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involution satisfying xn+1 = x for some positive integer n. We also discuss ways
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1. Introduction

A well-known (or better to say, famous) theorem of N. Jacobson states that every ring
satisfying the identity xn+1 = x for some n ≥ 1 is commutative. In more detail, every
subdirectly irreducible ring obeying such an identity is a finite field, so that every ring with
xn+1 = x decomposes into a subdirect product of finite fields.
The main purpose of this note is to obtain the involutorial analogue of Jacobson’s the-

orem. Recall that a ring with involution is an algebraic system (R,+, ·,−, 0, ∗) of similarity
type (2, 2, 1, 0, 1) such that
(1) (R,+, ·,−, 0) is a ring,

(2) the following identities hold:

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (x∗)∗ = x.
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Throughout the paper, we are working within the variety of all involution rings, defined
by these identities and the ring axioms. Also, all involution ring varieties, referred to in
the sequel, are assumed to be of the above similarity type. Therefore, the involution ∗ is
considered as a fundamental operation, and thus all universal-algebraic constructions on rings
with involution must respect this operation. For example, by an involution ring congruence we
mean a congruence of the underlying ring which also preserves the corresponding involutorial
operation (occasionally, we use the term ∗-congruence only for emphasis). Consequently, by
adopting this universal-algebraic approach, we have that a ring with involution is subdirectly
irreducible if the intersection of all of its nonidentical ∗-congruences is nonidentical. Hence,
there may exist involution rings which are subdirectly irreducible, but whose ring reducts are
not subdirectly irreducible as rings. However, this will not cause any confusion, because the
variety in which the notion of subdirect irreducibilty is considered will be always clear from
the context.
With this view at hand, it turns out that finite fields with involution are not the only

subdirectly irreducibles among the involution rings in which xn+1 = x holds, so that the result,
cited above, is no longer true. Aside from the ‘internal’ phenomenon of an involution on a
field, we are going to encounter another type of involution, an ‘external’ kind, as described
below.
Let R be a ring, and let Rop be its opposite ring (i.e. its anti-isomorphic copy). Consider

the direct sum R
⊕
Rop, and define a unary operation ∗ on this sum such that for all r, s ∈ R

we have
(r, s)∗ = (s, r).

It is easy to verify that in the way just described, R
⊕
Rop is given the structure of a ring

with involution, and ∗ defined as above is known as the exchange involution, cf. [8]. The
resulting involution ring we denote by Ex(R). We shall be concerned with the following
typical situation: a ring with involution R possesses an ideal I such that R is a direct sum
of I and I∗ = {a∗ : a ∈ I} (which is also an ideal in R). Then R ∼= Ex(I). Here by an ideal
we mean a ring ideal; ideals which are closed for the star operation we call ∗-ideals.
Investigations concerning rings with involution in which the involution is considered as a

fundamental operation have been intensified in recent years (cf. Wiegandt [9] for an overview
of this topic up to the early nineties). Particular emphasis has been put on the ideal and
∗-ideal structure, and a number of papers deal with the radical theory of involution rings,
e.g. [2]. On the other hand, several universal-algebraic aspects were also studied, such as in
[3], and our results aim to contribute to this latter direction.
In the following section we prove that a ring with involution which obeys xn+1 = x for

some integer n ≥ 1 is subdirectly irreducible if and only if it is either a finite field with
involution (in which case all possible involutions will be discussed), or of the form Ex(F ) for
some finite field F in which the indicated identity holds. In the final section, we give some
hints and an example of how this information can be applied in order to construct the lattice
of subvarieties of the involution ring variety defined by xn+1 = x for a given n. Our example
includes all varieties of ∗-regular rings with a special involution considered by Yamada in [10].
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2. The main result

It is well-known that congruences and ideals of rings are in a one-to-one correspondence such
that a congruence θ of a ring R gives rise to an ideal I of R such that a ∈ I if and only if
(0, a) ∈ θ, and conversely, for each ideal I of R, we have a congruence θ defined by (a, b) ∈ θ
if and only if a − b ∈ I. Note that a similar symmetry occurs in rings with involution
concerning its ∗-congruences and ∗-ideals. Indeed, if θ is a ∗-congruence of R, then the ideal
I constructed as above is a ∗-ideal, since if a ∈ I, then (0, a) ∈ θ, yielding (0, a∗) ∈ θ (as we
have 0∗ = 0), and so a∗ ∈ I. Conversely, if I is a ∗-ideal and θ the corresponding congruence,
then (a, b) ∈ θ implies a − b ∈ I, so a∗ − b∗ = (a − b)∗ ∈ I. Thus, (a∗, b∗) ∈ θ. We record
these observations as

Lemma 1. Let R be a ring with involution. Then ∗-congruences and ∗-ideals of R are in a
one-to-one correspondence, such that the ideal of R arising from its ∗-congruence is a ∗-ideal,
and vice versa.

