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Abstract. Quadratically parametrized smooth maps from one complex projective
space to another are constructed as projections of the Segre map of the complexifi-
cation. A classification theorem relates equivalence classes of projections to congru-
ence classes of matrix pencils. Maps from the 2-sphere to the complex projective
plane, which generalize stereographic projection, and immersions of the complex
projective plane in four and five complex dimensions, are considered in detail. Of
particular interest are the CR singular points in the image.
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1. Introduction

It was shown by [23] that the complex projective plane CP 2 can be embedded in R7. An
example of such an embedding, where R7 is considered as a subspace of C4, and CP 2 has
complex homogeneous coordinates [z1 : z2 : z3], was given by the following parametric map:

[z1 : z2 : z3] 7→
1

|z1|2 + |z2|2 + |z3|2
(z2z̄3, z3z̄1, z1z̄2, |z1|

2 − |z2|
2).

Another parametric map of a similar form embeds the complex projective line CP 1 in
R3 ⊆ C2:

[z0 : z1] 7→
1

|z0|2 + |z1|2
(2z̄0z1, |z1|

2 − |z0|
2).
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This may look more familiar when restricted to an affine neighborhood, [z0 : z1] = (1, z) =
(1, x+ iy), so the set of complex numbers is mapped to the unit sphere:

z 7→ (
2x

1 + |z|2
,
2y

1 + |z|2
,
|z|2 − 1

1 + |z|2
),

and the “point at infinity”, [0 : 1], is mapped to the point (0, 0, 1) ∈ R3. This is the usual
form of the “stereographic projection” map.
This article will consider embeddings of CPm which generalize the above examples by

considering quadratic polynomials with arbitrary complex coefficients on terms ziz̄j. By
considering two parametric maps equivalent if one is related to another by complex linear
coordinate changes of the domain and target, the classification of these maps is reduced to a
problem in matrix algebra.
This project was originally motivated by the study of real submanifolds of Cn, and in

particular how the topology of a compact submanifold is related to whether any of its tangent
planes contain a complex line.
For example, [9] and [4] considered real 4-manifolds immersed in C5 (or some other

(almost) complex 5-manifold), which will generally have isolated points where the real tangent
space contains a complex line. Such points are called complex jump points, complex tangents,
or CR singularities; a manifold without such points will be called totally real. Isolated complex
tangents can be assigned an integer index, which is 1 or −1 when the submanifold is in general
position, and which reverses when the submanifold’s orientation is switched. For compact
submanifolds, the sum of these indices is then determined by a characteristic class formula.
In the case where the complex projective plane CP 2, considered only as a smooth, oriented
4-manifold, is immersed in C5, it cannot be totally real, and the index sum for a generic
immersion is the first Pontrjagin number, p1CP 2 = 3. The existence of an embedding with
exactly three complex tangents follows from a lemma of [9] which uses results of Gromov.
One of the main results of this paper is an explicit formula defining such an embedding
(Example 5.3).
The next section will set up a general construction for mapping a complex projective

m-space into a complex projective n-space. Section 3 is a brief review of the topology of
generically immersed real submanifolds, which will define the notion of “general position”
and give a formula for the expected dimension of CR singular loci. Sections 4 and 5 will
consider immersions of CPm in CP n, in the cases where m = 1, n = 2, and m = 2, n = 5.

2. The projective geometric construction

The complex projective m-space, CPm, is the set of complex lines containing the origin in
Cm+1, so each line z will have homogeneous coordinates [z0 : z1 : . . . : zm]. A nonzero vector
spanning the line z will be written as a column vector ~z. A vector ~z can be multiplied by
an invertible square matrix A with complex entries: ~z 7→ A~z, and this defines a group action
on CPm. The set of nonzero complex scalar multiples {c · A, c 6= 0} is an element of the
projective general linear group, PGL(m + 1,C). (Usually, the equivalence class of matrices
{c · A} will be abbreviated as A.)
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The following map is formed by all the (m + 1)2 quadratic monomials ziwj in the com-
ponents of two vectors ~z and ~w:

s : Cm+1 × Cm+1 → C(m+1)2

(~z, ~w) 7→ (z0w0, z0w1, . . . , z0wm, . . . , zmw0, . . . , zmwm).

Since it has the property that s(λ · ~z, µ · ~w) = λ ·µ · s(~z, ~w) for all λ, µ ∈ C, it induces a map:

s : CPm × CPm → CPm2+2m

(z, w) 7→ [z0w0 : z0w1 : . . . : z0wm : . . . : zmw0 : . . . : zmwm],

called the Segre map, which is a holomorphic embedding.
Define a vector space isomorphism from the space of d×d complex matrices to the space

of column d2-vectors by stacking the columns of the matrix:

vec :M(d,C) → Cd2

(~z 1 · · · ~z d)d×d 7→




~z 1

...
~z d





d2×1

.

This is the well-known “vectorization” map from matrix algebra ([14]). Denote its inverse
by k : Cd2 →M(d,C). The induced map CP d2−1 → CP (M(d,C)) is also denoted k.
The composition of the Segre map with the isomorphism k (in the case d = m + 1) has

the following interpretation in terms of matrix multiplication:

(k ◦ s)(~z, ~w) = ~w · ~zT . (1)

~zT is a row vector, the transpose of ~z, so the RHS is a (line spanned by a) rank ≤ 1 matrix
of size (m+ 1)× (m+ 1).
This construction could be considered more abstractly. The following (optional) sketch

links the above notation with standard notions from geometry and multilinear algebra (see
[12], [15], [5]). Let V be a finite-dimensional complex vector space, and denote by V ∗ the
“dual” space of C-linear functions φ : V → C, and by End(V ) the set of endomorphisms
V → V . Then, define a map k : V ∗⊗V → End(V ), first by stating the following formula for
tensor products: for ~v, ~w ∈ V , and φ ∈ V ∗,

k(φ⊗ ~w) : ~v → (φ(~v)) · ~w,

and then defining the map k for all elements of V ∗ ⊗ V by extending by C-linearity, to get
an isomorphism of vector spaces. Let s be the universal bilinear function V ∗× V → V ∗⊗ V .
Then, a vector ~z ∈ V determines a dual vector φ, by φ : ~v 7→ ~z T ·~v, and (k◦s)(φ, ~w) = k(φ⊗~w)
is an endomorphism taking every vector ~v to some multiple of ~w, just as in equation (1).
The next ingredients in the construction are a number n such that 0 ≤ 2m ≤ n ≤ m2+2m,

and a (n + 1) × (m + 1)2 matrix P with complex entries and full rank n + 1 ≤ (m + 1)2,
called the coefficient matrix. The linear transformation C(m+1)2 → Cn+1 (also denoted P )
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induces a “projection” map CPm2+2m → CP n, (also denoted P ) defined for all elements z
except those lines in the kernel of P . Let CP n have homogeneous coordinates [Z0 : . . . : Zn].
Formally, the composition P ◦ s can be written:

(z, w) 7→ [P0 : . . . : Pn],

with complex coefficients pi,jk (the (n+ 1)× (m+ 1)
2 entries of matrix P ) on each term:

Pk =
m∑

i,j=0

pi,jk ziwj.

P ◦ s will be a well-defined map CPm × CPm → CP n if the image of s is disjoint from the
kernel of P , and otherwise will be a “rational map,” well-defined only at each point whose
image under s is not in the kernel of P .
The previously mentioned bound 2m ≤ n means that the dimension of the domain of

P ◦ s : CPm × CPm → CP n is less than or equal to the dimension of the target. It also
implies that the dimension of the image of s in CPm2+2m is less than the codimension (n+1)
of the (projective) kernel of P , so that generically, but not always, the image of s is disjoint
from the kernel of P .

Example 2.1. The m = 1, n = 2 case is in the assumed dimension range. A 3× 4 matrix P
with rank 3 has a kernel equal to a line in C4, or a single point x ∈ CP 3. P ◦s : CP 1×CP 1 →
CP 2 is well-defined if the two-dimensional image of smisses the point x in CP 3, and otherwise
is defined on all but one point of CP 1 × CP 1.

Although s is an embedding, the composition P ◦ s may not be one-to-one, and may also
have singular points, where its (complex) Jacobian has rank less than 2m.

Definition 2.2. For a given pair m, n, two coefficient matrices P and Q are c-equivalent if
there exist three invertible matrices, A, B ∈ GL(m + 1,C), C ∈ GL(n + 1,C) such that for
all (~z, ~w) ∈ Cm+1 × Cm+1,

(Q ◦ s)(~z, ~w) = (C ◦ P ◦ s)(A~z,B ~w) ∈ Cn+1.

