almost
solvable with P (H) finite-dimensional n and the sequences of divided powers are
all infinite. Then the Gelfand-Kirillov dimension of R#H is GK(R) + n.

1. Introduction

It is well known [7], that if δ is a derivation of an algebra R over a field k, then the Gelfand-
Kirillov dimension of the polynomial algebra R[θ, δ] is equal to GK(R) + 1, provided R
is δ-locally-finite. More generaly, if g is a finite-dimensional k-Lie algebra acting locally
finitely on R, then the Gelfand-Kirillov dimension of the differential operator ring R#U(g)
is GK(R) + dimk(g) where U(g) is the enveloping algebra of g (see [5, Corollary 1.5]). The
main objective of this note is to present a generalization of the above mentioned result to
the case of a irreducible cocommutative Hopf algebra action. However, we assume that H is
amost solvable. Note that U(g) is a irreducible cocommutative Hopf algebra.
The Gelfand-Kirillov dimension of R (see [6] for the basic material), denoted GK(R), is

defined as follows (here V l is the linear span of all products v1v2 · · · vl with v1, v2, . . . , vl ∈ V ):

GK(R) = sup{lim sup
n→∞

(logndimkV
n : V is a finite-dimensional subspace of R)}.

Throughout the paper, k is a field, H is a Hopf k-algebra with comultiplication ∆, counit ε and
antipode s, and R is an H-module algebra (the action of h ∈ H shall be denoted by h.r), i.e.
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an associative k-algebra with identity which is a left H-module such that the multiplication
in R is an H-module map, i.e., h.(ab) =

∑
(h)(h1.a)(h2.b) for all h ∈ H and a, b ∈ R. We

denote by R#H the associated smash product. Both R and H are naturally embedded in
R#H. The multiplication in R#H is defined by the rule (a#h)(b#g) =

∑
(h) a(h1.b)#h2g.

For further information on Hopf algebras and the ring R#H, the reader is referred to [1,
8 and 10]. We denote by P (H) the space of primitive elements of H. We say that H is
cocommutative if ∆ = τ ◦ ∆ where τ is the usual twist map τ(a ⊗ b) = b ⊗ a. By [8,
Corollary 1.5.12], the antipode of a cocommutative Hopf algebra is involutive. We say that
H is irreducible if any two nonzero subcoalgebras of H have nonzero intersection.
If H is irreducible cocommutative, then so is any subHopfalgebra of H; if the character-

istic of k is 0, then H is the enveloping algebra of P (H).
Let X be an element of P (H). A sequence of divided powers over X of maximum

length l possibly infinite is a sequence X(0) = 1, X(1) = X, . . . , X(l) such that X(i)X(j) =(
i+ j
i

)
X(i+j) and ∆(X(j)) =

∑j
j′=0X

(j′) ⊗ X(j−j
′) for each i, j ≤ l. It follows routinely

from the counitary property that ε(X(l)) = 0 for l > 0. If k has characteristic 0, then
X(n) = Xn/n!.
If k is perfect and if H is irreducible with P (H) finite-dimensional n, then by [11, The-

orems 2, 3] and [12], H has a basis consisting of ordered monomials X1
(i1)X2

(i2) · · ·Xn
(in);

ij ∈ N; where (X1, X2, . . . Xn) is a basis for P (H).

Examples 1.1. (1) Let k be of characteristic 0, g a finite-dimensional k-Lie algebra of dimen-
sion n and H = U(g). Then H is a irreducible cocommutative Hopf algebra and P (H) = g.
Furthermore H has a basis consisting of ordered monomials X1

(i1)X2
(i2) · · ·Xn

(in); ij ∈ N as
above and the sequences of divided powers are all infinite.

(2) Let k be perfect, G an affine algebraic group over k of dimension n andH = hyp(G) the hy-
peralgebra of G. Then H is a irreducible cocommutative Hopf algebra and P (H) is the Lie al-
gebra of G. Furthermore H has a basis consisting of ordered monomials X1

(i1)X2
(i2) · · ·Xn

(in);
ij ∈ N as above and the sequences of divided powers are all infinite.

