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Abstract. A Gel’fand model for a finite group G is a complex representation of
G which is isomorphic to the direct sum of all the irreducible representation of G
(see [9]). Gel'fand models for the symmetric group and the linear group over a
finite field can be found in [2] and [8]. Using the same ideas as in [2], in this work
we describe a Gel’fand model for a Weyl group of type B,,. When K is a field of
characteristic zero and & is a Weyl group of type B,,, we give a finite dimensional
K-subspace N of the polynomial ring K [z1,... ,z,]. If K is the field of complex
numbers, then N provides a Gel’fand model for &.

The space N can be defined in a more general way (see [3]), obtained as the
zeros of certain differential operators (symmetrical operators) in the Weyl algebra.
However, in the case of a group G of type D,, (n even), N is not a Gel’fand model

for GG.

1. Symmetrical operators and the space N

Let K be a field of characteristic zero. Fix a natural number n. We will denote by A the
polynomial ring K [z1, ... ,z,| and by W the Weyl algebra of K-linear differential operators
K (xqy,... ,2,,01,...,0,) generated by the multiplication operators z; and the differential

operators 0; = Ir. where ¢ = 1,... ,n. The angular brackets are used to indicate that the
L

generators do not commute, indeed, 0;x; = 1 4+ x;0; for each i = 1,... ,n. We will make use
of some basic properties of the algebra W, which are proved in [4].

Let I, = {1,2,... ,n} and M be the set of functions « : I,, = Ny, where Ny denotes the set
of non-negative integers. Such a function is called a multiinder, and we put a; = « (¢) and
a=(ag,...,aqp).
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For two multiindexes «, 8 in M we will use the following notations:

la| =a1 4+ -+ ap, a!:gai!7 {g}:@g(gﬁ

olel
0zt -+ Oxom
We will denote by &,, the symmetric group of order n and by Cy the cyclic group of order
two given by Co = {£1}. A group & of type B, can be presented as follows:

=i o0

_ (5] (6%
= 90 o,

6 =Clx, G,

where the semidirect product is induced by the natural action of &,, on C§ = Cyx -+ xCy (n
factors), i.e.
0 (W1,Way ... ,wy) = (wa(l),wg(g), . ,wa(n)) , (Wi €0C).
S, acts on M by
c-a=aoc ! ifoced, and a € M.

Then, we have a natural homomorphism of & in Aut (A), given by

(w,0) (Z A xa> = Z Ao (wz)™?

aeM aeM
where A\, € K, and
(wa)™® = T (wi- 2.
i=1

Let Z be the centralizer of & in W. Then Z is a subalgebra of WW. The elements of Z will
be called symmetrical operators.

We know that each operator D € VW can be written in a unique way as a finite sum

D= Z Aap2®0® | where A\, 3 € K
a,BEM

where o and [ are multiindexes (see [4]).
Putting

W; = { Z Aapz® 0’ |al — |8 = z}
a,BeM

we have that

W =PWi.

1EL
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When D # 0, starting from this expression for D, we define the degree of D by:

deg (D) = maz {|a] = |8] : Aas # 0}
Let Z~ be the subspace of Z defined by:

Z ={De Z:deg(D) < -1}

and let N be the subspace of A defined by

N={PecA:D(P)=0,VDeZ }.
Using the results in [3] and the fact that & has a subgroup of type B,_;, we have

dim (N) < (2n)",
also, we have that every simple K [&]-module is isomorphic to a K [&]-submodule of N.
It is clear that
z 2Pz
i<—1

where Z;, = Z-NW,.

2. Minimal orbits

Let O be the orbit space of G,, in M. For each v in O we put

S, = {Z)\aa:a: Ao GK}.

Given o, 8 € M, we put a = 3 if and only if for every ¢ € I,,, a; and 3; both have the same
parity . Two orbits v and p in O are said to be equivalent if there are o € v and 3 € p such
that a = .
It is not difficult to prove that: v and p are equivalent if and only if there exists a bijection
¢ : Ng = Ny which satisfies:

i) ¢ (k) and k both have the same parity, Vk € Ny.

i) p={poa:aeny}
When v and p are equivalent, we write v ~ p.
We observe that if & and [ are in a given orbit v, then we have |a| = 3] and a! = §!. So,
we will put |y| and 7! respectively for these coincident values.
Let v ~ 1 be and ¢ as above. We define the operator

1 @ o«
8’7‘ZEZJE 99
'aE’Y

An orbit v in O is called minimal if || < |p| for all g in O such that p ~ 7.

