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Abstract. We discuss a unified way to derive the convex semiregular polyhedra
from the Platonic solids. Based on this we prove that, among the Archimedean
solids, Cubus simus (i.e., the snub cube) and Dodecaedron simum (the snub do-
decahedron) can be characterized by the following property: it is impossible to
construct an edge from the given diameter of the circumsphere by ruler and com-
pass.
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1. Introduction

Following Pappus of Alexandria, Archimedes was the first person who described those 13
semiregular convex polyhedra which are named after him: the Archimedean solids. Two
representatives from this family have various remarkable properties, and therefore the Swiss
pedagogicians A. Wyss and P. Adam called them “Sonderlinge” (eccentrics), cf. [25] and [1].
Other usual names are Cubus simus and Dodecaedron simum, due to J. Kepler [17], or snub
cube and snub dodecahedron, respectively.
Immediately one can see the following property (characterizing these two polyhedra

among all Archimedean solids): their symmetry group contains only proper motions. There-
fore these two polyhedra are the only Archimedean solids having no plane of symmetry and
having no center of symmetry. So each of them occurs in two chiral (or enantiomorphic)
forms, both having different orientation.
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It is our aim to emphasize another interesting difference between these two polyhedra
and the other 11 Archimedean solids. This difference (described below) is not so obvious,
and in the pertinent literature it was sometimes only mentioned, without proof or deeper
discussions, see, e.g., [20].
The regular convex polyhedra (or Platonic solids) and the Archimedean solids share an

elementary property: all their vertices lie on a sphere, their circumsphere. In his dialogue
“Timaeos”, Plato emphasized this property (among the regular solids) only for the tetrahe-
dron, which (also later) was called by him “pyramid”. On the other hand, the existence of
this circumsphere was emphasized by Euclid in Book XIII of his “Elements” as a common
property of all five Platonic solids. In this book Euclid discusses the construction of these
polyhedra, and it is very probable that Book XIII and also Book X go back to a scription of
the mathematician Theaetetos (-415? to -369), who was a friend of Plato, see [18], pp. 32–35.
To show the way of Euclid’s approach, we give a typical citation (cf. C. Thaer [23]):

“To erect a cube and to circumscribe to it, like to the pyramid, a ball; further on
to show that the squared diameter of the ball yields three times the squared edge
of the cube...”

So the main aim is not to construct the cube as a polyhedron bounded by six “equal” squares,
but (as also confirmed by the continuation of the text) to construct an edge of the cube from
the prescribed diameter of the circumsphere. And it is clear that Euclid means a construction
by ruler and compass. Furthermore, the ratio of the diameter d of the circumsphere and the
edge-length e occurs here, where later on mostly the relation d2 : e2 was studied. In modern
notation, for the Platonic solids these relations can be described by the following table.

Name symbol d2 : e2 e : d

tetrahedron {3, 3} 3
2

0, 816477
cube {4, 3} 3 0, 577350
octahedron {3, 4} 2 0, 707107

dodecahedron {5, 3} 3
2

(
3 +
√
5
)
0, 356822

icosahedron {3, 5} 1
2

(
5 +
√
5
)
0, 525731

The so-called Schläfli-symbol {p, q} expresses that q regular p-gons meet at each vertex, and
the numerical ratio e : d is needed for building models of correspondingly equal size.

2. The Archimedean solids

As for the Platonic solids, one can pose the analogous task for the Archimedean ones: given
the diameter d (as a line segment), one has to construct the edge-length e. And exactly
with respect to this task, Cubus simus and Dodecaedron simum are exceptional cases in this
family of semiregular polyhedra. Namely, we have the following

Theorem. Among the Archimedean solids, Cubus simus and Dodecaedron simum are charac-
terized by the following property: It is impossible to construct an edge from the given diameter
of the circumsphere by ruler and compass.