This paper accomplishes the following: Let k be perfect, H irreducible cocommutative with
P (H) finite-dimensional n and R H-locally finite. If the sequences of divided powers are all
infinite and if H is almost solvable, then GK(R#H) = GK(R) + n.

2. The main result

We consider H as a left H-module by the left adjoint action, that is h.h′ =
∑
(h) h1h

′s(h2).
We say that a subHopfalgebra N of H is normal in H if h.n ∈ N for all h ∈ H,n ∈ N . Let
N be a normal subHopfalgebra of H. There is a natural action of H on R#N defined by
h.(rn) =

∑
(h)(h1.r)(h2.n).

The bracket product in H is defined by

[x, y] =
∑

x,y

x1y1s(x2)s(y2) for x, y ∈ H.
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If I, J are subHopfalgebras of H, [I, J ] denotes the subalgebra of H generated by the elements
[x, y] with x ∈ I and y ∈ J ; if H is cocommutative, this is a subbialgebra of H.
We will say that I is central in H if [H, I] = k. Clearly, I is central in H if and only if

[x, y] = ε(x)ε(y) for all x ∈ H and y ∈ I. If I is central in H, then I is normal in H.
Let G be a connected abelian algebraic group, then G is central in G; so by [14, Corollary

3.4.15], hyp(G) is central in hyp(G); i.e., hyp(G) is a commutative Hopf algebra.
An ideal I of R is H-invariant if h.I ⊆ I for all h ∈ H. Any ideal of R#H is H-invariant.
We say that R is H-simple, if the only H-invariant ideals of R are (0) and R.
A proper H-invariant ideal Q of R is H-prime if, whenever I and J are H-invariant ideals

of R with IJ ⊆ Q then either I ⊆ Q or J ⊆ Q.
Any H-invariant prime ideal of R is H-prime. Let I ⊆ Q be H-invariant ideals of R. If

Q is H-prime, then Q/I is an H-prime ideal of R/I. We say that the ring R is H-prime if
the ideal (0) is H-prime.
If Q is an H-prime ideal of R, then R/Q is an H-prime ring. Any H-simple ring is

H-prime. The H-invariant prime ideals of R#H are precisely its prime ideals. If P is a
prime ideal of R#H then P ∩R is an H-prime ideal of R (see [4, Lemma 1.2]).
We say that R is H-locally finite if every element of R is contained in a finite-dimensional

H-stable subspace of R. If H acts trivially on R then R is H-locally finite; in particular,
if H is commutative, H is H-locally finite. If R and H are H-locally finite, then R#H is
H-locally finite. By [13, page 259], if p > 0 and if H is irreducible cocommutative with P (H)
finite-dimensional, then H is the union of its finite-dimensional normal subHopfalgebras; so
H is H-locally finite; hence any normal subHopfalgebra of H is H-locally finite. Clearly, R
is g-locally finite as in [5, section 1] if and only if R is U(g)-locally finite.

Lemma 2.1. Let G be a connected algebraic group acting rationally on R and H = hyp(G)
the hyperalgebra of G. Then R is H-locally finite.

Proof. Let a ∈ R. Since R is a rational G-module, there exists a finite dimensional G-stable
subspace V of R such that a ∈ V . By [14, Corollary 3.4.17], V is also H-stable. �

From now on k is perfect and H is irreducible cocommutative with P (H) finite-dimensional
n. So H has a basis consisting of ordered monomials X1

(i1)X2
(i2) · · ·Xn

(in); ij ∈ N; where
(X1, X2, . . . Xn) is a basis for P (H). This basis will be fixed in the remainder of the paper.
We will say that H is almost solvable if there exists a chain of subHopfalgebras

k = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn = H

of H such that for each i ≤ n, Hi−1 is normal in Hi and the monomials X1
(j1)X2

(j2) · · ·Xi
(ji);

ji ∈ N form a basis for Hi.
Thus H commutative implies H almost solvable; in particular, if dimk(P (H)) = 1, then

H is almost solvable. Let g be as in Examples 0.1 (1), then U(g) is almost solvable if g is
solvable in the usual sense. Let G be a connected affine agebraic group, then hyp(G) is amost
sovable.