Now define the ∗-heart H∗(R) of a ring with involution R to be the intersection of all of
its nonzero ∗-ideals. According to the above lemma, R is subdirectly irreducible if and only
if H∗(R) is nonzero. As we already mentioned, the subdirect irreducibility of R does not
guarantee that the ∗-free reduct of R is subdirectly irreducible as a ring, which can be now
easily seen from the example of Ex(R), where R is a simple ring.
Our main objective in this note is to prove the following result, which provides an invo-

lutorial counterpart of Lemma 7 from [10].

Theorem 2. A ring with involution R is subdirectly irreducible and obeys the identity xn+1 =
x if and only if there is a prime number p and an integer k ≥ 1 satisfying (pk − 1) | n, such
that R is isomorphic to one of the following:

(1) GF (pk) (the finite field with pk elements), with the involution being the identity map-
ping,

(2) GF (pk) with the involution defined by x∗ = xp
m
(this is going to be denoted by GF ∗(pk)),

when k = 2m for some m ≥ 1, and

(3) Ex(GF (pk)).

First we collect some auxiliary results, which are the first steps towards our goal.

Lemma 3. Let R be a simple ring such that R2 = R, and let Z(R) denote the center of R.
Then R has an identity element if and only if Z(R) is nonzero.

Proof. Assume z ∈ Z(R), z 6= 0. Then zR = R and there exists e ∈ R such that z = ze. Let
r ∈ R. We have zr = zer, and hence, z(r − er) = 0. However, since Ann(z) = 0, we obtain
r = er, and similarly, r = re. So, e is the identity element in R. The converse is obvious. 2

Rings with involution which are ∗-simple (in the sense of having no nontrivial ∗-ideals) are
one of the topics dealt with by Birkenmeier, Groenewald and Heatherly in [1]. Their result
is as follows.



426 Sinǐsa Crvenković et al.: On Subdirect Decomposition and Varieties of . . .

Proposition 4. [1, Proposition 2.1] Let R be a ∗-simple ring. Then either R is simple as a
ring, or R ∼= Ex(K), where K is a maximal ideal of R, K is simple, R2 6= 0, and K and K∗

are the only nontivial ideals of R.

Lemma 5. Let R be a subdirectly irreducible semiprime PI-ring with involution. Then R is
∗-simple and has an identity element.

Proof. Consider the ∗-heart H∗(R) of R. Of course, H∗(R) is ∗-simple (we have H∗(R) 6= 0
by our assumptions and the remarks following Lemma 1). By the above proposition, either
H∗(R) is simple as a ring, orH∗(R) ∼= Ex(K), whereK is a simple ring. From [7] and Lemma
3, H∗(R) has an identity element e. Hence, we have a ring decomposition R = eR

⊕
A, where

H∗(R) = eR and A is the annihilator of H∗(R). Since H∗(R) is a ∗-ideal, so is A. Therefore,
R = eR = H∗(R), implying that R is ∗-simple. 2

Using the above lemma, we move substantially closer to our aim.

Lemma 6. Let R be a subdirectly irreducible ring with involution satisfying the identity
xn+1 = x for some n ≥ 1. Then either R is a finite field with involution, or R ∼= Ex(F ) for
some finite field F .

Proof. By the given assumptions and Lemma 5, R is ∗-simple and has an identity element.
Of course, R is commutative. If R is simple as a ring, then it must be a field, in addition, a
finite one, as all of its elements are roots of the polynomial xn+1 − x.
On the other hand, assume that R ∼= Ex(K), with K as described in Proposition 4.

Then there exists e, f ∈ K such that

1 = e+ f ∗.