In the following we will give a complete proof of that theorem.
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In the literature one can find various symbols and notations which are used for describing
the Archimedean solids. We will follow L. Fejes Tóth [7] and describe them by the symbol
(n1, . . . , nk), 3 ≤ k ≤ 5. This means that exactly in this cyclic order (but up to orientation)
a regular n1-gon, n2-gon, . . ., and an nk-gon meet at every vertex. One can use this symbol
also for the Platonic solids, with the additional advantage that exchanges (which are possible
in the case of Schläfli symbols) are excluded. Namely, we get {3, 3} = (3, 3, 3), {3, 4} =
(3, 3, 3, 3), {3, 5} = (3, 3, 3, 3, 3), {4, 3} = (4, 4, 4), and {5, 3} = (5, 5, 5). (Of course, in this
notation the hint is lost that these polyhedra occur in pairs of duals.) In such a way Cubus
simus and Dodecaedron simum are denoted by (3, 3, 3, 3, 4) and (3, 3, 3, 3, 5), respectively.
Most of the names used for Archimedean solids go back to J. Kepler. Except for some

cases, they are not usefully chosen. Namely, they mostly describe how the respective poly-
hedron can be derived from the Platonic solid {p, q}. But in this case it can also be suitably
derived from {q, p}. Thus, by Kepler’s notation one can see only in an incomplete manner
that the Archimedean solids can be ordered in three sequences: the polyhedra that can be de-
rived from {3, 3}, those coming from {4, 3} and {3, 4}, respectively (the “silvern sequence”),
and those derived from {5, 3} and {3, 5}, respectively (the “golden sequence”).
Altogether, there are six such procedures to derive Archimedean solids from regular ones.

The most impressive representation of these ways is given by the anaglyphes in the book [7]
of L. Fejes Tóth.
On the one hand, these procedures can be interpreted as truncations of the Platonic

solids. On the other hand, one can suitably enclose a regular p-gon or 2p-gon into each facet
of {p, q} and then obtain the Archimedean solid as convex hull of these polygons. For the
first five derviations, Fig. 1 shows the positions of the corresponding p-gons and 2p-gons
enclosed in the facets of {3, q}, q ∈ {3, 4, 5}, and {4, 3}. In the case of {5, 3} the approach is
analogous.

I II III IV V

Figure 1

All the semiregular polyhedra obtained by the approaches I, II, and III should have the name
“truncated {p, q}”, since only vertices of regular polyhedra are truncated. (Due to Kepler,
only the polyhedra obtained by the first approach have such names.) For the approaches IV
and V, also edges have to be suitably truncated.

In the following table one can see which approach yields the Archimedean solid (n1, n2, . . . , nk)
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as a truncation of {p, q}. In addition, the exact values for d2 : e2 and rounded off values for
e : d are given.
The application of way II to the regular tetrahedron {3, 3} yields the Platonic octahedron

{3, 4}. To obtain disjoint sequences of truncations, in the literature very often only (3, 6, 6) is
discussed as a truncation of {3, 3} (see, e.g., [21]). Going this way, one ignores the following
fact:

For an Archimedean solid, the ratio d2 : e2 is rational if and only if this polyhedron
can be obtained from {3, 3} by one of the basic constructions described above.

{3, 3} {4, 3} {3, 4} {5, 3} {3, 5} d2 : e2 e : d

(3, 6, 6) I,III 11
2

0, 426402

(4, 6, 6) V III I 10 0, 316228

(3, 8, 8) I III 7 + 4
√
2 0, 281085

(4, 6, 8) V V 13 + 6
√
2 0, 215740

(3, 4, 4, 4) IV IV 5 + 2
√
2 0, 357407

(3, 4, 3, 4) IV II II 4 0, 500000

(5, 6, 6) III I 29
2
+ 9
2

√
5 0, 201774

(3, 10, 10) I III 37
2
+ 5
2

√
5 0, 168382

(4, 6, 10) V V 31 + 12
√
5 0, 131496

(3, 4, 5, 4) IV IV 11 + 4
√
5 0, 223919

(3, 5, 3, 5) II II 6 + 2
√
5 0, 309017

For the “silvern sequence”, d2 : e2 belongs to Q(
√
2), for the “golden sequence” to Q(

√
5).

Therefore each of the 11 Archimedean solids discussed up to now allows a ruler-and-compass
construction of its edge from the given diameter.
As already mentioned, there are two additional Archimedean solids not having this prop-

erty and, furthermore, also having no plane or center of symmetry. In a series of papers,
F. Hohenberg investigated these polyhedra with respect to metrical and projective proper-
ties, see [8]–[14] and, for related results, [19] and [22].

3. On Cubus simus

The sixth method to construct an Archimedean solid yields the so-called snub polyhedra.
Again, regular p-gons are situated in the facets of {p, q}, but now these p-gons are rotated in
a special way (cf. Fig. 2).