It is easy to check c-equivalence is an equivalence relation.

Theorem 2.3. P and Q are c-equivalent if and only if there exist A, B ∈ GL(m + 1,C)
such that the following (m2 + 2m− n)-dimensional subspaces of M(m+ 1,C) are equal:

k(ker(P )) = B · (k(ker(Q))) · AT .

Proof. For invertible matrices A, B ∈M(m+ 1,C), the map

~v 7→ vec(B · (k(~v)) · AT )

is a C-linear invertible map C(m+1)2 → C(m+1)2 . Its representation as a square matrix will be
denoted [A⊗B].
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Using equation (1),

(k ◦ s)(A~z,B ~w) = (B · ~w) · (A · ~z)T

= B · ~w · ~zT · AT

= B · ((k ◦ s)(~z, ~w)) · AT

= k([A⊗B] · (s(~z, ~w))).

Since k is an isomorphism,

s(A~z,B ~w) = [A⊗B] · (s(~z, ~w)).

(This motivates the notation [A ⊗ B], in terms of the abstract version of the construction.
For present purposes, [A⊗B] is merely a convenient label; see [14] or [5] for the connections
between vec and tensor products.)
So, from the definition of c-equivalence,

(Q ◦ s)(~z, ~w) = (C ◦ P ◦ s)(A~z,B ~w) = (C ◦ P ◦ [A⊗B])(s(~z, ~w)),

and since the image of s : Cm+1 × Cm+1 → C(m+1)2 spans the target space, Q and P are
c-equivalent if and only if there exist A, B, C so that

Q = C · P · [A⊗B].

This equation says Q and P ·[A⊗B] are row-equivalent, and therefore also solution-equivalent,
i.e., there exists such an invertible C if and only if ker(Q) = ker(P · [A⊗B]) (see [15], [13]).
Of course, this equality of subspaces of C(m+1)2 is equivalent to the equality of subspaces of
M(m+ 1,C):

k(ker(Q)) = k(ker(P · [A⊗B])).

Suppose K ∈ k(ker(P · [A⊗B])). This is equivalent to

~0 = (P · [A⊗B])(vec(K)) = P · vec(B ·K · AT ),

by definition of [A⊗B], or, equivalently,

vec(B ·K · AT ) ∈ ker(P ) ⇐⇒ B ·K · AT ∈ k(ker(P )).

This proves the claim of the theorem. �

It follows immediately from the Definition that if P and Q are c-equivalent coefficient matri-
ces, then there exist automorphisms A, B ∈ PGL(m + 1,C), C ∈ PGL(n + 1,C) such that
the compositions of induced maps are equal for all (z, w) ∈ CPm×CPm where the quantities
are defined:

(Q ◦ s)(z, w) = (C ◦ P ◦ s)(Az,Bw) ∈ CP n.

Geometrically, C corresponds to a linear transformation of the target CP n, and the maps
(z, w) 7→ (Az,Bw) form a subgroup of the group of holomorphic automorphisms of the
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domain CPm × CPm. This is the connected component containing the identity in the auto-
morphism group, and a proper subgroup since (z, w) 7→ (w, z), for example, is holomorphic.
The converse assertion, that if there exist automorphisms such that the above induced

maps are equal, then the corresponding coefficient matrices are c-equivalent, is another issue,
which we will not address here.
The last map to be introduced in this section is the totally real diagonal embedding,

∆ : CPm → CPm × CPm

z 7→ (z, z̄).

The image of ∆ is exactly the fixed point set of the involution (z, w) 7→ (w̄, z̄), and the
product space CPm×CPm could be considered the “complexification” of its real submanifold
∆(CPm). The composition s ◦ ∆ : CPm → CPm2+2m is a smooth embedding, but not
holomorphic for m > 0. It has the following form:

z 7→ [z0z̄0 : z0z̄1 : . . . : z0z̄m : . . . : zmz̄0 : . . . : zmz̄m].

[16] calls s ◦ ∆ the “skew-Segre” embedding, and shows how it is related to the Mannoury
embedding of CPm into an affine space Cm2+2m+1 (the m = 2 case will appear in Example
5.6).
For a projection map P , the composition P ◦ s ◦∆ : CPm → CP n is also smooth where

it is defined, but not necessarily one-to-one or nonsingular. It is possible that P ◦ s ◦∆ is an
embedding even if P ◦ s is not.

Example 2.4. The stereographic projection from the introduction can be written as a map
CP 1 → CP 2,

[z0 : z1] 7→ [|z0|
2 + |z1|

2 : 2z̄0z1 : |z1|
2 − |z0|

2],

so the image is contained in the affine neighborhood {[Z0 : Z1 : Z2] : Z0 6= 0}. The map s◦∆
in this case has the form

[z0 : z1] 7→ [z0z̄0 : z0z̄1 : z1z̄0 : z1z̄1],

and the coefficient matrix (acting on columns) is

P =




1 0 0 1
0 0 2 0
−1 0 0 1





3×4

.

Note that ker(P ) is the complex line [0 : 1 : 0 : 0], and this point is in the image of s, so the
composition P ◦ s : CP 1 × CP 1 → CP 2 is not defined at the point x = ([1 : 0], [0 : 1]). The
singular locus in the domain is a 1-dimensional subvariety S defined by z1w0 = 0, which is
the union of two lines,

S = ((CP 1 × {[0 : 1]}) ∪ ({[1 : 0]} × CP 1)) \ {([1 : 0], [0 : 1])}
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(their point of intersection is x, which is not in the domain). The real diagonal ∆(CP 1) does
not meet x, and meets S at two points, ([0 : 1], [0 : 1]) and ([1 : 0], [1 : 0]). The image of S is
a set of two points,

(P ◦ s)(S) = {[1 : 0 : 1], [1 : 0 : −1]} ⊆ CP 2.

The image (P ◦ s ◦∆)(CP 1) is a sphere which is contained in the affine neighborhood {[Z0 :
Z1 : Z2] : Z0 = 1}, and the two points in the image of the singular locus are the “North and
South Poles” of the stereographic projection where (not coincidentally) the tangent plane to
the sphere is a complex line.

Example 2.5. The first example from the introduction falls in the m = 2, n = 4 case, and
the coefficient matrix is

P =





1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0





5×9

.

As in the previous example, the top row of P is the sequence of coefficients from the denom-
inator. The kernel of P is a 4-dimensional subspace of C9, equal to the set of vectors of the
form

(c1, 0, c2, c3, c1, 0, 0, c4,−2c1)
T

for any complex constants c1, . . . , c4. The kernel of P meets the image of s at exactly three
points, corresponding to

{([0 : 0 : 1], [0 : 1 : 0]), ([0 : 1 : 0], [1 : 0 : 0]), ([1 : 0 : 0], [0 : 0 : 1])}

in the domain of s, so P ◦ s is not defined at those three points. The real diagonal ∆(CP 2)
does not meet any of the three points, and P ◦ s ◦∆ : CP 2 → CP 4 is an embedding into the
affine neighborhood {Z0 = 1}.

There are several ways to calculate the intersection of kerP and the image of s. An easy way
is to use equation (1), recalling that a matrix is in the image of k ◦ s if it has rank 1. In the
above example, k(kerP ) is the subspace of matrices of the form




c1 c3 0
0 c1 c4
c2 0 −2c1



 .

A matrix of this form has rank 1 only if c1 and two out of three of the other coefficients are
0, for example, 


0 0 0
0 0 1
0 0 0



 =




0
1
0



 · (0, 0, 1).

Lemma 2.6. The subgroup of PGL(m+1,C)×PGL(m+1,C) that leaves invariant the set
∆(CPm) is the set of automorphisms of the form (z, w) 7→ (Az, Āw).
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Proof. Ā denotes the entrywise complex conjugate of the matrix A, but the above auto-
morphisms are still holomorphic, and obviously form a subgroup. For (z, z̄) ∈ ∆(CPm),
(Az, Āz̄) = ∆(Az), so this subgroup fixes the image of ∆. Conversely, if (A,B) ∈ PGL(m+
1,C) × PGL(m + 1,C) has the property that for all (z, z̄) ∈ ∆(CPm), (Az,Bz̄) is also in
∆(CPm), then Az = Bz̄ = B̄z for all z, so A = B̄. �

Definition 2.7. For a given pair m, n, two coefficient matrices P and Q are r-equivalent
if there exist two invertible matrices A ∈ GL(m + 1,C), C ∈ GL(n + 1,C) such that for all
(~z, ~w) ∈ Cm+1 × Cm+1,

(Q ◦ s)(~z, ~w) = (C ◦ P ◦ s)(A~z, Ā~w).