Proposition 2.1.

)z =Pz

i<—1
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ii) OF is a symmetrical operator of degree |y| — |pu].

iii) o : S, — S, is a G-isomorphism.

Proof. First, we observe that for §,§ in M and ¢ in &,, we have:
a)Ifd—pFisin M, theno- (0 —p)=0-0—0-0.

b) Since the same factors occur in both numbers [g} and [;g], we have that [g} = [gg} :

Now, we can establish the identities:

Pow (a:‘s) =w’9” (2°) (weclh (1)
000’ =0"Poc

In fact, the first identity is clear. For the second one, by using a) and b), we have
9 - 5 o-6—0-
o (0" () =o([3] ) =[5] e

[l e oo @
It follows that
00 (279%) 00" (2°) = o (%07 (077 (%)) = 27077 (a*)
that is
7o (2°0%) 0ot =797 (2)

For w € C} and a, 3,0 € M, we have

In particular, when a = 3, we have that
wo (a;o‘(?ﬁ) ow ! =295 (3)
Using the identities in (2) and (3), it follows that
ToDor ' eW,, VT €&, VDeW,
On other hand, every D € Z~ can be written in a unique way as
D=Di1+---+D,D;,eWVW_;.

Given 7 € &, from the identity
ToDorT ' =D
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we have roDior  4.-d70Dor =D, +.--+D,
that is ToDjor ' =D; (i=1,...,k).
It follows that Z-C EB Z,

i<—1

and we have 1).

ii) follows from the preceding identities (2), (3) and the fact that v ~ . On the other hand,
it is clear that deg (8%) = || — |ul-

iii) For § € p, let § € v be such that § = ¢ 0o J. We have

It follows that 9/ is an isomorphism. O
Corollary 2.2. If p € O is non-minimal then N NS, = 0.
Proof. Let  in O be such that y ~ p with |y| < |u|. Then deg (9%) < —1, and so
d(NNS,) =0.

Now, Corollary 2.2 follows from ii) and iii) of Proposition 2.1. O
Corollary 2.3. Let P € N, then the homogeneous components of P are also in N.
Proof. Assume that:

P=P+---+P, , deg(F,) =1

where Py,..., P, are the homogeneous components of P. On the other hand, for every
D € Z; we have

0=D(P)=D(P)+---+D(P,).

Since the D (F;) are zero if i < j or they are in homogeneous components of degree ¢ — j, it
follows that

D(P)=0 VD€ Z,.
Using 2.1 i), we have that P, € N. O

Corollary 2.4.

N= & ~ns,.

v minimal
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Proof. 1t is clear that
N2 P Nns,.
vy mintmal

By Corollary 2.3 we have that the homogeneous components of an element P in N, are also
in N''. We assume that P is a nonzero homogeneous polynomial and write

P=P +---+P,

where the P; are nonzero polynomials in S,,, and |v;| = deg (P) for i = 1,... ,m. It follows
from Proposition 2.1 that the operator

1
@:$Zﬁm

7

gy
is symmetrical and has degree zero.
Observe that if o and § are multiindexes such that |a| = |3| then
0 if a#p
o (¢7) =
al if a=0

Since |y;| = deg (P;) for all ¢, j, it follows that
0 if j#i
P if j=3i
Since W has no divisors of zero, for every D € Z~ we have Do d,, € Z~. Hence
0=Do0, (P)=D(F).
That is P, € NN S,,. Since P; # 0, it follows from Corollary 2.2 that +; is minimal. a
The following proposition will be used for the characterization of the minimal orbits.

Proposition 2.5. Let ky > ky > --- > k, be a sequence of natural numbers. If eq,... e,
are distinct non-negative integers, then the minimal value of the sum

n
E kie;
i=1

occurs only when e; =1 — 1.

n

Proof. Fix a sum ) k;e;. For i < j such that k; = k; we can assume that e; < e;. Let m be
i=1

a permutation of I, such that the sequence e,(1),... ,ex(,) is increasing. Suppose that there

exists j such that

€j 7 €x(j)
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we can assume that j is minimal in the inequality above. It follows that

&) > exyy and 7 (j) > j

Putting
fi= 0] if 1=
e; if i=mn(y)
we have
S ke = St (b ki) (6 ) 2 e
i=1 i=1 i=1
Hence we may consider only the sums where the sequence ey, ... ,e, is increasing. In this

case, we have that

hence, the minimal value is

n

D ki(i-1)

i=1

and it is clear that it occurs only when e; =7 — 1. a
We will denote by |A| the cardinality of a set A.