In such a manner, the Platonic icosahedron is derived from {3, 3}, {4, 3} as well as {3, 4}
yield Cubus simus, and {5, 3} as well as {3, 5} yield Dodecaedron simum. In the literature
one can find relatively exact values for d : e (or values coinciding with it up to a factor), see
[24], or more rough estimates of d : e are given, cf. [4]. But one cannot find explanations how
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Figure 2

these estimates are obtained. This shows that a mathematical problem, clearly formulated
in Euclid’s Book XIII, was no longer in the center of interests.
The easiest approach to the (geometrical) properties of Cubus simus is obtained if this

polyhedron is generated from a cube W. All the relations, that we derive first, are well-
known. For example, one can find them collected in the paper [9] of F. Hohenberg, and they
are shortly mentioned by H. S. M. Coxeter [5], too. Since only the ratio d : e is considered,
the size of the cubeW is unimportant. In accordance with the mentioned authors, we choose
W = {x(ξ1, ξ2, ξ3) : |ξi| ≤ 1, i = 1, 2, 3}. In Fig. 3, some of the squares enclosed in the facets
of W are shown, and only those vertices are marked which are used in the following.

The determination of x1 also yields the position of the respective square with midpoint
e1(1, 0, 0) in the plane ξ1 = 0. The corresponding squares in the other facets ofW are derived
from this one by suitable rotations around the axes through the midpoints of opposite facets
of W . So we have

x1(1, v, w), x2(1,−w, v), x3(v, w, 1) ,

where 1 > v > w can be assumed (this determines the “twist”).

x3

x2

x1

Figure 3

Since the convex hull of these six squares is a Cubus simus of edge length e, the conditions

e2 = ||x1 − x2||2 = (v + w)2 + (w − v)2 = 2(v2 + w2) ,
e2 = ||x1 − x3||2 = (1− v)2 + (v − w)2 + (w − 1)2

= 2(v2 + w2 − vw − v − w + 1) ,
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e2 = ||x2 − x3||2 = (1− v)2 + 4w2 + (v − 1)2

= 2(v2 + w2 + w2 − 2v + 1)

have to be satisfied. Subtraction yields the equations

vw + v + w − 1 = 0 or v(1 + w) = (1− w)
and

vw + w2 + w − v = 0 or v(1− w) = w(1 + w) .

By multiplication we obtain v2(1−w2) = w(1−w2), where w 6= 1 gives v2 = w. Furthermore,
vw + v + w − 1 = 0 and e2 = 2(v2 + w2) yield

v3 + v2 + v − 1 = 0 ,
e2 = 2(v4 + v2) .

Writing the cubic equation for v in the form v3 = −v2 − v + 1, one can see that by this
relation each polynomial in v can be transformed into a polynomial of at most second degree.
For example, one has v4 = v(−v2− v+1) = −v3− v2+ v = v2+ v− 1− v2+ v = 2v− 1, i.e.,

e2 = 2(v2 + 2v − 1)
and

e4 = 8(−v2 − 3v + 2) , e6 = 32(v2 + 5v − 3) .

From the latter three relations and the equation e6 + a2e
4 + a1e

2 + a0 = 0 one gets

e6 + 12e4 + 32e2 − 32 = 0 ,

which was already presented by F. Hohenberg [9] (without proof). From this it is easy to
obtain a cubic equation for z = d2 : e2. If r is the radius of the circumsphere of the Cubus
simus which is inscribed to W , then

r2 = 1 +
1

2
e2 ,

i.e., one obtains

z =
d2

e2
=
4r2

e2
=
4

e2
+ 2 or

1

e2
=
z − 2

4
.