Lemma 2.2. Let G be a connected affine algebraic group and H = hyp(G). If G is unipotent
then H is almost solvable.
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Proof. It is well known that G has a composition series

1 = G0 ⊂ G1 · · · ⊂ Gn−1 ⊂ Gn = G

where each Gi is normal in G and each Gi/Gi−1 is isomorphic to Ga, the one-dimensional
additive group. Set Hi = hyp(Gi), then H0 = k and Hn = H. By [14, Corollary 3.4.15],
each Hi is a normal subHopfalgebra of H. Since P (H) is nilpotent, there exists an element
Xi ∈ P (Hi)−P (Hi−1) such that (X1, X2, . . . , Xi−1, Xi) is a basis for P (Hi). By [11, Theorems
2, 3] and [12], the monomials X1

(j1)X2
(j2) · · ·Xi

(ji); ji ∈ N form a basis for Hi, where the
Xi
(j) are infinite sequences of divided powers over Xi. �

We are now ready to prove the main result of the paper.

Theorem 2.3. Let k be a perfect field, H a irreducible cocommutative almost solvable Hopf
algebra with P (H) finite-dimensional n and R an H-locally finite H-module algebra. Assume
that the sequences of divided powers are all infinite. Then

GK(R#H) = GK(R) + n.

Proof. Suppose that n = 1 and set g = P (H). So H has a basis consisting of or-
dered monomials X(l), where X is a k-basis of g. Note that R is g-locally finite. By [7],
GK(R#U(g)) = GK(R) + 1. So GK(R#H) ≥ GK(R) + 1, since R#U(g) is a subalgebra
of R#H. For the reverse inequality, let V be a finite-dimensional subspace of R#H. Using
the fact that R is H-locally finite, we see that

V ⊆ W +WX(1) +WX(2) + · · ·+WX(m)

for some m and some finite-dimensional H-invariant subspace W of R. It is not difficult to
show that

V n ⊆ W n +W nX +W nX2 + · · ·+W nXn +W nX(2) +W nX(3) + · · ·+W nX(nm).

So dimkV
n ≤ (n+ nm)(dimkW n) and we get

logn(dimkV
n) ≤ logn(dimkW

n) + logn(n+ nm) = logn(dimkW
n) + 1 + logn(1 +m).

This yields the reverse inequality GK(R#H) ≤ GK(R) + 1.
For the general case, let

k = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hn = H

be a chain of subHopfalgebras of H such that for each i ≤ n, Hi−1 is normal in Hi and the
monomials X1

(j1)X2
(j2) · · ·Xi

(ji); ji ∈ N form a basis for Hi. Set Ri = R#Hi; so R0 = R
and Rn = R#H. Clearly, Ri+1 = Ri#(k < Xi+1 >) for each i ≤ n− 1, where k < Xi+1 > is

the divided power Hopf algebra spanned by the monomials X
(j)
i+1, this is a subHopfalgebra of

Hi+1. Now each Ri is k < Xi+1 >-locally finite, since each Ri is Hi+1-locally finite. On the
other hand, the space of primitive elements of k < Xi+1 > is the k-vector subspace kXi+1 of
Hi+1. By the previous paragraph, GK(Ri+1) = GK(Ri) + 1 and the result follows. �



