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Abstract. The set-theoretical circle-squaring problem goes back to Tarski: Can a
circle be partitioned into sets that can be reassembled to form a square? We give
a short survey on results to this question and add new claims concerning “scissor
congruence” of circle and square with respect to particular affine transformations.

MSC 2000: 52B45
Keywords: squaring the circle, equidecomposable, congruent by dissection, homo-
thety, similarity, equiaffine map, affine map

1. Equidecomposability and congruence by dissection

The classical form of the circle-squaring problem of the ancient Greek geometers, to construct
a square with the same area as a given circle only with a straightedge and a compass, had
been solved negatively in the 19th century. But a new view on the old problem was opened
by Tarski [7]: Can a circle be partitioned into sets that can be reassembled to form a square
(having the same area)? The answer to this set-theoretical question depends on the particular
types of partitions and on the groups of transformations which are allowed in the piecewise
congruence of circle and square.
Given two sets A,B ⊆ Rd and a group G of bijections of Rd, A and B are called equide-

composable with respect to G if A and B can each be partitioned into the same finite number
of respectively G-congruent pieces. Formally,

A =
n⋃

i=1

Ai and B =
n⋃

i=1

Bi,
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Figure 1. Equidecomposability via dyadic homotheties

Ai ∩ Aj = ∅ = Bi ∩ Bj if 1 ≤ i < j ≤ n, and there are γ1, γ2, . . . , γn ∈ G such that, for
each 1 ≤ i ≤ n, γi(Ai) = Bi. Similarly, A and B are called countably equidecomposable with
respect to G if the same applies to countable partitions of A and B.

Theorem 1. [2] Any two sets A,B ⊆ Rd with nonempty interior are countably equidecom-
posable with respect to the group of translations.

This gives a first positive solution of the set-theoretical circle-squaring problem. It was one
of the most surprising discoveries in the last decade that a similar decomposition result can
be gained using finitely many pieces only.

Theorem 2. [3] Let C, S ⊆ R2 be a circle and a square, respectively, of the same area. Then
C and S are equidecomposable with respect to the group of translations.

In his paper [4] Laczkovich extended the circle-squaring result to pairs of measurable sets
A,B ⊆ Rd which have the same positive Lebesgue measure and fulfil a weak boundary
condition. In addition to that, the well-known paradox of Banach, Tarski, and Hausdorff
even can be used for manipulating the volume of subsets of Rd, provided that d ≥ 3.

Theorem 3. [8] Any two bounded sets A,B ⊆ Rd, d ≥ 3, with nonempty interior are
equidecomposable with respect to the group of proper Euclidean motions.

The previous claims rest on deep investigations using the axiom of choice. The situation
becomes essentially easier if the group of transformations contains contractive maps. A very
small group of that type consists of the dyadic homotheties. It is generated by the translations
and one central dilatation with similarity coefficient 2. (In the following the coefficient 2 does
not play an important role. One can replace it by any other real number larger than 1.)

Proposition 4. (cf. Corollary 3.7 from [8]) Any two sets A,B ⊆ Rd, each of which is
bounded and has nonempty interior, are equidecomposable with respect to the group of dyadic
homotheties. More precicely, there exist decompositions A = A1 ∪ A2 and B = B1 ∪B2 such
that α1(A1) = B1 and α2(A2) = B2 with suitable dyadic homotheties α1, α2.

Proof. We choose dyadic homotheties α and β such that α(A) ⊆ B and β(B) ⊆ A. Then
we put A1 =

⋃∞
i=0(βα)

i(A \ β(B)) and A2 = A \ A1. One easily computes that this setting
gives rise to the decompositions A = A1∪A2 and B = α(A1)∪β−1(A2). (Figure 1 illustrates
the situation for a circle and a square in the Euclidean plane.) �
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Theorems 1–3 sound paradoxical to everybody who thinks of partitions of bodies in a physical
sense. Now we replace the concept of partitions into disjoint subsets by dissections which
allow to ignore boundary points. We say that the set A ⊆ Rd is dissected into the subsets
A1, A2, . . . , An, in symbols A = A1 t A2 t . . . t An, if A = A1 ∪ A2 ∪ . . . ∪ An and int(Ai) ∩
int(Aj) = ∅ for 1 ≤ i < j ≤ n. Given two sets A,B ⊆ Rd and a group G of bijections of Rd, A
and B are called congruent by dissection with respect to the group G if there exist dissections

A =
n⊔

i=1

Ai, B =
n⊔

i=1

Bi,

and transformations γ1, γ2, . . . , γn ∈ G such that γi(Ai) = Bi for 1 ≤ i ≤ n. In this case the
n sets A1, A2, . . . , An (or B1, B2, . . . , Bn, respectively) are called the pieces of dissection.
If we do not impose geometrical restrictions on the pieces of dissection, the concept of

congruence by dissection generalizes equidecomposability. In this full generality it is far from
its physical background and leads to degenerate results.

