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Abstract. We prove, using the minimalist axiom system for convex geometry
proposed by W. A. Coppel, that, given n red and n blue points, such that no three
are collinear, one can pair each of the red points with a blue point such that the n
segments which have these paired points as endpoints are disjoint.
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The problem stated in the abstract appeared as problem A-4 on the 1979 North American W.
L. Putnam Competition. There the 2n points are considered to be in the standard Euclidean
plane. As stated by us, as a theorem of Coppel’s minimalist convex geometry, this problem
is a statement that describes a universal property of any reasonable geometric order relation,
which we believe is general and interesting enough to justify a study of its possible proofs.
Here is the only proof I know to exist in print (in both [8] and [5]):

“There is a finite number (actually n!) of ways of pairing each of the red points with a blue
point in a 1-to-1 way. Hence there exists a pairing for which the sum of the lengths of the
segments joining paired points is minimal.” It is then shown that for such a pairing no two
of the n segments intersect.
There is a major discrepancy between the statement of this problem and its proof. In
the statement there appear only notions of betweenness and collinearity, whereas the proof
uses the notion of length. This goes against the principle of purity of the method of proof,
enunciated by Hilbert a century ago:
“In modern mathematics [. . .] one strives to preserve the purity of the method, i. e. to use in
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the proof of a theorem as far as possible only those auxiliary means that are required by the
content of the theorem.” ([7, p. 27])1

As contributions to this programme, of providing methodologically pure proofs of impor-
tant geometry problems we cite H. S. M. Coxeter’s proof from axioms of betweenness and
incidence of the Sylvester-Gallai problem ([3], [4]), and the proofs from affine axioms of a
generalized Euler line theorem by A. W. Boon [1] and E. Snapper [12].
The proof that we shall present, which respects the Hilbertian purity requirement, pro-

ceeds inside the following axiomatic framework:
There is one kind of individual variables, points, and a ternary relation among points B of
betweenness (with B(abc) to be read as ‘b lies between a and c (b could be equal to a or to
c)’). When we say ‘segment ab intersects segment cd’ we mean ‘there is a point x, different
from a, b, c, d such that B(axb) and B(cxd)’, and when we say that ‘x, y and z are collinear’
(for which we use the abbreviation L(xyz)) we mean B(xyz)∨B(yzx)∨B(zxy). The axioms
are:

A 1 B(aab)

A 2 B(aba)→ a = b

A 3 B(abc)→ B(cba)

A 4 B(abc) ∧B(acd)→ B(bcd)

A 5 b 6= c ∧B(abc) ∧B(bcd)→ B(acd)

A 6 a 6= b ∧B(acb) ∧B(adb)→ B(acd) ∨B(adc))

A 7 a 6= b ∧B(abc) ∧B(abd)→ B(acd) ∨B(adc)

A 8 (∀ab1b2cd)B(acb1) ∧B(cdb2)→ (∃b)B(b1bb2) ∧B(adb)

A 9 (∀ab1b2c1c2)B(ac1b1) ∧B(ac2b2)→ (∃d)B(b1dc2) ∧B(b2dc1)

This axiom system is equivalent to the axiom system consisting of (L1)–(L4), (C) and (P)
in [2]. The main difference consists in the adoption of the betweenness predicate as only
primitive notion, in the spirit of [14], as opposed to using points and segments and an
incidence relation between them, as done in [2]. Axioms A1–A7 are equivalent to the axioms
(L1)–(L4), and A8, A9 are restatements of axioms (C) and (P) respectively, which are forms
of the Pasch axiom, the ‘outer form’ and the ‘inner form’. Models of the axioms A1–A9 will
be called linear geometries. Let L be a linear geometry. If x and y are two points in L, then
we denote by [x, y] the segment xy, the set of all points z with B(xzy), and, for x 6= y, by
〈x, y〉, the line xy, the set all points z with L(xyz). A subset C of L is called convex (affine)
if it contains [x, y] (respectively 〈x, y〉) for all x, y ∈ C. The convex (affine) hull of a subset
A of L is defined to be the intersection of all convex (respectively affine) sets containing A,