This is obviously an equivalence relation, and if P and Q are r-equivalent, then they are also
c-equivalent. Lemma 2.6 gives a geometric interpretation of the relationship between the two
equivalences.

Theorem 2.8. P and Q are r-equivalent if and only if there exists an invertible matrix
A ∈M(m+1,C) such that the following (m2+2m−n)-dimensional subspaces of M(m+1,C)
are equal:

k(ker(P )) = A · (k(ker(Q))) · ĀT .

Proof. The proof of Theorem 2.3 goes through with only the obvious modifications. Since
s(A~z, Ā~w) = [A ⊗ Ā] · (s(~z, ~w)), the following are equivalent: Q and P are r-equivalent;
Q = C ◦ P ◦ [A ⊗ Ā]; ker(Q) = ker(P · [A ⊗ Ā]); k(ker(Q)) = k(ker(P · [A ⊗ Ā])). Also,
K ∈ k(ker(P · [A⊗ Ā])) ⇐⇒ Ā ·K · AT ∈ k(ker(P )). �

In matrix algebra, a subspace of a space of matrices is called a “pencil,” and matrices or
pencils K, M satisfying M = AKĀT are “congruent” or “conjunctive.” Theorems 2.3 and
2.8 were motivated by a similar construction in [7], where the real projective plane was
mapped to RP 3 by projections of the Veronese map, and the (finitely many) equivalence
classes of such projections were found by classifying congruence classes of real symmetric
matrix pencils.
The r-equivalence of matrices P and Q also implies the existence of automorphisms

A ∈ PGL(m + 1,C), C ∈ PGL(n + 1,C) such that the compositions of induced maps are
equal:

Q ◦ s ◦∆ = C ◦ P ◦ s ◦∆ ◦ A : CPm → CP n.
As with c-equivalence, the A and C matrices from Definition 2.7 are complex automorphisms
of the domain and range of a map CPm → CP n, and r-equivalence seems to be a natural
way to classify maps of the form P ◦ s ◦∆.
Once again, the converse assertion, whether the equality of induced maps implies the

r-equivalence of matrices, will not be treated in general. However, something even stronger
can be proved in the case m = 1, n = 2. It will follow from the classification of Theorem 4.3
that if there are automorphisms A, C such that Q ◦ s ◦∆ and C ◦P ◦ s ◦∆ ◦A, as maps from
CP 1 to CP 2, have the same image, then P and Q are r-equivalent matrices.
If the images of P ◦ s ◦∆ and Q ◦ s ◦∆ are both contained in some affine neighborhood,

as in the two examples from the introduction, a weaker notion of equivalence would allow
real-linear transformations of the affine target space. However, such transformations could
distort the interesting CR singular structure.
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3. Review of complex tangents

The following general facts about real submanifolds of high codimension in Cn are recalled
from [10], [4], which both generalize these ideas to real submanifolds of almost complex
manifolds, and give further references on this subject.
Consider 0 ≤ d ≤ n, and an oriented manifoldM of real dimension d inside Cn, where Cn

can be described as a 2n-dimensional real vector space, together with a real-linear complex
structure operator J such that J ◦ J = −Id. If the tangent space at a point x ∈M satisfies
TxM ∩ JTxM = {~0}, i.e., the subspace meets its rotation by J only at the origin, then TxM
is called totally real. This implies that the subspace TxM contains no complex lines. The
manifold M is also called totally real at x, and a totally real submanifold if it is totally real
at every point.
The totally real subspaces form a dense open subset of the Grassmann manifold G(d, 2n)

of all real, oriented, d-dimensional subspaces in Cn. The subspaces T which are not totally
real form a subvariety of real codimension 2(n − d + 1) in the d(2n − d)-dimensional space
G(d, 2n). More generally, T ∩JT is always a complex subspace of Cn, and the set of d-planes
T such that dimC T ∩JT ≥ j is a subvariety Dj. Dj \Dj+1 is a smooth, oriented submanifold
of real codimension 2j(n−d+j) in G(d, 2n). If the Gauss map γ : x 7→ TxM of a submanifold
M in Cn misses Dj for j > 0,M is totally real. Otherwise,M has “CR singular” loci, indexed
by j,

Nj = {x ∈M : γ(x) ∈ Dj} = {x ∈M : dimC TxM ∩ JTxM ≥ j},

which have an “expected” codimension 2j(n − d + j) in M . The usual warnings about
intersections apply — Nj could be empty, and need not be a submanifold of M . Example
5.4 will demonstrate an exception to the expected codimension formula.
When the dimension d is equal to 2j(n−d+ j) for some j, the locus Nj is expected to be

a set of isolated points. For the purposes of this article, M is said to be “in general position”
if d = 2j(n − d + j), γ(M) meets Dj transversely in G(d, 2n), and Nj+1 = Ø. Then, the
“index” of each point in Nj is the oriented intersection number, ±1, of γ(M) and Dj.

Example 3.1. A real n-manifold immersed in Cn is expected to have complex tangents
along a locus N1 of real codimension 2. A manifold with nonzero euler characteristic cannot
have a totally real embedding in Cn. The stereographic embedding from the introduction is
an example of a 2-sphere embedded in C2 with two complex tangents.

Example 3.2. In the geometric construction of the previous section, the complex projective
m-space (real dimension d = 2m) is mapped to a complex n-manifold with 2m ≤ n. The
expected behavior is that the image will be totally real outside a locus N1 of real codimension
2(n−2m+1). So, when the real dimension is less than this number, 2m < 2(n−2m+1) ⇐⇒
m < 1

3
(n+ 1), the image of CPm will generically be totally real in CP n. Otherwise, N1 will

generically be either empty, or of real dimension 2m− 2(n− 2m+ 1) = 2(3m− n− 1).

Example 3.3. For a real 8-manifold in general position in a complex 8-manifold, the locus
of complex tangents is a (possibly empty) 6-dimensional subset N1, and the points x where
j = dimC Tx ∩ JTx = 2 will form a subset N2 of isolated points in N1.
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A complex automorphism of the ambient space will not change the CR singular structure
of any real submanifold; the dimension of TxM ∩ JTxM remains invariant under any local
biholomorphism around the point x. Also, suppose there is a holomorphic map f from one
complex manifold to another, so that f is an embedding when restricted to a neighborhood
of a point x in the domain, and M is a submanifold in this neighborhood which is totally
real at x. Then the image f(M) is a submanifold in a neighborhood of f(x), and f(M) is
totally real at f(x).
In particular, two maps P ◦ s ◦ ∆ and Q ◦ s ◦ ∆ with r-equivalent coefficient matrices

will have images with the same number and dimension (j) of complex tangents. Given a
coefficient matrix P , and a point (z, z̄) where P ◦ s is nonsingular, the restriction of P ◦ s to
a neighborhood of (z, z̄) will be an embedding. Since ∆(CPm) is totally real in CPm×CPm,
its image will also be totally real at (P ◦ s ◦ ∆)(z, z̄) ∈ CP n. The only place a complex
tangent could occur in the image of P ◦ s ◦ ∆ would be in the singular value set of P ◦ s.
This was already observed in Example 2.4, and this phenomenon will be the crucial step in
finding the exact CR singular locus of some immersions in Section 5.

4. Real spheres in CP 2

This section will cover the m = 1, n = 2 case of the construction from Section 2, establishing
the c-equivalence and r-equivalence classes of 3× 4 coefficient matrices, which correspond to
maps from CP 1 × CP 1 and CP 1 to CP 2.

Theorem 4.1. There are two c-equivalence classes of 3×4 matrices P , characterized by the
rank of k(kerP ).

Proof. Of course, by “rank(k(kerP ))” we mean the rank of a non-zero matrix which spans
the line.
From Theorem 2.3, the c-equivalence classes are defined by classifying k(kerP ), a one-

dimensional subspace of M(2,C), spanned by some nonzero matrix K, up to the following
equivalence relation: given any A,B ∈ GL(2,C), the following complex lines are equivalent:

{c ·K : c ∈ C} ∼ {c · AKB : c ∈ C}.

The first case is where K is nonsingular, in which case choosing A = K−1, B = Id, shows
that all such subspaces are equivalent to the subspace spanned by the identity matrix.
The second case is that K is singular, and since it spans a line, it has rank 1. It is a

straightforward calculation to check that there exist A, B so that AKB =

(
1 0
0 0

)
, so all

P so that K has rank 1 are c-equivalent. �

To summarize, the two classes of coefficient matrices P can be distinguished in several dif-
ferent ways.