Proposition 2.6. Given an orbit v we have

i) v is minimal if and only if for every o € «y the following holds: Given i,j € Ny is such
that © < j and i, j both have the same parity, then |~ (i)| > o™t (5)].

ii) There is a unique minimal orbit which is equivalent to .

Proof. i) Let a € 7. We put:

Im (a)y = {p € Im () : p is even} = {p1,p2, ... , s}

Im (a)l = {q € Im (CY) - q is Odd} = {q17Q27 s 7Qt}
and assume that k; > ky > --- > k, and hy > hy > --- > hy where k; = |a~! (p;)| and
h; = |a~'(g)|, therefore, when k; = k;y1 (respectively h; = h;, 1) we assume p; < piy1

(respectively ¢; < git1)-
Let ¢ : Ny — Ny be a bijection such that

ep)=2(—1) and p(g)=2i—1

It is clear that there exists such a function. We put a* = a o ¢ and denote by v* the orbit
of a*. Notice that v* is uniquely determined by s, ¢ and the sequences ki, ..., ks, hy,... , hy.
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We claim that 4* is minimal. In fact, putting p; = 2e¢; , ¢; = 2f; +1 and using the Proposition
2.5, we have

S t S t t
v = Zkipi + Zhiqz' = 2Zki€i + QZhifi + Zhi
i=1 i=1 i=1 i=1 i=1
S t t
> 2 ki(i—1)+2) hi(i—1)+ > h;
i=1 i=1 i=1

S t
i=1 i=1

This inequality becomes an equality only if p; = 2 (i — 1) and ¢; = 2i — 1. It follows that =
is minimal if and only if v = ~*.

ii) Let us suppose that y and p are equivalent, and that the values h; and ky, ... , ky, given in
i) are the same for v and p. Then we must have v* = p*. Therefore, if 7y and p are minimal,
from i) we have v = ~v* = u* = p. a

3. The Laplacian

We denote by A the Laplace’s operator given by:

A=Y
=1

It is clear that A is a symmetrical operator.
For v € O, let S7 be the subspace of S, defined by:

So={PeS, :A(P)=0}.

Given a € 7, we denote by H the isotropy group of % in . We have a projector in Endy (\A)
given by

1
Ay = — .
H |H|Z77

neH

Proposition 3.1. Suppose 7 € H and P € A such that 7(P) = X\ - P where A\ € K is
different from 1. Then Ay (P) = 0.
Proof. Tt is not difficult to see that

TA’H:AH:AHT (TGH)
hence
Ay (P) = Ay 7 (P) = AAy (P)

Since A # 1, we have Ay (P) =0. O
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Proposition 3.2. Let v, a and Ay be as before. If 3 € ~v is such that 8 # «, then we have

Proof. Since a # 3, there exists i € [, such that «; is even and (;is odd. Let w € C§ be
given by w; = —1 and w; = 1 for j # . We have that

w(z%) = 2% and w (2) = —p.
Using the Proposition 3.1 for A = —1 and 7 = w, we obtain Ay (1:5) =0. O
Lemma 3.3. For a minimal orbit v we have
dim (A (S39)) < 1.

Proof. We denote by a the set of 3 € v such that 3 = a. Using the Proposition 3.2, we note
that

Ay (S,) = <AH (acﬁ) RS 7> = <A7{ (:cﬁ) NS &>.
On the other hand, for any n € H and g € a, we have
n (xﬁ) =k

where p € a. Put n =wm, w € C3 and 7 € &,,. Since 7 (z*) = x, we have that a; and o
have both the same parity, therefore, the number of the indices ¢ such that «a; is odd is an
even number. Then, for § € a and 7 € 1,,, we have

Bi = i = ) = Brp) = (m-B3); mod2, and w- 3= .
It follows that
Ay (S,) C(a’:Bea).
Now, we put
h=max{k:kecIm(a)}.