1“In der modernen Mathematik (wird) solche Kritik sehr häufig geübt, woher das Bestreben ist, die Rein-
heit der Methode zu wahren, d. h. beim Beweise eines Satzes womöglich nur solche Hülfsmittel zu benutzen,
die durch den Inhalt des Satzes nahe gelegt sind.”
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and is denoted by [A] (resp. 〈A〉). The convex hull of a finite set is called a polytope. A point
e of a subset S of L is called an extreme point of S if S \ {e} is convex. A face of a convex
set C is a set A such that C ∩ 〈A〉 = A and C \ A is convex. A dimension theory may be
developed for affine sets, as shown in [2], and in the case of polytopes all dimensions involved
are finite. The notation dimS refers to dim〈S〉. A subset H of a finite dimensional affine
set A is called a hyperplane in A if dimH = dimA− 1. A face F of a polytope P is a facet
(edge) if F is a hyperplane in 〈P 〉 (resp. dimF = 1).

Here are some facts about polytopes, proved in [2], that we shall use in the sequel:

(i) Any two points e and e′ in the extreme set S of a polytope P can be connected in S by
edges of P (see [2, IV. Prop. 23]).
(ii) If F and G are faces of a polytope P such that F ⊂ G, then there exists a finite sequence
F0, F1, . . . , Fr of faces of P , with F0 = F and Fr = G, such that Fi−1 is a facet of Fi for
i ∈ {1, . . . , r} (see [2, IV. Cor. 16]).
(iii) If F is a face of a polytope P with dimF = dimP − 2, then F is contained in exactly
two facets of P and is their intersection (see [2, IV. Prop. 15]).

Our problem can be restated as follows:
Let a1, . . . , an and b1, . . . , bn be points, such that no three of them are collinear. Then there
is a permutation2 σ of {1, . . . , n} such that no two segments [ai, bσ(i)] and [aj, bσ(j)] with i 6= j
intersect.
In the formal language of our axiomatics this can be expressed, for every n ≥ 2, as the
sentence ϕn:

(∀a1 . . . anb1 . . . bn)
∨
1≤i<j<k≤n(L(aiajak) ∨ L(bibjbk))

∨
1≤i<j≤n,1≤k≤n(L(aiajbk) ∨ L(aibjbk))∨

σ∈Sn
((∀x)

∧
1≤i<j≤n ¬(B(aixbσ(i)) ∧B(ajxbσ(j)))).

We first prove the following

Lemma. Given a set S of n points, with no three collinear, p an extreme point of the
polytope P := [S], and a natural number k with 1 ≤ k < n, one can partition S into two
subsets Uk and Vk, such that Uk contains k points, p ∈ Vk, and [Uk] ∩ [Vk] = ∅.

Proof. Let d be the dimension of S. If d = 2, then, by (ii) and (iii) there are exactly two
edges (which are facets in our case), 〈p, q1〉 and 〈p, r〉 that contain p. We shall construct a
sequence of subsets Qi of S, for i = 1, . . . n− 1, as follows: let Q1 = {q1}, and suppose that
Qi with 1 ≤ i < n− 1 has already been constructed. Denote by qi+1 the point in S for which
〈p, qi〉 is one of the edges that contain p in the polytope [S \Qi] (the one different from 〈p, r〉,
for i < n − 2; for i = n − 2 we set qi+1 := r), and let Qi+1 = Qi ∪ {qi+1}. The two sets
Uk = Qk and Vk = S \ Uk have the desired properties (by the definition of facets, and the
fact that there are no three collinear points).
Suppose now that the statement of the lemma has been established for all dimensions

< d. Let L be a d − 2-dimensional face of P containing p, and let H and H ′ be the two
facets of P that contain L (cf. (ii) and (iii)). We shall construct a sequence of subsets Ui of
S having i elements, with i = 1, . . . , n− 1. We start with J1 := ((H ∩ S) \L)∪ {p}, which is
a finite set of points containing p, of dimension d− 1, so, by our inductive hypothesis, there