Now for an arbitrary a ∈ K we have

a = ae+ af ∗ = ae,

since af ∗ = 0, and e is the identity element in K. As K is simple (and commutative), K is
a field, and the lemma is proved. 2

Proof of Theorem 2. Of course, it is clear that a finite field GF (pk) satisfies the identity
xn+1 = x if and only if (pk − 1) | n. Therefore, if R ∼= Ex(F ), we obtain precisely the
involution rings described by (3).
On the other hand, assume that R is a field with involution. It is well-known from the

theory of fields that the group of automorphisms of the finite field GF (pk) is a cyclic group
of k elements, and its members are the mappings x 7→ xp

m
, 1 ≤ m ≤ k. Now we should

select which of these are involutions, i.e. the automorphisms of order two. This is obtained
from the condition

x = (xp
m

)p
m

= xp
2m

,

or equivalently,
x 6= 0 ⇒ xp

2m−1 = 1.
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Since the multiplicative group of every finite field is cyclic, the above condition will be satisfied
if and only if (pk − 1) | (p2m − 1), i.e. k | 2m. As 2m ≤ 2k, we have two possibilities: either
2m = 2k, that is m = k, and the corresponding involution is the identity mapping (when we
have the case (1)), or 2m = k (yielding the situation described in (2)).
The converse implication is easy, as it is obvious that all the listed rings with involution

are ∗-simple, and thus subdirectly irreducible. 2

Note that it was proved in [3] that the ring reduct of a subdirectly irreducible ring with
involution is either subdirectly irreducible as a ring, or a subdirect sum of two subdirectly
irreducible rings. However, they presented an example which shows that in the latter case,
the subdirect product in question need not to be direct, even in the commutative case. Yet,
Theorem 2 shows that the constraint xn+1 = x suffices to obtain a direct decomposition of
ring reducts of subdirectly irreducible involution rings into subdirectly irreducible rings.

3. Applications

A ring with involution is said to have a special involution if it satisfies the identity

x = xx∗x.

In other words, these are regular rings in which a∗ is always an inverse (in the sense of von
Neumann) of a. Such rings with involution were studied by Yamada [10]. He proved that
these are precisely the involution rings whose multiplicative semigroups are inverse (and one
can replace the term ‘inverse’ by ‘Clifford’). The characteristic of every such ring is a divisor
of 6, which follows from the fact that every specially involutive ring can be represented
as a direct sum of its ∗-ideals R2 and R3 formed by its 2-torsion and 3-torsion elements,
respectively. Moreover, R2 satisfies x

4 = x, while R3 satisfies x
3 = x, so that every specially

involutive ring satisfies x7 = x. The lattice of all varieties of rings with involution satisfying
x7 = x will be presented in this section. The varieties with special involution will be indicated
within this broader lattice.
Yamada proved that the only subdirectly irreducible specially involutive rings are those

which we denoted by GF (2), GF (3) and GF ∗(4). This result is now easily deducible from
our Theorem 2. Since we are concerned with involution rings satisfying x7 = x, it suffices to
look after prime numbers p and positive integers k such that (pk − 1) | 6 and by inspection
we find p = 2, 3, 7 for k = 1 and p = 2 for k = 2. Therefore, we have nine subdirectly
irreducibles in the considered variety (two for each of the cases with k = 1 and three for
k = 2). Now we can easily select those satisfying the identity x = xx∗x, as listed above.
Note that the three considered fields with involution are the only ones covered by Theorem
2 in which the involution coincides with the multiplicative group inverse (completed with
0∗ = 0). Therefore, we obtain the following result.

Corollary 7. A ring with involution satisfies x = xx∗x if and only if it is a subdirect product
of fields with inverse involution (a∗ = a−1 for all a 6= 0, and 0∗ = 0).

Now we turn our attention to some methods which enable us to construct, given a positive
integer n, the lattice of all varieties of rings with involution satisfying xn+1 = x. It is impor-
tant to note that all rings with involution listed in Theorem 2 have a prime characteristic,
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and that there are only a finite number of possible characteristics for subdirectly irreducible
rings (with involution) satisfying xn+1 = x. In more detail, we have

Corollary 8. Let R be a subdirectly irreducible ring with involution satisfying xn+1 = x.
Then the characteristic of R is a prime number p such that (p− 1) | n.

Therefore, the involution rings produced by Theorem 2 naturally split into several groups
according to their characteristics. It is quite reasonable to hypothesize that such a classifi-
cation must have some impact on the structure of the considered lattice of varieties, even if
we consider ordinary rings without involution. The exact strength of this impact is shown in
the following result.

