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Abstract. We consider embedding classes of hexagonal unknots with edges of
fixed length. Cantarella and Johnston [3] recently showed that there exist “stuck”
hexagonal unknots which cannot be reconfigured to convex hexagons for suitable
choices of edge lengths. Here we uncover a new class of stuck unknotted hexagons,
thereby proving that there exist at least five classes of nontrivial embeddings of
the unknot. Furthermore, this new class is stuck in a stronger way than the class
described in [3] .

1. Introduction

A closed chain of n line segments with lengths l1, . . . , ln embedded in R
3 forms a space

polygon. The space of such polygons is denoted (using the notation of Cantarella and John-
ston [3]) by Poln(l1, . . . , ln). We are concerned here with simple space polygons or unknots
(also trivial knots). Recently Cantarella and Johnston [3] and independently, Biedl et al. [1]
studied the embedding classes of such objects and discovered that there exist stuck (or locked)
simple polygons. The polygon of Biedl et al. [1] contains 10 edges whereas the example of
Cantarella and Johnston [3] has only six edges (see Figure 1). Here we can view the poly-
gon as an idealized linkage where the edges of the polygon are rigid bars, the vertices are
universal joints, and no two edges are allowed to cross each other during any continuous
reconfiguration of the polygon. These results are relevant to understanding how small-scale
rigidity influences the shape of DNA and other complex molecules [9], [6], and are also of
interest to linkage convexification problems because they imply there exist linkages in 3D
that cannot be convexified.
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Figure 1. The stuck unknot of Cantarella and Johnston

A particularly attractive elementary and simple motion frequently used in polymer physics
[13] is the pivot. Two vertices u and v of a polygon P partition the polygon into two chains.
A pivot is a rotation of one of these chains about the line containing u and v which acts as
the axis of rotation. Linkages in 3D that are planar and simple can be convexified with a
finite number of pivots by an angle of π [14], [7], [12] while maintaining simplicity during
the motions. Independently, Grünbaum and Zaks [8] and Bernd Wegner [15] also showed
that planar polygons with self-intersections can be convexified with a finite number of pivots.
The algorithm in [8] takes O(n2) time per pivot in the real RAM (Random Access Machine)
model of computation. A simpler approach for crossing polygons that takes only O(n) time
per pivot is proposed in [12]. Furthermore, with more complicated motions such as line-
tracking motions simple planar polygons in three dimensions can be convexified in O(n)
moves [1] without crossings.
If we restrict ourselves to simple polygons in two dimensions then the problem of whether

every polygon can be convexified without allowing crossings, also known as the carpenter’s
ruler problem, was open for more than a decade until in the year 2000 it was finally solved
by Connelly, Demaine and Rote [5]. Further computational simplifications on this problem
have been obtained by Streinu [11]. Note that in the two-dimensional problem the motions
have to remain in the plane. In four and higher dimensions Cocan and O’Rourke [4] showed
that all polygons can be convexified without crossings.
Returning to the locked hexagon example of Cantarella and Johnston [3] illustrated in

Figure 1, since, in addition to the flat convex version, there are “right” and “left” handed
versions of the unknot, Cantarella and Johnston in effect proved that the space of isotopic
embeddings has at least three connected components. We remark that the lengths of the
edges are crucial for this property to hold. Indeed, if all six lengths are the same, Millet and
Orellana [10] showed that the class of unknots in Pol6(1, 1, 1, 1, 1, 1) is connected. Further-
more, if we consider orientation Calvo [2] has shown that there are distinct embeddings of left
and right-handed trefoils in Pol6(1, 1, 1, 1, 1, 1). In the conclusion of their paper Cantarella
and Johnston state that they suspect that all stuck unknots in Pol6 belong to the class illus-
trated in Figure 1, in other words, that there are no more than three components in Pol6.
In this note we describe a new class of stuck unknotted hexagons and show that this class is
stuck in a stronger sense than the class exhibited in [3]. An example of such a hexagon in
this new class is illustrated in Figure 2.
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Figure 2. A new class of stuck unknotted hexagons

2. A new stuck unknotted hexagon

Denote the space polygon by its vertices A = A1A2 · · ·A6 and let li be the length of link
AiAi+1, modulo 6. Note that the lengths in both figures are not metrically accurate but
the figures are easier to visualize as shown. For our new class we could in fact use the
same lengths as Cantarella and Johnston do and in the same order. However, it makes the
argument simpler if we change them. Accordingly let the lengths be: l1 = 20, l2 = l6 = 13,
l3 = l5 = 4 and l4 = 1. The argument follows directly from the results on stuck chains of five
segments (the “knitting-needles”) obtained in [3] and [1].
The only way to flatten the polygon with the knot diagram shown is to either pass the

chain A3A4A5A6 over A1 or under A2. For this to occur it is necessary that the length of
A3A4A5A6 be not smaller than the length of the shorter of l2 and l6 or 13. But the length
of A3A4A5A6 is 9 < 13. This condition is sufficient for the polygon with the knot diagram
shown in Figure 2 to be stuck. First we show that such a knot diagram can be realized by a
hexagon. There is considerable leeway in such constructions and we will just outline one such
strategy for actually obtaining coordinates. First construct a crossing planar polygon on the
xy-plane with the given link lengths such that the distance between the parallel links A1A2
and A4A5 is 1. Denote the height (z-coordinate) of each vertex by hi and refer to Figure 3.
The final polygon will have vertices A1, A2, A3 on the xy-plane (shaded triangle) and thus
height zero. Now select some positive real number ε as small as desired, say less than 0.1,
and let h4 = +ε and h5 = −ε. Link A3A4 is now fixed and above the xy-plane, where A4
has height +ε. The length of link A3A4 is adjusted accordingly. Vertex A5 is now fixed at
height −ε and the length of link A4A5 is adjusted accordingly. Construct the line segment
from A5 with z-coordinate −ε through link A2A3 until it intersects the vertical line L6 that
contains A6 at δ