2The set of all permutations of {1, . . . , n} will be denoted by Sn.
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are partitions of J1 into two subsets A1,j and B1,j, such that [A1,j] ∩ [B1,j] = ∅, A1,j has j
elements, and p ∈ B1,j, for any 1 ≤ j < |J1|. Let Ui := A1,i for 1 ≤ i ≤ |J1| − 1. Let m ≥ 1,
and suppose that Jh has been defined for all 1 ≤ h ≤ m. Let α =

∑m
h=1(|Jh|−1) and suppose

Uα has been defined as well. Let Jm+1 be:
(a) the set of all points of S contained in the facet containing L that is different from H ′ of
the polytope [(S \ (∪mi=1Ji)) ∪ {p}], if that polytope is d-dimensional;
(b) the set of all points of S contained in H ′, if (S \ (∪mi=1Ji)) is contained in H

′.
By our inductive hypothesis, there are partitions of Jm+1 into two subsets Am+1,j and Bm+1,j,
such that [Am+1,j] ∩ [Bm+1,j] = ∅, Am+1,j has j elements, and p ∈ Bm+1,j, for any 1 ≤ j <
|Jm+1|. Let Uα+i = Uα ∪ Am+1,i for 1 ≤ i ≤ |Jm+1| − 1. Since (b) must occur after a finite
number of steps, we have defined Ui for all i ∈ {1, . . . , n− 1}. The desired partition of S is
obtained by setting Vk = S \ Uk ([Uk] ∩ [Vk] = ∅ is a consequence of the definition of faces
and facets). 2

Theorem. For all n ≥ 1 ϕn is valid in all linear geometries.

Proof. Let S be a set of n red and n blue points (a more suggestive way to refer to a1, . . . , an
and b1, . . . , bn), no three of which are collinear.
The proof that the sentences ϕn hold in linear geometry will proceed inductively on n.

For n = 1 the statement is vacuously true. Suppose now that n ≥ 2 and that the validity of
ϕi has been established for all 1 ≤ i ≤ n − 1. We will show that ϕn must hold as well. If
there are two extreme points of S of different colour, then we are done, since by (i) they can
be connected by edges whose endpoints are extreme points of S. One of those edges must
have different coloured endpoints, say e1 and e2, which are points of S, and thus one can
partition S into two sets with an equal number of red and blue points, namely S ′ = {e1, e2}
and S ′′ = S \ S ′. Since in S ′′ there are n − 1 points of each colour, the red ones can be
paired with the blue ones such that the segments that have those pairs as endpoints do not
intersect. Adding to that pairing the pair (e1, e2), we obtain the desired result, since the
segment [e1, e2] is an edge, thus cannot be intersected by any segment with endpoints in S

′′.
So from now on, we shall assume that the set of extreme points of S is monochromatic,

say blue. Let p be an extreme point of S. By the above Lemma, there is, for every k with
1 ≤ k ≤ 2n−1 a partition of S into two sets Uk and Vk such that p ∈ Vk, Uk has k points and
[Uk]∩ [Vk] = ∅. Notice that, by the construction of the set Uk described in the above Lemma,
U1 contains an extreme point of S, thus a blue point, and that U2n−1 contains all the points
except p, so more red points than blue points. Thus there exists a k with 1 ≤ k ≤ n− 1 for
which U2k (and thus V2k as well) contains an equal number of red and blue points. Since both
ϕk and ϕn−k have been assumed to be true, there is a pairing of the blue and red points in
U2k and V2k such that the respective segments do not intersect. Given that [U2k]∩ [V2k] = ∅,
the segments with endpoints in U2k cannot intersect those in V2k, so we have obtained the
desired pairing of the points in S. 2