Theorem 9. Let n be a positive integer, and let {p1, . . . , pk} be the set of all prime numbers
pi such that (pi − 1) | n. Further, let L denote the lattice of all varieties of rings (with
involution) satisfying xn+1 = x, and let Lpi denote the sublattice of L consisting only of those
varieties satisfying pix = 0 (i.e. varieties of characteristic pi). Then L ∼= Lp1 × . . .× Lpk .

Proof. It is not difficult to see that it suffices to prove the following assertion: let V1, . . . ,Vk
be varieties of rings (with involution) satisfying xn+1 = x, such that Vi is of characteristic pi,
1 ≤ i ≤ k, and let R be a subdirectly irreducible member of the join V1 ∨ . . . ∨ Vk; then R
belongs to one of Vi, 1 ≤ i ≤ k. More generally, we are going to show that if char(R) = pi
and R ∈ V1∨ . . .∨Vk, then R ∈ Vi even without the assumption of the subdirect irreducibility
of R.
Assume to the contrary: that R is of prime characteristic pi, but R 6∈ Vi. From universal

algebra (see [6]) it is known that R is a homomorphic image of a subdirect product of members
of V1, . . . ,Vk (note that all factors also have prime characteristics). Let S be that subdirect
product (so that R = ψ(S) for some homomorphism ψ); then S is a subring of a direct
product of the form R1 × . . .×Rk, where for all 1 ≤ i ≤ k, Ri ∈ Vi.
Clearly, every element a ∈ S can be written in the form

a = a1 + . . .+ ak,

such that piai = 0 (i.e. ai is pi-torsion) – it suffices to choose

ai = (0, . . . , 0, πi(a), 0, . . . , 0),

where πi is the ith canonical projection of the considered direct product and πi(a) occurs in
the ith coordinate. Now denote

qi = p1 . . . pi−1pi+1 . . . pk.

Since (pi, qi) = 1, there exists an integer `i such that qi`i ≡ 1 (mod pi). Obviously, qi`ia ∈ S.
However, we also have qiaj = 0 for all j 6= i, yielding qi`ia = qi`iai = ai. Thus, ai ∈ S. But
since πi(S) = Ri for all 1 ≤ i ≤ k, it easily follows that S = R1 × . . .×Rk.
Now ψ(S) is of characteristic pi. Therefore, for each a ∈ S, we have piψ(a) = 0. By

Chinese Remainder Theorem, and since (pi, pj) = 1 for j 6= i, one can find an integer ` such
that it satisfies the system of linear congruences

pi` ≡ 1 (mod pj), 1 ≤ j ≤ k, j 6= i.
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For such a choice of `, it follows that (with respect to the above decomposition of a) pi`ai = 0
and pi`aj = aj for all j 6= i, so that

0 = pi`ψ(a) = ψ(pi`a) = ψ(a− ai) = ψ(a)− ψ(ai),

whence ψ(a) = ψ(ai). Thus, R = ψ(S) can be represented as a homomorphic image of Ri,
implying R ∈ Vi, as desired. 2

Hence, the task of finding the lattice of varieties of rings (with involution) satisfying xn+1 = x
reduces to the determination of the structure of lattices of varieties satisfying xn+1 = x and
px = 0, where (p − 1) | n. In the example that we aim to present we have n = 6, so that
p ∈ {2, 3, 7}. When we consider ordinary rings, without involution, the situation is more or
less clear: for p = 2 we have two subdirectly irreducibles, GF (2) and GF (4), where GF (2)
embeds into GF (4); for p = 3 we have GF (3), and for p = 7 we have GF (7). Thus, it is easy
(using the above theorem) to verify that there are 12 ring varieties satisfying x7 = x, and
their inclusion diagram is given in Figure 1, with indicated positions of the fields just listed.
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Figure 1. All varieties of rings satisfying x7 = x

However, the situation with involution rings obeying x7 = x is somewhat more complicated.
The complication arises mostly from the rings of characteristic 2, since there are five such
which are subdirectly irreducible. The characteristic 3 and 7 rings are much easier to deal
with. The following lemma solves, in particular, the latter two cases.

Lemma 10. Both GF (pk) and GF ∗(pk) (provided the latter exists) can be embedded into
Ex(GF (pk)).