′. Now check if A1δ
′, which lies above the xy-plane by construction, also lies

below link A3A4. If it does choose h6 = (δ
′)/2. If it lies above link A3A4 lower the line (at

A6) until it lies below link A3A4 and choose the corresponding height for A6, adjusting the
length of link A1A6 accordingly.
An example of a polygon with the knot diagram shown in Figure 2 and which is stuck,

has the following coordinates. A1 = (100, 10, 0), A2 = (−100, 10,−1), A3 = (10, 20, 0), A4 =
(10, 0, 10), A5 = (−10, 0,−10), A6 = (−10, 20, 0).
For completeness we review the proof that the “knitting needles” are stuck. We include

the proof of Biedl et al. [1] because it is simpler and shorter than the proof in [3]. Let
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Figure 3. One construction strategy for the polygon with the required knot diagram

C = A0, A1, . . . , A5 be a polygonal chain of five links with lengths l1, l2, . . . , l5, respectively.
There is no problem making the first and last links each to be greater than twice the sum of
the lengths of the other three links. Finally let the “knot” diagram of C be as illustrated in
Figure 4. Then we have the following lemma.

Lemma 1. ([3], [1]) The “knitting needles” cannot be straightened.

Proof. Construct a ball of radius r = l2+ l3+ l4 centered at A1 and keep link A0A1 fixed as
a reference frame during any untangling motion of the remaining links. Because l1 and l5 are
each more than twice the length of r, it follows that A0 and A5 must stay outside the ball at
all times during any motion. Therefore we can attach a chain of small enough segments C ′

between A0 and A5 such that C
′ lies outside the ball and such that the knot diagram of the

union of C and C ′ is the trefoil knot. Now assume that C can in fact be straightened. Since
C ′ remains outside the ball and A1A2A3A4 remains inside the ball at all times during the
untangling motion it follows that if C were straightened then the union of C and C ′ would
be the unknot, which contradicts the fact that it is a trefoil knot. �

This lemma immediately implies that the unknotted hexagon of Figure 2 cannot be convex-
ified. For if a link is removed from the polygon it can only help to untangle the remaining
chain. To this end let us remove link A1A2. But this results in the “knitting-needle” example
which is stuck. Therefore the polygon is also stuck and cannot be reconfigured into a convex
polygon. The lemma also shows that the hexagon of Figure 2 cannot be reconfigured to the
hexagon of Figure 1. For assume that it can and again remove link A1A2 before such a recon-
figuration is carried out. Then certainly the resulting chain can be reconfigured accordingly
even more easily. Examining chain A2, A3, . . . , A6, A1 in Figure 1, with A1A2 missing, we
see that A1A6 can be rotated about A6 in the plane determined by A1A6A5 to straighten
A6. Thus we obtain a polygonal chain with four links. But by Lemma 2 in [3] all polygons
in space with less than five links can be straightened. But this implies that the polygon in
Figure 2 with A1A2 missing can be straightened and this contradicts the “knitting-needle”
lemma.

3. Concluding remarks

It is clear from the example in Figure 2 that here we also have left and right handed versions
of the polygon. In conclusion we can state the following result.
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Figure 4. The “knitting-needles” example of a stuck chain of five segments [3], [1]

Theorem 1. For suitable choices of edge-length, there are at least five classes of embeddings
of the unknot in Pol6.

Just as in the example of Cantarella and Johnston, we can obtain a family of stuck unknots
similar to the polygon in Figure 2 for any value of n > 6 by inserting a polygonal chain of
any number of edges between A4 and A5 as long as their total length does not exceed the
length l4.
Finally we remark that the hexagon in Figure 2 is in a sense more stuck than the hexagon

in Figure 1. Let us define the stuck number of a polygon as the minimum number of links that
must be removed so that the remaining open chains can be straightened. Then, if the stuck
number of a polygon is k we will say the polygon is k-stuck. Let us call a polygon weakly
k-stuck if the removal of any k links allows the remaining open chains to be straightened.
Similarly, let us call a polygon strongly k-stuck if this is not the case but there exists some set
of k links whose removal allows subsequent straightening. From the results of Cantarella and
Johnston [3] it follows that the hexagon in Figure 1 is weakly 1-stuck whereas the example
in Figure 2 is strongly 1-stuck. Indeed, we have just seen that if in the hexagon of Figure 2
the link A1A2 is removed we obtain the stuck knitting-needles example of Cantarella and
Johnston [3] and Biedl et al. [1]. This suggests an interesting open problem: given a space
polygon P consisting of n edges, what is the complexity of determining the stuck-number of
P?
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[12] Toussaint, Godfried T.: The Erdős-Nagy theorem and its ramifications. In: 11th Cana-
dian Conference on Computational Geometry. Vancouver, Canada, August 16-18 1999,
9–12. Long version available at: http://www.cs.ubc.ca/conferences/CCCG.

[13] Janse van Rensburg, E. J.; Whittington, S. G.; Madras, N.: The pivot algorithm and
polygons: results on the FCC lattice. Journal of Physics A: Mathematical and General
Physics 23 (1990), 1589–1612.

[14] Wegner, Bernd: Partial inflation of closed polygons in the plane. Beiträge Algebra
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