Thus it is easy to get for z the equation

z3 − 10z2 + 22z − 14 = 0 ,

having only one real solution. The value z can be estimated by

7, 22226252 < z < 7, 22226253 ,

i.e., the table from above can be completed for (3, 3, 3, 3, 4) by:

V I, d2 : e2 = 7, 22226252 . . . , e : d = 0, 372103 .
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(Remark: In [24] one can find for d : e the relatively exact value 2, 6874267475, whereas the
calculations of M. Brückner, cf. [4], p. 139, yield the value 2, 58922, in which only the integer
part is correct.)
With the help of the equation derived for z one can easily show that an edge of Cubus

simus cannot be constructed by ruler and compass from the given diameter. The polynomial
p(z) := z3− 10z2 + 22z − 14 has integer coefficients. If such a polynomial over the field Q of
rational numbers is reducible, then (due to a Lemma of C. F. Gauß) it can be decomposed
into a product of two polynomials each of which has also integer coefficients. In our case a
decomposition of the form

p(z) = (z − a)(z2 + b1z + b0) , {a, b1, b0} ∈ Z ,

should exist, with an integer root a. But as already mentioned, p(z) has only a real root, which
is not an integer. Therefore p(z) is irreducible over Q. The roots of an irreducible polynomial
of third degree with coefficients from Q cannot belong to a quadratic field extension over Q,
i.e., they are not constructible. A particularly simple proof of this statement (which is a
subcase of a more general theorem) is due to E. Landau. Regarding the bibliographic sources
we refer to [2]; a representation of the proof is given in [3].

4. The construction from the regular polyhedra {3, q}

Starting from the Platonic dodecahedron, it is not so easy to derive the properties of Dode-
caedron simum that are interesting for our considerations. In general it is possible to derive
such properties of (3, 3, 3, 3, q) from {3, q} (q ∈ {3, 4, 5}), but for q = 5 this is even the most
effective way. The corresponding approach for q = 4 was given above since it is descriptive,
can be found at several places in the literature, and shows how to get an equation satisfied
by the edge-length e.
The common construction of the polyhedra (3, 3, 3, 3, q) from {3, q} was described in a

detailed manner by P. Huybers and H. S. M. Coxeter (cf. [16]). In the following we will use
indeed the basic idea from [16], but our approach is a strongly modified version of the way
presented there.
We start with a polyhedron {3, q} which is circumscribed about a sphere of radius 1 and

whose center is chosen as the origin of a Cartesian coordinate system. The vertices of {3, q}
be denoted by yi, and only two neighbouring facets should have the vertices y1, y2, y3 and
y2, y3, y4, respectively. The radius ρ of the circumsphere satisfies ||yi||2 = ρ2, and we set
〈y2, y3〉 =: δ0 and 〈y1, y4〉 =: δ1. It is easy to get the following well-known relations.

q ρ2 δ0 δ1
3 9 −3 −3
4 3 0 −3
5 3(5− 2

√
5) 3(−2 +

√
5) 3(2−

√
5)

(To obtain the given values for q = 5, one uses the fact that the vertices of the icosahedron
occur in quadruples each of which is lying in a plane, where these three planes are perpendic-
ular to each other. Due to τ := 1

2
(1+
√
5) one has with y2 =

(
e
2
, 0, τ e

2

)
, y3 =

(
− e
2
, 0, τ e

2

)
, y1 =
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(
0, τ e

2
, e
2

)
, and y4 =

(
0,−τ e

2
, e
2

)
four suitable vertices of an icosahedron with edge-length e.

To get an icosahedron with insphere of radius 1, one has to choose e =
√
3(3−

√
5), cf. [15],

p. 40 in Part I and p. 116 in Part II.)
Hence the construction of (3, 3, 3, 3, q) from {3, q} is relatively easy. This is based on a

projectively invariant relation. Namely, the lines carrying the sides of the triangles embedded
into the facets of {3, q} also contain a vertex of {3, q}. This was already noticed by Cauchy
when he constructed the icosahedron from the tetrahedron. Regarding the proof of this
property and respective historical remarks we refer to [16].
The triangles y1y2y3 and y2y3y4 contained in the boundary of {3, q} can be suitably

rotated around the line through y2 and y3 such that the planar configuration depicted below
is obtained.

y1 y2

y3 y4

x1

x2

x3
x4

γ

Figure 4

Therefore the position and size of the triangle x1x2x3, which lies in the plane spanned by
y1, y2, and y3, only depend on one parameter. In [16], the size of the angle γ is chosen as
this parameter. With γ′ = π

3
− γ one gets the barycentric coordinates of the points xi with

respect to the equilateral triangle y1y2y3 by cyclic exchange from
4
3
(sin2 γ′, sin γ′ sin γ, sin2 γ).

(In [16] the factor 4
3
is not printed.)