For every 3 € v we define the vector

B=(8....0") where g'= > B
0

kea—1

It is clear that for every 7 € &, NH the identity 7'/\ﬁ = B holds. We order the vectors B
according to the lexicographical order, so that @ is the minimum element.

Let B € v and suppose that there are two indices 7, j € I,, such that 3; = 8; +2 and o; < ;.
Let 7 € &,, be the transposition (i, j), then

—

T-B<B.
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In fact, from the identities

(7 5)1@ = B it k=i
G if k=j
it follows that
8! i1 ap, 0

(r-8) =q B'=Bit+p=0 -2 if I=q
B =B+ B=04+2 if |=aq

Hence [ = o is the first index where 7'/\ﬂ and B\ do not coincide, since (7 - 6)1 =B — 2 we

have that 7'/\5 < B

For any (3 in v, we fix ¢ € I, such that 3; > 0. For each j in I, such that 8; = 3; + 2 consider
the transposition 7; in &,, that switches ¢ and j.

Let P be in Ay (Sf;) We write

P = Z ag .
Bea
Since A is symmetrical, and A commutes with Ay, we have

A(P) = 0.

From this identity it follows that
ag + Z ar;.5 = 0.
J

In fact, the left member of the equality from above is, except for a constant factor, the
coefficient of the monomial z° in A (P), where 3 is given by

= Bpif k#i
&_{/iﬁk:i

Since a,3 = ag V7 € H, the relationship between the coefficients can be written as

ag + Z ar;.5 + Z ar,.p = 0.

T;€EH TiEH

Observing that 7; is in H if and only if o; = oy, the preceding identity takes the form

(1+m) ag—i- Z CLTj.g:O

ajFa;

where m € Nj.
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We will prove Lemma 3.3 by showing that the linear functional
v Ay (Sf/) —- K
defined by
¢ (P) = aa
is injective.

Let us suppose that a, = 0. If P # 0, we choose 3 in a such that ag # 0 and B minimal.
Since @ < 3, there is an index k in Im («) such that

G >afand =l ifl <k
From these conditions we infer that
Br=1-la " ()]ifl <k

But this is only possible if 3 coincides with o in o' {0,1,... ,k —1}. On the other hand,
from the fact that 3 > of = k- a7! (k), there exists ¢ in a~! (k) such that 3; > k > 0.
Since 0 € a we have that §; and k both have the same parity, then 3; — 2 > k. The indices
j for which 8; = 8; — 2 > k, belong to o' {k,... ,h}, and this set is non-empty because y
is minimal. For these indices, the transpositions 7; previously defined, satisfy

arp=ag it a;=k
T B<B if B>k

If m=|{j:0B; =0 —2and a; = k}|, from the relations obtained for the coefficients of P,
it follows that

(1+m) ag+ Z ar.3 = 0.
,-B<B

Since (3 is minimal, we obtain ag = 0, a contradiction. O

4. The structure of N

Let F CL,, F={f1, f2,---, fx} where f; < fi11. Given a function yu : F —Nj, we denote
by

elr = det [z‘lﬂ (4)

where p; = (f;).
Putting z# = ! .2/” - 2%F, it is clear that the coefficient of 2* in e/ equals 1. Therefore,

we remark that e’z = 0 if y is not injective.
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Let v be a minimal orbit and take a in v. We write I, = P U Q where P and Q are given by
P={iel,:a;iseven} and Q={i€l,: q;isodd}.

An a-partition B of 1, is a pair of partitions of P = U; P; and Q = U;Q; respectively which
satisfies that the restrictions a|p, and a|g, of a to P; and « to (); are minimal and injective.

Given a a-partition B, we put
s = (H) (H Q> -
i i

To obtain the coefficient of £ in eg , we need to multiply the coefficients of
27 in ey, and zei in €0s

so that the coefficient of ® in ez equals 1. On the other hand, notice that ez is the product
of the factors of the form

(x; £ x;) where i,j € Pyori,j € Q) and x; where i € Q.

All these factors occur with multiplicity 1 in eg.