Case 1: The following are equivalent.

• P is c-equivalent to




1 0 0 −1
0 1 0 0
0 0 1 0



.
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• There exist A, B, C, so that (C ◦ P ◦ s)(Az,Bw) = [z0w0 − z1w1 : z0w1 : z1w0].

• k(ker(P )) is spanned by a rank 2 matrix, so ker(P ) does not intersect the image of s,
and P ◦ s is defined on all of CP 1 × CP 1.

Case 2: The following are equivalent.

• P is c-equivalent to




1 0 0 1
0 0 2 0
−1 0 0 1



 .

• There exist A, B, C, so that (C ◦P ◦ s)(Az,Bw) = [z0w0+ z1w1 : 2z1w0 : z1w1− z0w0].

• k(ker(P )) is spanned by a rank 1 matrix, so ker(P ) intersects the image of s at one
point, and P ◦ s is defined on all of CP 1 × CP 1 except for one point.

In some higher-dimensional cases where ker(P ) is still just a line, Theorem 4.1 easily gener-
alizes, and we only sketch a proof.

Theorem 4.2. For n = (m + 1)2 − 2, so that the kernel of each of the coefficient matri-
ces P , Q, is one-dimensional, P and Q are c-equivalent if and only if rank(k(ker(P ))) =
rank(k(ker(Q))), so there are m+ 1 c-equivalence classes.

Proof. The rank of a matrix is the only invariant under the equivalence of K and AKB (see
[13], §3.5). The kernel of P is spanned by some non-zero (m+1)× (m+1) matrix, which can
be put into a diagonal normal form with 1 and 0 entries, according to its rank, 1, . . . ,m+1.
Theorem 2.3 then establishes the c-equivalence classes. �

The two cases of Theorem 4.1 break down into more cases under r-equivalence, and there
will be some continuous invariants.

Theorem 4.3. The r-equivalence classes of 3 × 4 matrices P are characterized by the con-
gruence class of k(ker(P )), each class corresponding to exactly one of the following normal
forms for basis elements of k(ker(P )):

•

(
1 0
0 α

)
, α = cos(θ) + i sin(θ), 0 ≤ θ ≤ π,

•

(
0 1
β 0

)
, 0 ≤ β < 1,

•

(
0 1
1 i

)
,

•

(
1 0
0 0

)
.

Proof. The correspondence between r-equivalence and congruence of the kernels was estab-
lished in Theorem 2.8, so it is enough to find the congruence classes of the one-dimensional
kernels of P . If K spans ker(P ), it can be decomposed into its Hermitian and skew-Hermitian
parts, K = Kh + iKs, Kh =

1
2
(K + K̄T ), Ks =

1
2i
(K − K̄T ). This is somewhat arbi-

trary, since K spans a complex line, and the decomposition is not respected by complex
scalar multiplication. However, the decomposition is respected by the congruence operation:
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(AKĀT )h = AKhĀ
T , and there is a well-developed theory of simultaneous congruence for

pairs of Hermitian matrices Kh, Ks.
Following [13] §4.5, there are two main cases, the first is where Kh is nonsingular. Then,

there are a few possible normal forms for pairs, according to the following list.

1. Kh =

(
1 0
0 1

)
, Ks =

(
λ1 0
0 λ2

)
, λ1, λ2 ∈ R.

2. Kh =

(
1 0
0 −1

)
, Ks =

(
λ1 0
0 −λ2

)
, λ1, λ2 ∈ R.

3. Kh =

(
−1 0
0 −1

)
, Ks =

(
−λ1 0
0 −λ2

)
, λ1, λ2 ∈ R.

4. Kh =

(
0 1
1 0

)
, Ks =

(
0 α
ᾱ 0

)
, α ∈ C.

5. Kh =

(
0 1
1 0

)
, Ks =

(
0 λ
λ 1

)
, λ ∈ R.

6. Kh =

(
0 −1
−1 0

)
, Ks =

(
0 −λ
−λ −1

)
, λ ∈ R.

In each of these cases, recombining the two matrices as K = Kh + iKs, then scaling by a
complex number c, and then possibly using another congruence transformation, will bring K
to one of the normal forms claimed in the theorem.

1. K =

(
1 + iλ1 0
0 1 + iλ2

)
spans the same line as

(
1 0
0 1+iλ2

1+iλ1

)
. As λ1, λ2 can be

any real numbers, the fraction 1+iλ2
1+iλ1

can be 1, or any non-real complex number α. For

A =

(
1 0
0 x

)
, AKĀT is of the form

(
1 0
0 xx̄α

)
, so the entry α can be scaled to

have absolute value 1, and can be any element of S1 ⊆ C except −1. Then, congruence

by

(
0 1
1 0

)
transforms

(
1 0
0 α

)
to

(
α 0
0 1

)
= α ·

(
1 0
0 ᾱ

)
, so α can be assumed

to lie in the closed upper half-plane, and the congruence classes are parametrized by
α = cos(θ) + i sin(θ), for 0 ≤ θ < π.

2. K =

(
1 + iλ1 0
0 −1− iλ2

)
spans the same line as

(
1 0
0 −1+iλ2

1+iλ1

)
. By the same

calculations as in the previous case, the lower right entry can be scaled to any element
of S1 except 1 ∈ C, so this case overlaps with the previous to give α = cos(θ)+ i sin(θ),
0 < θ ≤ π. By the Law of Inertia ([13]), the α = 1 and α = −1 cases are not equivalent.
It is a straightforward calculation to check that the lines spanned by matrices with
different values of α in the upper half-plane are not congruent.

3. This case is the same as case 1, since K spans the same complex line as the matrix
from case 1.

4. In this case, K =

(
0 1 + iα

1 + iᾱ 0

)
. Let a = iα, and assume a 6= −1, so K spans

the same line as

(
0 1
1−ā
1+a

0

)
. The fraction 1−ā

1+a
can assume the value 1, or any other
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complex number not on the unit circle. Congruence by the matrix

(
1 0
0 x

)
can rotate

the value of the fraction by x
x̄
, to some β on the nonnegative real axis. As in case 1,

congruence by

(
0 1
1 0

)
transforms β to 1/β, so that the congruence classes can be

represented by β ∈ [0, 1]. However, the β = 1 case is Hermitian, and congruent to
the α = −1 matrix from case 1. The a = −1 case turns out to be congruent to the
β = 0 case. It is straightforward to check the representatives for different values of β
are pairwise inequivalent and also not equivalent to the matrices from cases 1 and 2.

5. K =

(
0 1 + iλ

1 + iλ i

)
spans the same line as

(
0 1
1 i

1+iλ

)
. Then using A =

(
1 0
−λ
2
1 + λ2

)
, AKĀT is proportional to

(
0 1
1 i

)
. It is easy to check this ma-

trix does not belong to the previous two families of equivalence classes.

6. This case is the same as the previous.

The second main case, not addressed in [13], is where the Hermitian part of K is singular.
For some K, its Hermitian part could be singular, while the Hermitian part of a complex
scalar multiple c ·K is nonsingular. Such cases fall into the above classes, so it is enough to
consider those K 6= 0 such that det(1

2
(c ·K + c̄ · K̄T )) = 0 for all c ∈ C. The theorem will

follow from the claim that any such K spans a line congruent to the span of

(
1 0
0 0

)
.

The proof of the claim involves some elementary matrix calculations, as in the previous

paragraphs, but here the details will be given. Let K =

(
α β
γ δ

)
be an arbitrary nonzero

matrix with complex entries, and let c = x + iy be a nonzero complex number. For the
Hermitian part to be singular for all values of c, the following equation must hold for all x
and y.

0 = det(c ·

(
α β
γ δ

)
+ c̄

(
ᾱ γ̄
β̄ δ̄

)
)

= c2(αδ − βγ) + c̄2(ᾱδ̄ − β̄γ̄) + cc̄(ᾱδ + αδ̄ − ββ̄ − γγ̄)

= x2(αδ − βγ + ᾱδ̄ − β̄γ̄ + ᾱδ + αδ̄ − ββ̄ − γγ̄)

+y2(−αδ + βγ − ᾱδ̄ + β̄γ̄ + ᾱδ + αδ̄ − ββ̄ − γγ̄)

+2ixy(αδ − βγ − ᾱδ̄ + β̄γ̄).