Not depending on the angle γ (and on the corresponding unnecessary metrical restriction)
we set affinely invariant

x1 = s(y1 + ty2 + t
2y3) ,

x2 = s(ty1 + t
2y2 + y3) ,

x3 = s(t2y1 + y2 + ty3)

with s = 1
1+t+t2

and t > 0, t 6= 1. Then the points x1, x2, x3 form an equilateral triangle, and
they surely lie in the interior of y1y2y3. One has for instance

x2 − tx1 =
1

1 + t+ t2
(1− t3)y3 = (1− t)y3 ,

i.e., y3 belongs (as demanded) to the line trough x1 and x3. Analogously one can verify the
other collinearities.
With respect to the triangle y3y2y4, the point x4 has the same position as x2 regarding

y1y2y3. Hence
x4 = s(ty3 + t

2y2 + y4) .
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Now only the condition ||x1−x2|| = ||x2−x4|| has to be satisfied by suitable choice of t (i.e.,
since all the points xi have equal norm, it suffices to ensure the condition 〈x1, x2〉 = 〈x2, x4〉).
Due to t 6= 0, this yields the cubic equation

t3 − t2 − t+
δ1 − δ0
ρ2 − δ0

= 0 .

For each q ∈ {3, 4, 5} this equation has exactly one positive solution. (This holds since the
“twist” was determined.) To determine only the vertex coordinates of {3, 3, 3, 3, q}, we would
be ready. To get an equation yielding z := d2

e2
, our way is analogous to that from the former

section. Since the centroid c of the equilateral triangle x1x2x3 has norm 1, we obtain

r2 = 1 +
1

3
e2 or

1

e2
=
1

4

(
4r2

e2
−
4

3

)
=
1

4

(
z −
4

3

)
.

Therefore we try to get an equation for e2 (or for another quantity which is simply connected
with e2).
Fortunately, for e2 = ||x1 − x2||2 the convenient representation

e2 = 2(ρ2 − δ0)s(t− 1)
2

is obtained. Therefore

2(ρ2 − δ0)

e2
=: u =

t2 + t+ 1

(t− 1)2
= 3

t2

(t− 1)2
− 3

t

t− 1
+ 1 .

Setting t
t−1 =: t (/∈ [0, 1]), we get from the cubic equation in t the relation

t
3
= 3t

2
− (1 + 2α)t+ α ,

where α := δ0−δ1
ρ2−δ1

. From this

t
4
= (8− 2α)t

2
− (3 + 5α)t+ 3α

is derived. In this relation all powers of u are representable as polynomials in t of at most
second degree. We obtain

u = 3t
2
− 3t+ 1

u2 = (33− 18α)t
2
− (15 + 9α)t+ 1 + 9α

u3 = (441− 513α+ 108α2)t
2
− (171 + 108α− 216α2)t

+(1 + 162α− 135α2) .

Now for all t the relation

u3 + a2(α)u
2 + a1(α)u+ a0(α) = 0

has to be satisfied, and this yields

u3 + 3(4α− 5)u2 + 3(4α− 3)(3α− 2)u− (3α− 2)2 = 0 .



130 B. Weissbach, H. Martini: On the Chiral Archimedean Solids

From now on, we consider the two interesting cases q = 4 and q = 5 separately. For q = 4,
the relations u = 6

e2
and α = 1

2
are obtained, and the above equation gets the form (in e)

e6 − 36e4 + 1296e2 − 864 = 0 .

Obviously, this is not the same equation as in the former section. Namely, there the 4-gonal
facets of {3, 3, 3, 3, 4} had distance 1 from the midpoint of the polyhedron, whereas here the
triangular facets have this property. With the equation 1

e2
= 1
4
(z − 4

3
) the relation above is

transformed into the cubic equation z3 − 10z2 + 22z − 14 = 0.
In the remaining case q = 5 we get α = 2

1+
√
5
=: 1

τ
and u = 1

e2
· 12
( 3
2
+ 1
2

√
5)2
= 1
e2
· 12
τ4
. As

one should have expected, in these cases all the relations are influenced by the “golden ratio”
τ := 1+

√
5

2
. Since τ 2 = τ + 1, all powers of τ can be presented as polynomials of first degree,

where Fibonacci numbers occur as coefficients. We omit the equation for e. For z := d2

e2
we

use u = 1
τ4
(3z − 4) and obtain

(3z − 4)3 + 3(4− 5τ)τ 3(3z − 4)2 + 3(4− 3τ)(3− 2τ)τ 6(3z − 4)− (3− 2τ)2τ 10 = 0 .