Proposition 5. Any two bounded sets A,B ⊆ Rd with nonempty interior are congruent by
dissection with respect to the group of translations if the pieces of dissection are allowed to be
arbitrary subsets of Rd.

Proof. Clearly, there exist coverings A = A1 ∪ A2 ∪ . . . ∪ An and B = B1 ∪ B2 ∪ . . . ∪ Bn
and translations τ1, τ2, . . . , τn such that τi(Ai) = Bi if 1 ≤ i ≤ n. We put Ai,1 = Ai ∩Qd and
Ai,2 = Ai \ Ai,1, 1 ≤ i ≤ n. Then all sets Ai,j and τi(Ai,j) have empty interior. Hence we
obtain the desired dissections

A =
⊔

i=1,2,...,n
j=1,2

Ai,j and B =
⊔

i=1,2,...,n
j=1,2

τi (Ai,j) . �

Congruence by dissection makes sense only if the pieces of dissection have a small boundary.
A tool for quantifying the size of the boundary bd(A) of a set A ⊆ Rd is the (d−1)-dimensional
Hausdorff measure Hd−1. We say that the boundary of A is rectifiable if Hd−1(bd(A)) <∞.
The proof of Proposition 4 gives rise to the following conclusion, which in particular can be
used for squaring the circle by dissection.

Corollary 6. Let A,B ⊆ Rd be bounded sets with nonempty interior and rectifiable boundary.
Then A and B are congruent by dissection with respect to the group of dyadic hometheties
using two pieces with rectifiable boundary.

Now we come back to the two-dimensional case. In the following we demand the pieces of
dissection to be closed topological discs. These are images of the closed unit circle in R2
under homeomorphisms of R2. Of course, circle and square are congruent with respect to
homeomorphisms of R2. We want to discuss congruence by dissection using different types
of affine transformations.

Theorem 7. [1] Let C and S be a circle and a square in R2, respectively. Then C and S
are not congruent by dissection with respect to the group of Euclidean motions using closed
topological discs as pieces of dissection.

In contrast with that, larger groups of transformations give rise to positive results, even if
the pieces of dissection underly additional smoothness conditions.
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Figure 2. K = A tK1 tK2 tK3

2. Dissections into pieces with rectifiable boundary

Theorem 8. Any two closed topological discs A,B ⊆ R2 with rectifiable boundary are con-
gruent by dissection with respect to the group of dyadic homotheties using ten closed topological
discs with rectifiable boundary as pieces of dissection.

Proof. First we show that there exist closed topological discs K,K1, K2, K3 with rectifiable
boundary and dyadic homotheties α1, α2, α3 such that

K = A tK1 tK2 tK3 = α1(K1) t α2(K2) t α3(K3) (1)

(see Figure 2).
We choose a rectangle conv({a, b, e, f}) such that the edge ab is parallel to the first

coordinate axis and the set A is contained in the interior of the “upper half”. That is,
A ⊆ int(conv({e, f, g, h})) where g = a+f

2
and h = b+e

2
are the centres of the edges af and be,

respectively. Let p and q be points from bd(A) with minimal and maximal first coordinate,
respectively. Then bd(A) splits into an “upper arc” Γ1 and a “lower arc” Γ2, both connecting
p and q. K1 is to denote the closed topological disc whose boundary consists of Γ2 and the
polygonal chain pgabhq. Let c = 3

2
b − 1

2
a and d = 2b − a, let τ be the translation mapping

a onto b, and let α, γ, δ be dilatations with centres a, c, d, respectively, and with similarity
coefficient 2. We put K2 = {c} ∪

⋃∞
i=0 γ

−iτα−2(K1) and K3 = cl (
⋃∞
i=1 δ

−i(K1 ∪ A) \K2).
Both sets are closed topological discs with rectifiable boundary. Finally, K = A∪K1∪K2∪K3
is a disc of that type as well. One easily verifies that K is dissected as claimed under (1),
where α1 = α

−1, α2 = δγ
−1, and α3 = δ.

Now we fix a dyadic homothety ρ such that ρ(K) ⊆ int(B). Then cl(B \ ρ(K)) can be
dissected into two closed topological discs K4 and K5, both having a rectifiable boundary.
Hence

B = ρ(K) tK4 tK5.
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Exchanging the roles of A and B, we find closed topological discs L,L1, L2, . . . , L5 with
rectifiable boundary and dyadic homotheties β1, β2, β3, σ such that

L = B t L1 t L2 t L3 = β1(L1) t β2(L2) t β3(L3) and A = σ(L) t L4 t L5.