Subtracting the coefficients on x2 and y2 shows Re(det(K)) = 0, and the coefficient on the
xy term must also be zero, so Im(det(K)) = det(K) = 0. The matrix K is rank 1 and also
satisfies

ᾱδ + αδ̄ = ββ̄ + γγ̄. (2)

If α 6= 0, then K is proportional to

(
1 β
γ βγ

)
, and by equation (2), βγ + β̄γ̄ = |β|2 + |γ|2,

so |β̄ − γ|2 = 0 and γ = β̄. If β = 0, K is as in the claim, and otherwise, the claim follows
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since (
1 0
−1 1/β̄

)
·

(
1 β
β̄ ββ̄

)
·

(
1 −1
0 1/β

)
=

(
1 0
0 0

)
.

If α = 0, then by equation (2), β = γ = 0, and K is proportional to

(
0 0
0 1

)
, which is

also congruent to

(
1 0
0 0

)
, using A =

(
0 1
1 0

)
. To see that this normal form for K is not

congruent to the other rank 1 matrix from the above case 4, where β = 0, suppose
(
a b
c d

)
·

(
1 0
0 0

)
·

(
ā c̄
b̄ d̄

)
=

(
aā ac̄
āc cc̄

)
=

(
0 ζ
0 0

)
,

for some ζ ∈ C. This would imply a = c = 0, contradicting the requirement that A is
invertible. �

The classification from Theorem 4.3 can be interpreted geometrically. In terms of Theorem
4.1, the rank 2 case of c-equivalence splits into infinitely many r-equivalence classes, and the
rank 1 case breaks up into two r-equivalence classes. The off-diagonal rank 1 case, where β = 0

in the matrix

(
0 1
β 0

)
, is in the same r-equivalence class as the stereographic projection

from Example 2.4, where ker(P ) intersects the image of s, but not the image of s ◦∆.

Example 4.4. The other rank 1 case from the theorem is K =

(
1 0
0 0

)
, and a matrix P ,

such that K spans k(ker(P )), is

P =




0 1 0 0
0 0 1 0
0 0 0 1



 .

The parametric map is of the form

P ◦ s ◦∆ : [z0 : z1] 7→ [z0z̄1 : z1z̄0 : z1z̄1],

differing from the stereographic case in that the image s ◦∆(CP 1) meets the kernel of P , so
[1 : 0] is not in the domain of P ◦ s ◦∆. This map is one-to-one with domain C, [z : 1] 7→ [z :
z̄ : 1], and its image is a totally real plane in an affine neighborhood, {[Z0 : Z1 : Z2] : Z2 =
1, Z1 = Z̄0}.

Example 4.5. The isolated rank 2 case, K =

(
0 1
1 i

)
, corresponds to a matrix

P =




1 0 0 0
0 1 −1 0
0 0 1 i



 ,

and a parametric map of the form

P ◦ s ◦∆ : [z0 : z1] 7→ [z0z̄0 : z0z̄1 − z1z̄0 : z1z̄0 + iz1z̄1].
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The map is defined for all [z0 : z1], and restricting to the affine neighborhood [1 : z] in the
domain gives z 7→ [1 : z̄ − z : z + izz̄], or a real map

(x, y) 7→ (X,Y, Z) = (−2iy, x, y + x2 + y2) ∈ (i · R)× R2 ⊆ C2.

The image of this restriction is a paraboloid in three real dimensions, with no tangent planes
parallel to the complex line X = 0. The set ∆(CP 1) meets the singular locus of P ◦ s at only
one point, ∆([0 : 1]). Considering the restriction of P ◦ s ◦ ∆ to the neighborhood [z : 1],
checking its (real) Jacobian shows that it drops rank at [0 : 1]. P ◦ s ◦∆ is not an immersion
at that point, and the map’s image does not have a well-defined tangent plane at the singular
value [0 : 0 : 1]. It is possible to choose a different representative coefficient matrix, Q, equal
to C · P for some automorphism C,

Q =




1 1 1 2i
0 1 −1 0
0 0 1 i





so that the image of Q ◦ s ◦∆ is contained in the Z0 6= 0 affine neighborhood. Note that

z0z̄0 + z0z̄1 + z1z̄0 + 2iz1z̄1 = |z0 + z1|
2 + (−1 + 2i)|z1|

2

is complex-valued but never 0.

Example 4.6. The matrices

(
0 1
β 0

)
, 0 ≤ β < 1, correspond to inequivalent embeddings

of CP 1 in CP 2. Representative matrices are

P =




1 0 0 1
0 2 −2β 0
−1 0 0 1



 ,

which define representative parametric maps:

[z0 : z1] 7→ [z0z̄0 + z1z̄1 : 2z0z̄1 − 2βz1z̄0 : z1z̄1 − z0z̄0].

The β = 0 case is a parametrization of a sphere in a real hyperplane inside the Z0 = 1 affine
neighborhood, and is r-equivalent to the stereographic projection from Example 2.4. For any
β, (P ◦ s ◦∆)([0 : 1]) = [1 : 0 : 1]. Using coordinates z = x+ iy on the z0 = 1 neighborhood
in the domain, and considering the Z0 = 1 neighborhood in the target, P ◦ s ◦∆ restricts to

[1 : z] 7→ [1 + zz̄ : 2z̄ − 2βz : zz̄ − 1]

(x, y) 7→ (X, Y, Z) = (
2x(1− β)

1 + x2 + y2
,
−2y(1 + β)

1 + x2 + y2
,
x2 + y2 − 1

1 + x2 + y2
).

The image (P ◦ s ◦∆)(CP 1) is an ellipsoid,

(
X

1− β
)2 + (

Y

1 + β
)2 + Z2 = 1.
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Solving for Z defines two hemispheres in the ellipsoid, each as a graph over the XY -plane,

Z = ±

√

1−
X2

(1− β)2
−

Y 2

(1 + β)2

= ±(1−
X2

2(1− β)2
−

Y 2

2(1 + β)2
+O(3))

= ±(1−
1 + β2

2(1− β2)2
(X2 + Y 2 +

2β

1 + β2
(X2 − Y 2)) +O(3))

z2 = ±1∓
1 + β2

2(1− β2)2
(z1z̄1 +

β

1 + β2
(z21 + z̄

2
1)) +O(3).

The coefficient β
1+β2

has values in [0, 1
2
) for β ∈ [0, 1). It is Bishop’s quadratic invariant for

elliptic complex tangents ([3]).

Example 4.7. A special case of the diagonal normal form is

(
1 0
0 −1

)
, which is congruent

to the β = 1 case of the previous example. Geometrically it is the β → 1− limit of the ellip-
soids, which deflate into a closed, elliptical disc contained in a real 2-plane. A representative
coefficient matrix is

P =




1 0 0 1
0 1 0 0
0 0 1 0



 ,

and the parametric map

[z0 : z1] 7→ [z0z̄0 + z1z̄1 : z0z̄1 : z1z̄0]

is two-to-one except for a circular singular locus. The image is contained in the totally real
plane Z2 = Z̄1 inside the affine neighborhood Z0 = 1.

Example 4.8. The Hermitian matrix K =

(
1 0
0 1

)
is also a special case, where α = 1 in

Theorem 4.3. Considering a coefficient matrix

P =




1 0 0 −1
0 1 0 0
0 0 1 0



 ,

the parametric map
[z0 : z1] 7→ [z0z̄0 − z1z̄1 : z0z̄1 : z1z̄0]

is a two-to-one submersion, where antipodal points are identified:

(P ◦ s ◦∆)([z̄1 : −z̄0]) = [z1z̄1 − z0z̄0 : −z0z̄1 : −z1z̄0] = (P ◦ s ◦∆)([z0 : z1]).

The image is a (totally real) real projective plane in CP 2.
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Example 4.9. The only remaining cases from Theorem 4.3 are the diagonal matrices with
α = cos(θ) + i sin(θ), 0 < θ < π. For each α, a representative coefficient matrix is

P =




−α 0 0 1
0 1

2
1
2
0

0 − i
2

i
2
0



 ,

which defines a parametric map

P ◦ s ◦∆ : [z0 : z1] 7→ [z1z̄1 − αz0z̄0 :
1

2
(z0z̄1 + z1z̄0) :

i

2
(−z0z̄1 + z1z̄0)].