Let 7 be a reflection in & associated to one of these factors, that is, the reflection whose
hyperplane of fixed points is given by the equations z; = +z; or x; = 0. We have the
following

Proposition 4.1. Let 7 be as above, then

7 (eg) = —egp. (5)

Proof. Let [ be the factor associated to 7. Using (4) we have the following
If [ is not a factor of ef, or eg),, then

T (e%k) =ep and T (ean) = €0, -
If [ is a factor of e, or e, then

T (e%k) = —€p, and T (e%k) = —€g,-

Since the multiplicity of [ in ep is 1, it follows (5). O

We denote by d, the polynomial in S, given by
5a = Z €n
B

where B runs through all a-partitions. The coefficient of z¢ in ¢, is equal to the number of
partitions B satisfying the required conditions, that is d, # 0.
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Proposition 4.2. Let 7 € & be a reflection and r be a root of 7. If P € A is such that
7 (P) = —P, then the linear form gien by ¢ (x) => . r;x; is a factor of P.

Proof. Because K is infinite, we may see P as polynomial function on K™.
Let {¢1 = ¢, 2,... ,0,} be a basis of the dual space (K™)", such that 7 (p;) = ¢; if i # 1.
For x € K™ we can write

P(z) =) Ay’
5

where A\ € K, y° = yfl o-yPr and y; = ¢; (z). From the condition 7 (P) = —P it follows
that 51 > 0 when A\g # 0. Then ¢ () is a factor of P. O

Lemma 4.3. Let v be a minimal orbit. Then
i) en € N.
i) Ay (S93) = K - da.

Proof. i) Suppose that D € Z~ and that 7 € & is a reflection such that 7 (eg) = —eg. We
have

7-(D(eg)) =D(1-e5) = =D (ep).

Proposition 4.2 shows that all the linear factors of eg are factors of D (eg), but any two of
these factors being non-proportional, we infer that es is a factor of D (eg). Furthermore, if
D (ep) # 0, we have that deg (D (eg)) < deg (es), and so we conclude that D (ez) = 0.

ii) Let B be as before. For 7 € H we put 7 = w - 7 where w € C§ and 7 € S,,. Denoting by
B™ the bipartition defined by

P=Unr(P) and Q=m(Qx).

k k

It is clear that B" satisfies the required conditions for a bipartition. From the identities
det [m;a(m)"] = ! (det [27]) and w(ep) = es

we obtain _
egr =7 ' (en).

It follows that 7 permutes the terms of d,, and so
T-0q =0, VT EH

that is

Thus Lemma 3.1 implies ii). O

Theorem 4.4. Let v be a minimal orbit and o« in . Then

i) The &-module (d,) generated by 0, is simple.
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i) 8 =NNS, = (0a)-
iii) The multiplicity of S in N is 1.

Proof. We will make use of the fact that when the base field K has characteristic zero all the
K-linear representations of a finite group are completely reducible.
i) If S and T are submodules of (d,) such that

writing 0, = s +t where s € S and t € T, we have
5(1 = A’H, (5(1) = A’H, (S) + A’H (t) .

It follows that at least one of terms in the sum is not zero. In conclusion, from ii) of Lemma
4.3, we have that 6, € Sord, € T, thatisS=0o0r 7 = 0.

ii) From i) of the Lemma 4.3 we have
(0q) C Nﬂ&, - Sf/.
Let T be a submodule of S,‘; such that

S =(0a) ®T.
Let 0 # P € T. Replacing P by o - P with ¢ in &, if necessary, we may suppose that the
coefficient a,, of z® in P is different from zero. Since the coefficient of z® in Ay (P) is a,, by
Lemma 4.3, we have that there exists in K a non-zero element A such that d, = A Ay (P).
Thus d, € T, but this is a contradiction.

iii) Let 6 : S — S be an isomorphism of &-modules, where v and p are minimal orbits. We
can assume that |u| < |y|. Consider « in vy and eg as above. With similar arguments as in i)
of Lemma 4.3, we obtain that ep is a factor of 6 (eg), so that |y| = |u| and there is a A # 0
in K such that

0 (63) = )\63.
That is, S, NS, # 0, therefore v = p. O

Remark. As stated earlier in [3] we defined the space N for a finite group G C GL,, (K),
and we showed that every simple K [&]-module is isomorphic to a K [&]-submodule of N.
When K is the complex number field and A is a multiplicity-free direct sum of simple K [G]-
modules, we have that N is a Gel’fand model for G. Hence, the following corollary can be
obtained by using Corollary 2.4 and Theorem 4.4.

Corollary 4.5. If K is the complex number field, then N is a Gel’fand Model for &. In
particular, the number of minimal orbits coincides with the number of conjugacy classes of &.
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