Reduction of the coefficients yields

(3z − 4)3 − 3(7τ + 6)(3z − 4)2 + 3(τ + 2)(3z − 4)− (3τ + 2) = 0
or

z3 − (7τ + 10)z2 + (19τ + 22)z − (13τ + 14) = 0 .

So one can see that the equations for Cubus simus and Dodecaedron simum are derived in a
unified manner, namely with τ = 0 and τ = 1

2
(1 +

√
5), respectively.

For Dodecaedron simum we obtain roughly

z3 − 21, 32623792 · z2 + 52, 74264579 · z − 35, 03444185 = 0 ,

yielding the estimates
18, 5905391 < z < 18, 5905392 .

(It should be noticed that in the book [24] for
√
z the surprisingly exact value 4, 3116747491

is given, whereas [4], p. 139, for 1
2

√
z presents the value 2, 7654, from which only the integer

part is correct.) Thus we complete the table from Section 2 by

{3, 3, 3, 3, 5} : V I, d2 : e2 = 18, 5905391, e : d = 0, 2319284 .

5. On the construction of Dodecaedron simum

For {3, 3, 3, 3, 5} the equation

z3 − (7τ + 10)z2 + (19τ + 22)z − (13τ + 14) = 0 ,

yielding the relation z := d2

e2
, has coefficients from Q(

√
5). Therefore the simple criterion,

which was used in the case of Cubus simus, cannot be applied. But the equation above has
a special form which allows to use a more general criterion. It is obvious that

z3 − 3z2 + 3z − 1− (7τ + 7)z2 + (19τ + 19)z − (13τ + 13) = 0
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or

(z − 1)3 − (τ + 1)(7z2 − 19z + 13) = 0 .

Since z = 1 is not a solution, this can be rewritten in the form

1

τ + 1
=
7z2 − 19z + 13

(z − 1)3
=
7(z − 1)2 − 5(z − 1) + 1

(z − 1)3
.

Setting 1
z−1 =: x and due to (τ + 1)

−1 = 2− τ we obtain for x the cubic equation

x3 − 5x2 + 7x =
1

2

(
3−
√
5
)
.

Since z rationally depends on x, the edge-length e can be constructed from d by ruler and
compass if and only if x belongs to a quadratic field extension over Q. But generalizing the
respective criterion used above, we have: If a number x satisfies an equation of n-th degree
with coefficients from Q which is irreducible over Q and n is not a power of 2, then x does
not belong to a quadratic field extension over Q (cf. [2], p. 71).
Of course it is easy to transform the above equation in x (in which only one coefficient is

not from Q) into an equation having only integer coefficients. For example, we can rewrite
it in the form

p(x) := −(x3 − 5x2 + 7x)2 + 3(x3 − 5x2 + 7x)− 1 = 0 .

But this equation of sixth degree is irreducible over Q. This is easy to see by the following
arguments: If a decomposition p(x) = p1(x)p2(x) into polynomials pi of at least first degree
and with coefficients from Q would be possible, then the known Lemma of Gauß would
imply a decomposition into polynomials with coefficients from Z. Now let us restrict the
polynomials onto x ∈ Z. The decomposition should remain, if we pass on (from integers) to
congruence classes modulo 3. First we have

−(x3 − 5x2 + 7x)2 + 3(x3 − 5x2 + 7x)− 1 ≡ −(x3 + x2 + x)2 − 1 (mod 3) .

But since, due to P. de Fermat, x3 ≡ x (mod 3), we get furthermore

−(x3 + x2 + x)2 − 1 ≡ −(5x2 + 4x)− 1 ≡ x2 − x− 1 (mod 3) .

Since the latter polynomial has no root in Z/3Z, it is obviously irreducible over this field.
This is verified by setting in the (only possible) values 1, 0,−1. This contradiction shows
that p(x) is irreducible in Q[x]. The roots of p(x) satisfy an equation of sixth degree which
is irreducible over Q, they cannot belong to a corresponding quadratic field extension. Thus,
also in the case of Dodecaedron simum the edge-length cannot be constructed by ruler and
compass from the given diameter of the circumsphere.
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