Proof. Consider the set of all elements of Ex(GF (pk)) which are fixed by the involution.
These are all elements of the form (a, a), a ∈ GF (pk), and 0. It is an easy exercise to show
that these elements form a subring of Ex(GF (pk)), endowed with an identical involution,
which is isomorphic to GF (pk).
On the other hand, assume that k = 2m and set r = pm for short. Consider the zero of

Ex(GF (pk)) and its elements of the form (a, ar), a ∈ GF (pk). This set is obviously closed
under multiplication and

(a, ar)∗ = (ar, a) = (ar, ar
2

) = (a, ar)r.
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Finally,
(a, ar) + (b, br) = (a+ b, ar + br).

However, since we are working with characteristic p, by a repeated use of ‘Freshmen’s Dream’
(a+ b)p = ap + bp we have ar + br = (a+ b)r, and the lemma is proved. 2

From the above lemma it follows that the lattices of varieties of rings with involution satisfying
x7 = x and px = 0 are isomorphic to the three-element chain both for p = 3 and p = 7. Now
it remains to settle the case p = 2, which is somewhat more involved.

Lemma 11. The lattice of varieties of rings with involution satisfying x7 = x and 2x = 0 is
the one given by Figure 2, with the indicated positions of the subdirectly irreducibles.
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Figure 2. All varieties of rings with involution satisfying x7 = x and 2x = 0

Proof. From Theorem 2 it follows that there are exactly five subdirectly irreducible rings with
involution of characteristic 2 which satisfy x7 = x; these are: GF (2), Ex(GF (2)), GF (4),
GF ∗(4) and Ex(GF (4)). Note that all of them obey x4 = x; thus, we may work with this
simpler identity.
First of all, GF (2) embeds in each of the four other rings with involution from the above

list, so that it generates the unique minimal subvariety in the required lattice.
To prove that the ‘middle part’ of Figure 2 indeed should be the three-dimensional cube,

it suffices to prove that for each of Ex(GF (2)), GF (4) and GF ∗(4) one can find an identity
which fails in the considered algebra, but holds in the other two. Consider the following
identities:

(x3)∗ = x3, (1)

(x3 + x)∗ = x3 + x2, (2)

(x3 + x)∗ = x3 + x. (3)

In GF (2) we have x3 = x2 = x, so (1) fails in Ex(GF (2)), since the latter has a nonidentical
involution. On the other hand, (1) is true both in GF (4) and GF ∗(4), because for each a,
a3 ∈ {0, 1} and so, a3 is fixed by the involution. Further, (2) is obviously false in GF (4),
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as x = x2 is not true in this field. Yet, in Ex(GF (2)), (2) holds because both sides always
evaluate to zero, while in GF ∗(4) we have

(x3 + x)∗ = (x3 + x)2 = x6 + 2x4 + x2 = x6 + x2 = x3 + x2.

Finally, (3) is true in Ex(GF (2)) for the same reason as above, and it trivally holds in GF (4).
However, in the above chain of identities we have just seen that it cannot be true in GF ∗(4).
Finally, the variety V generated by the three algebras just considered is by Lemma 10

contained in the variety generated by Ex(GF (4)). That such an inclusion must be proper is
verified by the identity

(x2 + x)∗ = x2 + x,

which is true in V , but fails in Ex(GF (4)), since we can take x to be an element of the first
summand in Ex(GF (4)) different from the zero and from the identity element of GF (4),
whence x2 + x becomes the identity element of GF (4) – clearly not a fixed point of the
involution. The lemma is proved. 2

Summing up, we have constructed our example, as we have proved

Proposition 12. The variety of rings with involution defined by x7 = x has exactly 90
subvarieties, and they form a lattice isomorphic to the direct product of the lattice described
in Lemma 11 and the square of the three-element chain.

In particular, there are six varieties of rings with a special involution: these are varieties
generated by GF (2), GF (3) and GF ∗(4), their joins, and the trivial variety. Their lattice is
isomorphic to the direct product of the two-element and the three-element chain.
By similar methods as those presented in this section, one can apply our Theorem 2 (along

with Theorem 9) for calculating the lattice of varieties of rings with involution satisfying
xn+1 = x for an arbitrary (but fixed) positive integer n.

Acknowledgement. The authors are indebted a great deal to the referee for finding a
substantial short-cut in the proof of Theorem 2. In particular, Lemmata 3 and 5 of the
present paper were suggested by him/her.
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