Combining the equations, we obtain

A = σ(L) t L4 t L5
= σ(B t L1 t L2 t L3) t L4 t L5
= σ(ρ(K) tK4 tK5 t L1 t L2 t L3) t L4 t L5
= σ(ρ(α1(K1) t α2(K2) t α3(K3)) tK4 tK5 t L1 t L2 t L3) t L4 t L5

and, similarly,

B = ρ(σ(β1(L1) t β2(L2) t β3(L3)) t L4 t L5 tK1 tK2 tK3) tK4 tK5.

This proves Theorem 8. �

The above construction also can be done with sets A and B not having rectifiable boundaries.
Of course, then the pieces of dissection do not fulfil the boundary condition, too.

Corollary 9. Any two closed topological discs A,B ⊆ R2 are congruent by dissection with
respect to the group of dyadic homotheties using ten closed topological discs as pieces of
dissection.

Clearly, Theorem 8 applies to the circle-squaring problem. However, in the particular case of
squaring the circle considerations of the above type can be refined so that only four pieces of
dissection appear. We do not describe the details. Figure 3 shows corresponding dissections.

Proposition 10. Any circle C and any square S in R2 are congruent by dissection with
respect to the group of dyadic homotheties using four closed topological discs with rectifiable
boundary as pieces of dissection.

3. Dissections into pieces with smooth boundary

Given a rectifiable Jordan arc Γ = {x(t) : 0 ≤ t ≤ 1} ⊆ R2, we say that Γ is twice continuously
differentiable if, for all points x ∈ Γ, the tangent vector and its derivative (with respect to
the arclength) exist and depend continuously on x. The curve Γ is called convex if it is part
of the boundary of a convex body in R2.
The boundary bd(A) of a topological disc A ⊆ R2 is to be called of type C2∨ c if it splits

into finitely many Jordan arcs Γi, 1 ≤ i ≤ n, such that every arc Γi is twice continuously
differentiable or convex. Similarly, bd(A) is to be called of type C2∧ c if it consists of finitely
many arcs Γi, all being twice continuously differentiable and convex.

Theorem 11. Let C and S be a circle and a square in R2, respectively. Then C and S are
congruent by dissection neither with respect to the group of similarities nor with respect to
the group of equiaffine transformations if the pieces of dissection are restricted to be closed
topological discs with boundary of type C2 ∨ c.
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Figure 3. Dissections of a circle and a square

Proof. The proof is motivated by an idea from [1]. We want to show the negative results
by the aid of two invariant valuations µ1 and µ2 on the family of all closed topological discs
fulfilling the above boundary condition.
Let A ⊆ R2 be a topological disc of that type. For a point x ∈ bd(A), κ(x) is to denote

the curvature of bd(A) at x, provided that bd(A) is twice differentiable at x. We define

κ1(x) =

{
κ(x) if, for some neighbourhood U of x, bd(A) ∩ U is a circular arc,
0 otherwise,

κ2(x) =

{
κ(x) if, for some neighbourhood U of x, bd(A) ∩ U is an ellipsoidal arc,
0 otherwise,

and

sgn(x) =

{
1 if, for some neighbourhood U of x, conv(bd(A) ∩ U) ⊆ A,
−1 otherwise.
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First we consider the quantity

µ1(A) =

∫

bd(A)

sgn(x)κ1(x) dH
1(x).

The integral is well defined. Indeed, it suffices to show that
∫
Γ
κ1(x)dH1(x) < ∞ for every

arc Γ ⊆ bd(A) which is twice continuously differentiable or convex. If the differentiability
condition is fulfilled, then κ : Γ → R is bounded from above by some value κmax, since κ is
continuous on the compact set Γ. Hence

∫
Γ
κ1(x)dH1(x) ≤ κmaxH1(Γ) < ∞. If Γ is convex

then
∫
Γ
κ1(x)dH1(x) ≤ 2π, because the integral

∫
Γ0
κ1(x)dH1(x) over a circular subarc Γ0 ⊆ Γ

agrees with the angle between the normal vectors in the endpoints of Γ0.
Obviously, µ1 is invariant under similarities. One easily verifies the additivity of µ1. That

is, µ1(AtB) = µ1(A)+µ1(B) if A, B, and AtB are closed topological discs with boundary of
type C2∨c. By induction, this yields µ1(A1tA2t . . .tAn) = µ1(A1)+µ1(A2)+ . . .+µ1(An),
provided that the sets A1, A2, . . . , An as well as A1 t A2 t . . . t An are closed topological
discs with boundary of type C2∨ c. Hence µ1(C) = µ1(S) would be a necessary condition for
congruence by dissection of C and S with respect to similarities using pieces of the desired
type. But we have µ1(C) = 2π and µ1(S) = 0. This proves the first part of Theorem 11.
Now we define

µ2(A) =

∫

bd(A)

sgn(x)κ2(x)
1
3 dH1(x).

If an arc Γ ⊆ bd(A) is twice continuously differentiable then
∫
Γ
κ2(x)

1
3dH1(x) ≤ κ

1
3
maxH1(Γ).