The points [0 : 1] and [1 : 0] both have image [1 : 0 : 0], but otherwise the map is one-to-one.
The singular locus of P ◦s is the set {([z0 : z1], [w0 : w1]) : z1w1+αz0w0 = 0}, which does not
meet the image of ∆. The composition P ◦ s ◦∆ is an immersion with one double point, and
the image is totally real in CP 2, and contained in the Z0 6= 0 affine neighborhood. Restricting
to the [1 : z] neighborhood in the domain, with z = x+ iy, α = a+ bi, defines a parametric
map R2 → R4, with target coordinates Z1 = x1 + iy1, Z2 = x2 + iy2:

z 7→ (Z1, Z2) = (
z + z̄

2(zz̄ − α)
,
z̄ − z

2i(zz̄ − α)
)

(x, y) 7→ (x1, y1, x2, y2)

=
1

(x2 + y2 − a)2 + b2
(x3 + xy2 − xa, xb,−yx2 − y3 + ya,−yb).

The image in C2 = R4 is exactly the common zero locus Vα of the following real polynomials:

y1x2 − x1y2 (3)

b2(x21x
2
2 + 2x

2
1y
2
2 + y

2
1y
2
2 + (x

2
2 + y

2
2)
2)− bx2y2 − ay22 (4)

b2((x21 + y
2
1)
2 − (x22 + y

2
2)
2)− bx1y1 + bx2y2 + ay22 − ay

2
1. (5)

All three equations are necessary to define Vα, for example, the zero locus of just (3), (4)
is Vα ∪ {x2 = y2 = 0}. As b → 0+, the affine variety Vα approaches the totally real plane
{y1 = y2 = 0}, and the two limiting cases α = ±1 were described in the previous two
examples. At the double point, the tangent cone is the union of two totally real planes,
{y1 = y2 = 0} ∪ {bx1 + ay1 = bx2 + ay2 = 0}. Totally real spheres with a single point of
self-intersection in C2 have also been considered in [21] and [2]. Pairs of totally real subspaces
(M,N) which meet only at the origin have been considered by D. Burns and [22]. The pair
appearing in this example is N = R2, with coordinates x1, x2, and M = (A+ i)R2, where

A =

(
−a
b
0

0 −a
b

)
.

A C-linear transformation of C2 which fixes N = R2 has a matrix representation S with real
entries, and transforms A into SAS−1; the quantity −a/b = 1

2
Tr(A) is clearly a similarity

invariant.
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As in Example 4.5, there is complex affine neighborhood in which part of the image is a
real quadric in a real hyperplane. Setting Z1 = 1 gives the parametrization

[1 : x+ iy] 7→ [x2 + y2 − a− ib : x : y]

(X, Y, Z) = (
x2 + y2 − a

x
,
−b

x
,
y

x
).

The implicit equation in (X, Y, Z) is

bXY − aY 2 + b2Z2 + b2 = 0,

which is a two-sheeted hyperboloid for b > 0.

To summarize, the r-equivalence class of a coefficient matrix P can be recognized by
inspecting the image of the map P ◦ s ◦ ∆ : CP 1 → CP 2. The r-equivalence classes are
represented by the following cases, starting with the two rank 1 cases.

• P ◦ s ◦ ∆ is the stereographic projection map, where the kernel of P is spanned by a
rank one matrix, and P ◦ s ◦∆ is defined for all points in CP 1.
• The image is a totally real affine plane, where the kernel of P is spanned by a rank one
matrix, and P ◦ s ◦∆ is not defined at one of the points of CP 1.
• P ◦ s ◦∆ is singular at one point, and is totally real away from this point.

• CP 1 is embedded in CP 2. There are two elliptic complex tangents, with the same
Bishop invariant γ = β

1+β2
. γ can attain any value in the interval (0, 1

2
). (The γ = 0

case is the stereographic sphere.)

• The image is a disc contained in a totally real plane, and P ◦s◦∆ is two-to-one, except
along a singular curve.

• P ◦ s ◦∆ is two-to-one, and its image is a real projective plane.

• The image is a totally real immersed sphere with one point of self-intersection. A
parameter −a/b, determined by the tangent planes at that point, can attain any real
value and classifies such maps up to r-equivalence.

This section concludes with two remarks on Theorem 4.3.
It is interesting that in the two cases with continuous parameters, inequivalent immersions

can be easily distinguished by finding holomorphic invariants in the coefficients of the defining
functions of the images near the exceptional points. In higher codimensions, 2m < n, the sit-
uation will be different, since it was observed in [6] that the nondegenerate complex tangents
are “stable,” with no continuous invariants under formal biholomorphic transformations.
The 0 ≤ β < 1 matrices of the theorem are congruent to symmetric matrices:

(
1 i

i1+β
1−β

1+β
1−β

)(
0 1
β 0

)(
1 −i1+β

1−β

−i 1+β
1−β

)

∝

(
−i
(
1−β
1+β

)2
1

1 i

)

=

(
−it2 1
1 i

)
,

with 0 < t ≤ 1. This shows that every r-equivalence class of 3×4 matrices has a representative
P so that k(ker(P )) is spanned by a complex symmetric matrix. It also shows that the
classification of 2× 2 pencils in Theorem 4.3 gives exactly the same results as a classification
of [20] of complex quadratic forms up to real congruence.
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5. CP 2 in CP 5

By the codimension calculation from Example 3.2, the next pair (m,n) where complex tan-
gents are expected to be isolated is m = 2, n = 5. In contrast to Theorem 4.1, there are
infinitely many c-equivalence classes; some näıve counting will suggest that the dimension of
the parameter space exceeds the dimension of the group acting on it. By Theorem 2.3, the
c-equivalence problem is equivalent to classifying three-dimensional subspaces K of M(3,C),
under the action K 7→ B3×3KAT3×3. The r-equivalence problem, or the classification of K up
to the congruence of Theorem 2.8, seems to be even more difficult.
Rather than attempt higher-dimensional analogues of Theorems 4.1 or 4.3, this final

section will consider just a few examples, and scrutinize only the following simple one in
detail.

Example 5.1. Consider the following coefficient matrix:

P =





1 0 0 0 1 + i 0 0 0 i
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0





6×9

.

It is intentionally rather sparse, to simplify some calculations, and the non-zero entries play
specific roles, as follows. The top row is chosen so that P ◦s◦∆ will have an image contained in
the Z0 6= 0 neighborhood. Deleting the top row and the first, middle, and last columns leaves
a 5 × 6 submatrix, in row-echelon form so that P has rank 6 and ker(P ) is a 3-dimensional
subspace of C9. Its last column (the eighth of nine in P ) is chosen so that k(ker(P )), which
is the following subspace of M(3,C):

{




(1 + i)c1 + ic3 0 −c2

c2 −c1 c2
0 0 −c3



 : c1, c2, c3 ∈ C},

contains no matrices of rank 1, and so P ◦ s is defined for all (z, w) ∈ CP 2 × CP 2.
The goal of this example is to show that this choice of P defines an immersion of CP 2 in an

affine neighborhood of CP 5, which has exactly three complex tangents. The computations
were initially carried out using Maple software ([19]), but the following paragraphs will
outline the main steps in human-readable format. This immersion will be rather peculiar in
that it is not a one-to-one mapping, which is unexpected, considering the high codimension.
The composition P ◦ s ◦∆ : CP 2 → CP 5 is defined for all of CP 2. By inspection of the

parametric map taking [z0 : z1 : z2] to:

[z0z̄0 + (1 + i)z1z̄1 + iz2z̄2 : (z0 − z2)z̄1 : z0z̄2 : z1z̄0 : z1z̄2 : z2(z̄0 + z̄1)],

the image of P ◦ s ◦∆ does not meet the Z0 = 0 hyperplane. (This is as in Examples 4.5 and
4.9, where the first component is not real-valued, but it doesn’t vanish for any (z0, z1, z2) 6= ~0.)
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The singular locus of P ◦ s is a complex algebraic subvariety of the domain CP 2 ×CP 2.
In order to find its intersection with the image of ∆, it will be enough to check the Jacobian
matrix of P ◦ s, considered as a map C4 → C5 when it is restricted to three of the nine affine
charts in the domain, and the Z0 6= 0 chart in the target. For example, the restriction of
P ◦ s to the z0 = 1, w0 = 1 neighborhood defines a map

(z1, z2, w1, w2) 7→ (
P1(z, w)

P0(z, w)
, . . . ,

P5(z, w)

P0(z, w)
). (6)