T. Guédénon: The Gelfand-Kirillov Dimension of Rings with Hopf Algebra Action 307

Theorem 1.3 may be applied in the following circumstances:
- k is of characteristic 0, g is a finite-dimensional solvable k-Lie algebra, H is the envelop-

ing algebra of g and R is a g-locally finite U(g)-module algebra.
- k is perfect, G is a connected unipotent affine algebraic group acting rationally on R

and H is the hyperalgebra of G.
- k is perfect, G is a connected abelian affine algebraic group acting rationally on R and

H is the hyperalgebra of G.
- k is perfect, H is a divided powers Hopf algebra (with dimP (H) = 1) acting on R such

that R is an H-locally finite H-module algebra.
As an application of Theorem 1.3 we shall show some results concerning incomparability

and prime length. In the remainder of this section, R will be noetherian of finite Gelfand-
Kirillov dimension and all the smash products are noetherian. We denote by dim the classical
Krull dimension and by H-dim its H-invariant version; i.e. the maximal length of a chain
of H-prime ideals of R. We have H-dim(R#H) = dim(R#H). If R is H-locally finite, the
H-prime ideals of R are prime [2, Proposition 1.3]; so H-dim(R) ≤ dim(R).

Corollary 2.4. Let k be a perfect field, H a irreducible cocommutative almost solvable Hopf
algebra with P (H) finite-dimensional n, R an H-locally finite H-module algebra and A =
R#H. Assume that the sequences of divided powers are all infinite. Let P be a prime ideal
of A such that P ∩R = 0. Then ht(P ) ≤ n. If R is H-simple, then dim(A) ≤ n.

Proof. Since R = R/(P ∩R) is a subalgebra of A/P , we have GK(R) ≤ GK(A/P ). Theorem
1.3 implies that GK(A) − GK(A/P ) ≤ n. By [6, Proposition 3.16], ht(P ) ≤ n. If R is H-
simple, ht(Q) ≤ n for any prime ideal Q of A. �

The next result bounds dim(R#H) in terms of H-dim(R). Although, the bound is surely not
sharp.

Proposition 2.5. Let k be a perfect field, H a irreducible cocommutative almost solvable
Hopf algebra with P (H) finite-dimensional n, R an H-locally finite H-module algebra and
A = R#H. Assume that the sequences of divided powers are all infinite. Suppose that P0 ⊂
P1 ⊂ · · · ⊂ Pn+1 is a strictly increasing chain of prime ideals of A, then P0 ∩ R ⊂ Pn+1 ∩ R
and dim(A) < (n+ 1)(H − dim(R) + 1).

Proof. Suppose that P0∩R = Pn+1∩R = I. By [4, Lemma 1.2], I is anH-prime ideal of R and
IA = AI is an ideal of A. By [2, Proposition 1.3], I is a prime ideal of R. One can show that
A/IA ' (R/I)#H. Set R̄ = R/I and Ā = A/IA. In Ā, we have a strictly increasing chain
of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn+1 of length n+ 1 such that P0 ∩ R̄ = Pn+1 ∩ R̄ = Ī = 0;
where Pi’s denote the natural images of Pi’s in Ā. It follows that ht(Pn+1) ≥ n + 1. By
Corollary 1.4, ht(Pn+1) ≤ n and we get a contradiction.
Let P0 ⊂ P1 ⊂ · · · ⊂ Ps be a strictly increasing chain of prime ideals of A. By the

preceding paragraph,

P0 ∩R ⊂ Pn+1 ∩R ⊂ P2(n+1) ∩R ⊂ P3(n+1) ∩R ⊂ · · ·

is a strictly increasing chain of H-invariant prime ideals of R. Since this chain can contain at
most (1+H-dim(R)) H-invariant prime ideals, we conclude that s < (n+1)(H-dim(R)+ 1).

�
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Proposition 1.5 may be applied to the smash product R#U(g), where k is of characteristic
0, R is noetherian of finite Gelfand-Kirillov dimension and g is a finite dimensional solvable
k-Lie algebra. For related work, see [3] and [9, Corollary 4.4].
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