In the case of a convex arc Γ we estimate
∫
Γ
κ2(x)

1
3dH1(x) ≤

∫
Γ
κ(x)

1
3dH1(x). The last

integral is called the affine arclength of Γ. Although the curvature κ(x) needs to exist almost
everywhere only, the affine arclength of Γ is well defined and finite, since it can be expressed
as an infimum of a nonempty set of reals (see [6]). This justifies the definition of µ2(A).
The functional µ2 is invariant under equiaffine transformations, because the differential

κ(x)
1
3dH1(x) is an equiaffine invariant (see [5], [6]). As above, µ2 is additive in the sense that

µ2(A1tA2t. . .tAn) = µ2(A1)+µ2(A2)+. . .+µ2(An) if A1, A2, . . . , An, and A1tA2t. . .tAn
are closed topological discs with boundary of type C2 ∨ c. Accordingly, we would have
µ2(C) = µ2(S) if C and S would be congruent by dissection with respect to equiaffine
transformations using pieces fulfilling the boundary condition C2 ∨ c. This condition fails,
for µ2(S) = 0, whereas µ2(C) = 2πr

2
3 , r denoting the radius of C. �

Theorem 12. Any circle C and any square S in R2 are congruent by dissection with respect
to the group of affine transformations using closed topological discs with boundary of type
C2 ∧ c as pieces of dissection.

Proof. The circular arc Γ0 =
{(√

2
2
+ cos(ϕ), 9

√
2+4
√
6

22
+ sin(ϕ)

)
: 19π
12
≤ ϕ ≤ 21π

12

}
of radius

1 and length π
6
connects the points x0 = (ξ0,1, ξ0,2) =

(√
2, −2

√
2+4
√
6

22

)
and x1 = (ξ1,1, ξ1,2) =(√

2+
√
6

4
, 7
√
2−3
√
6

44

)
(see Figure 4). The affine contraction α(ξ1, ξ2) =

(
1+
√
3

4
ξ1,

−1+
√
3

4
ξ2

)
maps

x0 onto x1. Hence Γ = {a}∪
⋃∞
i=0 α

i(Γ0) is a rectifiable Jordan arc between x0 and a = (0, 0).
Straightforward (but lengthy) calculations show that the first two derivatives of Γ0 and the
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Figure 5.

ellipsoidal arc Γ1 = α(Γ0) coincide at the common endpoint x1. Repeated application of this
argument implies that the arc Γ is convex and twice differentiable at all points except for
a. Finally one verifies that, if a point x ∈ Γ approaches a, then the corresponding tangent
approaches the first coordinate axis and the curvature tends to 0. Hence the whole arc Γ is
convex and twice differentiable.
Let b = (ξ1,1, 0), c = (ξ0,1, 0), and d = (0, ξ1,2). The polygon P with vertices a, c, x0, x1, d

can be dissected into three closed topological discs:

P = P1 t P2 t P3. (2)

P1 is bounded by the line segments ad, dx1 and the arc cl(Γ \ Γ0). The boundary of P2
consists of ac, cx0, and Γ. The remaining piece is P3 = conv(Γ0). Of course, the boundaries
of P1, P2, and P3 are of type C

2 ∧ c.
The affine transformation α maps ac onto ab, cx0 onto bx1, and Γ onto cl(Γ \Γ0). Hence

the rectangle conv({a, b, x1, d}) can be written as

conv({a, b, x1, d}) = P1 t α(P2). (3)

Equations (2) and (3) yield the following: given any affine image Q of P3 = conv(Γ0) and any
rectangle R with int(Q) ∩ int(R) = ∅, the polygon P and Q tR are congruent by dissection
with respect to affine transformations using pieces as desired in Theorem 12.
We dissect the circle C into C = C1tC2, C1 consisting of 12 affine copies of conv(Γ0) and

12 rectangles, and the square S into S = S1tS2, where S1 is formed by 12 affine images of P
(see Figure 5). The above arguments show that C1 and S1 are congruent by dissection. The
remaining polygonal regions C2 and S2 are congruent by dissection, too. Indeed, C2 and S2
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can each be partitioned into the same finite number of triangles, which clearly are congruent
under affine transformations. Hence C and S are congruent by dissection as claimed in
Theorem 12. �

4. Concluding remarks

The above considerations belong to a wide field of problems. Given a group of transformations
of R2, are a circle and a square, or two members form a larger class of sets, congruent
by dissection with respect to that group (using pieces with small boundary)? If so, what
geometric restrictions can be imposed on the pieces such that congruence by dissection is
still possible? Moreover, one may ask for dissections with minimal number of pieces. Are
the estimates given in Theorem 8 and Proposition 10 sharp? What is the minimal number
of pieces in the claim of Theorem 12?
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