The locus where the rank drops is the common zero locus of five 4×4 determinants, which will
be inhomogeneous rational functions in z1, z2, w1, w2. Since the image of ∆ does not meet
the zero locus of the denominators (which are powers of P0), it is enough to consider the
numerators of these rational functions, and re-introduce z0 and w0 to get five bihomogeneous
polynomials which define a subset of {(z, w) ∈ CP 2 × CP 2 : z0 6= 0, w0 6= 0, P0(z, w) 6=
0}. Repeating this procedure for the other charts in the domain will give other subsets
of CP 2 × CP 2, but with significant overlaps, and which satisfy the same bihomogeneous
polynomial equations. According to Maple, these polynomials are:

z1w2(z2w2 + (i− 1)z1w0 + (i− 1)z1w1) (7)

z1w2(z2w2 − z0w2 + (i− 1)z1w1) (8)

z1(z2w1w2 + iz2w
2
0 + (i− 1)z1w1(w0 + w1)− iz0w0w1 − iw

2
0z0) (9)

w2(z
2
2w2 − z0z2w2 + iz0z2w0 + (i− 1)z1z2w1 − iz

2
0w0 − iz

2
0w1) (10)

z0((i−1)z1w1 − iz0w0)(w0+w1) + z2w0(z2w2 − z0w2 + iz0w0). (11)

The real diagonal image of ∆, [w0 : w1 : w2] = [z̄0 : z̄1 : z̄2], meets this locus in a
real algebraic variety, which (again, according to Maple) consists of exactly three points:
x1 = ∆([1 : 0 : 1]), x2 = ∆([1 : −1 : 0]), and x3 = ∆([1 : i : 1− i]).
Since getting an exact count of the number of complex jump points is the important

part of this example, and since computations such as finding all the solutions of a system of
polynomial equations should be checked by hand whenever possible, the following calculations
will verifyMaple’s claim. First, it is easy to check that these three points are in the common
zero locus of equations (7)–(11), and are indeed elements of the singular locus of P ◦ s.
Second, suppose there is some [z0 : z1 : z2] ∈ CP 2 with z0 = 0 and z1 6= 0, z2 6= 0, whose

image under ∆ satisfies equation (7), so that

z1z̄2(z2z̄2 + (i− 1)z1z̄1) = 0.

However, none of the three factors vanishes, so there are no such points in the singular locus.
The next case is where z1 = 0. Any point ∆([z0 : 0 : z2]) satisfies (7)–(9), and (10) then

implies
z̄2(z

2
2 z̄2 − z0z2z̄2 + iz0z2z̄0 − iz

2
0 z̄0)

= z̄2(z2 − z0)(z2z̄2 + iz0z̄0) = 0,

where the last factor is nonzero, and the only solutions are z0 = z2, which gives the point x1,
or z1 = z2 = 0, in which case (11) would imply z0 is also zero.
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The next case is z2 = 0, z1 6= 0, so that (11) becomes

z0(z̄0 + z̄1)((i− 1)z1z̄1 − iz0z̄0) = 0.

As in the previous case, the last factor is nonzero, one of the solutions is z1 = −z0, which
gives x2, and z0 = z2 = 0 in (9) would imply z1 = 0.
Finally, the remaining case is that all three projective coordinates are nonzero, so that

z0 can be assumed to be 1, and subtracting (8) from (7) implies z̄2 + (i− 1)z1 = 0. Plugging
z0 = 1 and z2 = (1 + i)z̄1 into (8) gives

z1(1− i)z1(−(1− i)z1 + (1 + i)z̄1(1− i)z1 + (i− 1)z1z̄1) = 0,

where the only nonzero solution is z1 = i, which gives the point x3.
The images of the three points, x1, x2, x3, under P ◦ s are

X1 = [1 : 0 :
1− i

2
: 0 : 0 :

1− i

2
],

X2 = [1 :
i− 2

5
: 0 :
i− 2

5
: 0 : 0],

X3 = [1 :
2− 3i

13
:
5− i

13
:
3 + 2i

13
:
1 + 5i

13
:
−6− 4i

13
],

which are the candidates for complex jump points in the image of CP 2. (They are also
candidates for differential-topological singularities, as in Example 4.5.)
The real tangent planes at these points are found by considering the restriction of P ◦s◦∆

to the z0 = 1 affine neighborhood, so that P ◦ s ◦∆ : R4 → R10 is given by

(z1, z2) 7→ (Re(
P1

P0
), Im(

P1

P0
), . . . , Im(

P5

P0
)).

At each point z in the domain, there is a real 10×4 Jacobian matrix Dz of derivatives, whose
image is a four-dimensional subspace Tz of R10.
It turns out (according to calculations left to Maple) that at each point x1, x2, x3, the

real Jacobian matrix has full rank. This is enough to prove that P ◦ s ◦∆ is an immersion
(although it could also be checked directly that the real Jacobian has full rank at every point).
In C5, the scalar multiplication map ~v 7→ i · ~v is real-linear, and induces a complex

structure operator J on R10, which is a 10× 10 block matrix with five
(
0 −1
1 0

)
blocks on

the diagonal. The concatenation of Dz with J · Dz results in a 10 × 8 matrix, which maps
R8 to R10 so that the image subspace is the sum Tz + JTz. At the totally real points z,
where Tz and JTz meet only at the origin, Tz + JTz is 8-dimensional. At the three points
x1, x2, x3, it can be calculated that the 10 × 8 matrix has rank 6, which proves that x1,
x2, x3 are not “exceptionally exceptional,” that is, none of the tangent spaces is a complex
2-plane, but instead each contains exactly one complex line. In the notation of Section 3,
N1 = {x1, x2, x3}, and N2 = Ø.
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To illustrate the idea, the procedure for finding Tz will be recorded here only for z = x1.

Dx1 =





0 0 0 0

0 0 0 0
0 0 −1

2
−1
2

0 0 −1
2
−1
2

1
2

1
2

0 0

−1
2

1
2

0 0
1
2

1
2

0 0

−1
2

1
2

0 0
1
2
−1
2
−1
2

1
2

−1
2
−1
2
−1
2

1
2





10×4

has rank 4, but [Dx1 , J ·Dx1 ]10×8 has rank 6. A basis for its kernel is {(0,−1, 1,−1, 1, 0, 0, 0)
T ,

(1, 0, 0, 0, 0, 1,−1, 1)T}, and the following equation shows that the image of Dx1 contains a
J-invariant subspace:

Dx1 ·





1
0
0
0



 = J ·Dx1 ·





0
−1
1
−1



 =





0
0
0
0
1
2

−1
2
1
2

−1
2
1
2

−1
2





= J ·





0
0
0
0
−1
2

−1
2

−1
2

−1
2

−1
2

−1
2





.

The span of (0, 0, 0, 0, 1
2
,−1
2
, 1
2
,−1
2
, 1
2
,−1
2
)T and its image under J is the complex line {Z1 =

Z2 = Z3 − Z4 = Z3 − Z5 = 0}. The same calculations for x2 and x3 yield different complex
lines tangent to CP 2 in C5.
It remains to check that P ◦ s ◦∆ is one-to-one except for a triple point. The following

calculation is similar to that of [23]. First, consider those points in the image such that all
three domain coordinates, z0, z1, z2, are nonzero, so that P ◦ s ◦∆ restricts to a map:

[z0 : z1 : 1] 7→ [
P0

z1
:
(z0 − 1)z̄1
z1

:
z0

z1
: z̄0 : 1 :

z̄0 + z̄1
z1
].

This map is clearly one-to-one from {(z0, z1) ∈ C2 : z0 6= 0, z1 6= 0} to C5. Points on the line
{[0 : z1 : 1]} are mapped to

[(1 + i)z1z1 + i : −z̄1 : 0 : 0 : z1 : z̄1],

and points on the line {[z0 : 0 : 1]} are mapped to

[z0z̄0 + i : 0 : z0 : 0 : 0 : z̄0];
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both of these restrictions are also one-to-one, with images disjoint from the previous image
(and each other, except at their point of intersection in the domain, [0 : 0 : 1]). Another line
in the domain is {[1 : z1 : 0]}, whose points are mapped to

[1 + (1 + i)z1z̄1 : z̄1 : 0 : z1 : 0 : 0].

This restriction is also one-to-one, but its image meets the previous images when z1 = 0. The
only remaining point in the domain is [0 : 1 : 0], whose image is [1 : 0 : 0 : 0 : 0 : 0], which
is the same as the image of [1 : 0 : 0] and [0 : 0 : 1]. In fact, P ◦ s ◦ ∆ maps the complex
projective lines {[z0 : 0 : z2]} and {[z0 : z1 : 0]} in the domain into two-dimensional complex
subspaces in the range, falling into the Example 4.9 case of the classification from Theorem
4.3.

Example 5.2. Consider the following family of coefficient matrices, as a perturbation of the
previous example by varying two of the entries:

P =





1 0 0 0 1 + i 0 0 0 i
0 1 0 0 t 0 0 −1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 t




.

The t = 0 case is the previous example, where there are three complex tangents, and a single
triple point. The two changed entries contribute z1w1 and z2w2 terms to the numerators
of the map (6). It is expected that for t close to zero, the perturbed immersion will still
have exactly three complex tangents. For example, at t = −1/2, the diagonal ∆(CP 2)
intersects the singular set of P ◦ s at x1 = ∆([1 : 0 : 1]), x2 = ∆([1 : −1 : 0]), and
x3 = ∆([

i
2
: −i : 1]). Also, the triple point breaks up into two double points: both domain

points [1
4
+(−2± 3

4

√
7)i : 0 : 1] are mapped to the same image under P ◦ s ◦∆, and similarly,

[1 : 7+
√
47
8
+ −9−

√
47

8
i : 0] and [1 : 7−

√
47
8
+ −9+

√
47

8
i : 0] have the same image.

At t = −1, there are five complex tangents (and again two double points). Topologically,
the two new jump points forming in this homotopy are expected to have opposite orientation
indices, so that the index sum of [9] and [4] is still 3. It would be interesting to understand
the local geometry of this “pair creation.” Two concepts which might be useful analogies
are the homotopical construction of [11] for surfaces in C2 with complex tangents, and the
cancellation of Whitney cross-cap singularities, described as a “confluence of umbrellas” in
[1].

Example 5.3. Consider the following coefficient matrix, as a perturbation of the t = −1/2
case of the previous example.

P =





1 0 0 0 1 + i 0 0 0 i
−1 1 0 0 −1

2
0 0 −1 1

9

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
−3
2
0 0 0 0 0 1 1 −1

2




.
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The new entries contribute more ziz̄i terms to the quadratic polynomials in the parametriza-
tion. The composite map (P ◦ s ◦∆)([z0 : z1 : z2]) is:

[z0z̄0 + (1 + i)z1z̄1 + iz2z̄2 : (z0 −
1

2
z1 − z2)z̄1 − z0z̄0 +

1

9
z2z̄2

: z0z̄2

: z1z̄0

: z1z̄2

: z2(z̄0 + z̄1 −
1

2
z̄2)−

3

2
z0z̄0].

This is an embedding with exactly three complex tangents. The diagonal ∆(CP 2) intersects
the singular set of P ◦ s at x1 = ∆([1 : 0 : 3]), x2 = ∆([1 : 2 : 0]), and x3 = ∆([9 + 28i :
−18− 63i : 54− 30i]). The new coefficients were chosen so these points would have Gaussian
integer coordinates, since the rank calculations, as in Example 5.1, require exact arithmetic.
The check that it is one-to-one is also as in Example 5.1.

While embeddings with an odd number of complex tangents are the generic case, images of
quadratic maps CP 2 → CP 5 can exhibit some unusual behavior. The first two examples
showed there can be isolated double or triple points. The next two will demonstrate some
different unstable geometric properties, as well as algebraic degeneracy in the rank of kerP .
The diversity of CR singular and topologically singular phenomena perhaps speaks to the
complexity of the problem of classifying subspaces of M(d,C) up to congruence.

Example 5.4. The first five rows of the matrix:

P =





1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0





are the coefficients of Whitney’s embedding of CP 2 in C4, from Example 2.5. Adding the
last row makes a rank 6 matrix, and defines a map P ◦s◦∆ : CP 2 → CP 5 taking [z0 : z1 : z2]
to:

[z0z̄0 + z1z̄1 + z2z̄2 : z1z̄2 : z2z̄0 : z0z̄1 : z0z̄0 − z1z̄1 : z2z̄1].

The kernel’s image under k is the set

{




c1 c3 0
0 c1 0
c2 0 −2c1



 : c1, c2, c3 ∈ C}.

The matrices in this subspace with rank ≤ 1 form exactly two lines, where c1 = c2 = 0,
or c1 = c3 = 0. So, P ◦ s is not defined at the points x0 = ([0 : 1 : 0], [1 : 0 : 0]) or
x1 = ([1 : 0 : 0], [0 : 0 : 1]). The image of P ◦ s ◦ ∆ is contained in the the 7-dimensional
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real subspace {Z4 = Z̄4, Z5 = Z̄1} of the Z0 = 1 affine neighborhood. (However, the image is
not contained in any complex hyperplane.) P ◦ s ◦∆ is a one-to-one immersion, since it is a
smooth graph over Whitney’s example. The real diagonal image of ∆ meets the singular locus
of P ◦ s at exactly three points, x2 = ∆([1 : 0 : 0]), x3 = ∆([0 : 1 : 0]), and x4 = ∆([0 : 0 : 1]).
Their images under P ◦ s are

X2 = [1 : 0 : 0 : 0 : 1 : 0],

X3 = [1 : 0 : 0 : 0 : −1 : 0],

X4 = [1 : 0 : 0 : 0 : 0 : 0].

At X3, the real tangent 4-plane is {Z2 = Z4 = 0, Z5 = Z̄1}, which contains the Z3-axis. At
X4, the tangent 4-plane is {Z3 = Z4 = 0, Z5 = Z̄1}, which contains the Z2-axis. The unusual
point is X2, where the tangent space is the complex 2-plane {Z1 = Z4 = Z5 = 0}, which, by
the codimension formula for complex tangents, is a topologically unstable phenomenon; this
submanifold is not in general position.

It is worth pointing out that for the map from Example 5.3, the image in C5 is not contained
in any real hyperplane (it is easy to pick one point in the image to translate to the origin, and
then pick 10 more points with R-independent coordinates), so the embedding from Example
5.4 is unusually flat.

Example 5.5. The following coefficient matrix has the same top row as the previous exam-
ple, and contains the identity matrix as a 6× 6 submatrix.

P =





1 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




.

The kernel’s image under k is the set

{




−c3 − c2 0 0
0 c2 0
0 c1 c3



 : c1, c2, c3 ∈ C}.

The matrices in this subspace with rank ≤ 1 form exactly one line, where c2 = c3 = 0. The
composition P ◦ s ◦∆ defines the parametric map

[z0 : z1 : z2] 7→ [z̄0z0 + z̄1z1 + z̄2z2 : z̄1z0 : z̄2z0 : z̄0z1 : z̄0z2 : z̄1z2].

The image is contained in the 6-dimensional real subspace {Z1 = Z̄3, Z2 = Z̄4} of the Z0 = 1
affine neighborhood. It is known (see [8]) that CP 2 cannot be immersed in R6, so this map
will have a non-empty singular locus, which generically, for smooth maps from a 4-manifold
to R6, is expected to be one-dimensional. In this case, the domain CP 2 contains two spheres
which are mapped onto flat discs, as in Example 4.7:

[z0 : 0 : z2] 7→ [z0z̄0 + z2z̄2 : 0 : z0z̄2 : 0 : z2z̄0 : 0],

[z0 : z1 : 0] 7→ [z0z̄0 + z1z̄1 : z0z̄1 : 0 : z1z̄0 : 0 : 0].
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Finally, we recall a construction by G. Mannoury (circa 1898), of an embedding of CP 2
([17], [18]).

Example 5.6. The map

[z0z̄0 + z1z̄1 + z2z̄2 :
√
2z0z̄0 :

√
2z1z̄1 :

√
2z2z̄2

: z1z̄2 + z2z̄1 : i(z1z̄2 − z2z̄1)

: z2z̄0 + z0z̄2 : i(z2z̄0 − z0z̄2)

: z0z̄1 + z1z̄0 : i(z0z̄1 − z1z̄0)]

has ten components, so it could be defined as P ◦s◦∆ : CP 2 → CP 9, using a 10×9 coefficient
matrix P , composed with the map s ◦∆ : CP 2 → CP 8. In this case, P is not a projection,
but a linear inclusion, and it would be easy to construct a 9× 10 matrix Q so that Q ◦ P is
the identity. So, all the previous examples in this section are projections of this embedding.
The image is contained in the intersection of the {Z0 = 1} affine neighborhood in CP 9

and the real projective space RP 9, since all the components are real. Restricting the target
to the affine neighborhood {X0 = 1} in RP 9 gives Mannoury’s embedding of CP 2 in R9,
with image contained in the intersection of the real hyperplane X1 +X2 +X3 =

√
2 and the

hypersphere with center ~0 and radius
√
2.

Some of the calculations omitted from this section, and some of the unpublished papers in
the references, are available from the author’s web site, www.ipfw.edu/math/Coffman/.

References
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