Is our proof of the statements ϕn in a strict sense superior to the proof presented in [8] and [5]?
In other words does that proof require strictly stronger assumptions than ours? The answer
is, surprisingly, No! That proof can be done inside an axiom system that is incomparable to
ours. To see that, notice that what was needed in the argument of the proof in [8] and [5]
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was an ability to add the lengths of segments, compare any two segments, and the triangle
inequality (which is used in the proof that the blue-red pairing with minimal sum of the
lengths is the desired pairing, for the assumption of an intersection of two segments with red
and blue endpoints [r, b] with [r′, b′], would, via triangle inequality, lead to the conclusion
that the sum of the lengths of [r, b′] and [r′, b] is less than that of [r, b] and [r′, b′], which
contradicts the minimality of the sum of the pairing that paired r with b and r′ with b′). An
axiom system for a theory that allows one to do just that was proposed by M. Moszyńska
[10]. That axiom system, say Σ, is formulated in a language with one sort of individuals,
points, and two primitive notions, a quaternary one of equidistance, ≡, with ab ≡ cd to be
read as ‘the segments ab and cd are equal in length’, and a ternary one for betweenness, B.
Given that Σ is somewhat involved, we shall describe its models, and refer to [10] for Σ itself
(cf. also [9]). Let X be a set, G be an (additive) Abelian ordered group, and % : X ×X → G
a regular metric, i. e. a function satisfying the following properties:

%(a, b) ≥ 0; %(a, b) = 0↔ a = b; %(a, b) = %(b, a), %(a, b) + %(b, c) ≥ %(a, c);
(∀a1 . . . anb1 . . . bn)(∃q0 . . . qn)

∨
σ∈Sn
[
∧n
i=1(%(q0, qi−1) + %(qi−1, qi) = %(q0, qi)

∧%(qi−1, qi) = %(aσ(i), bσ(i)))];
(∀abca′c′)(∃b′) %(a, b) + %(b, c) = %(a, c) ∧ %(a, c) = %(a′, c′)
→ %(a, b) = %(a′, b′) ∧ %(b, c) = %(b′, c′).

Every model of Σ is a set X, equipped with a regular metric %, such that ab ≡ cd if and only
if %(a, b) = %(c, d) and B(abc) if and only if %(a, b) + %(b, c) = %(a, c). Of the axioms A1–A9
for B, only A1–A4 are consequences of Σ. Notice that the triangle inequality is essential
for the ϕn to be true in a theory of metric betweenness and equidistance. To be precise,
even if all other axioms of plane Euclidean geometry over Pythagorean fields hold, but the
triangle inequality fails, ϕ2 need not hold. In particular, this means that some form of the
Pasch axiom, from which the triangle inequality may be deduced (in the presence of the
customary axioms for equidistance and betweenness), in our axiom system A8 and A9, is
indispensable for the proof of ϕ2. It was shown in [6] and [11] that the triangle inequality is
strictly weaker than the Pasch axiom in a certain axiom system for plane Euclidean geometry
over Pythagorean fields. Thus there are models of Σ that are not linear geometries, so Σ is
not stronger than A1–A9.

To see that ϕ2 does not hold in an axiom system for plane Euclidean geometry in which
the triangle inequality does not hold, we shall use Szczerba’s [13] method of constructing
semi-orders of the field of real numbers. Let a be a transcendental number in R, satisfying
0 < a < 1. Then X = {1, a, a2, a

2
√
2

a+1
, a(1−a)

√
2

a+1
, a
√
a2+1
a+1

, a(a−1)
√
a2+1

a+1
}, as a subset of the vector

space R over Q is linearly independent, so it can be extended to a base B of R over Q. Let
bi with i = 0, . . . , 7 be the enumeration of the elements of X in the order in which they
are written in X, and suppose all the elements of B are indexed by a set I that includes
{1, . . . , 7}. The mapping ψ : B → R, defined by ψ(bi) = bi for all i ∈ I, except i = 3 and
7, for which ψ(bi) = −bi, can be extended by linearity to an isomorphism of vector spaces
f : R → R. Let P be the set of all positive numbers of R. Then R := 〈R, f(P )〉 is a
semi-ordered field, with x < y if and only if y − x ∈ f(P ) (the order relation is closed under
addition but not under multiplication). Then, in R×R, betweenness and equidistance can
be defined as in regular metric spaces, with the metric % defined by %((x1, x2), (y1, y2)) =
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f(P )

√
(x1 − y1)2 + (x2 − y2)2, where f(P )

√
x denotes the f(P )-positive element whose square

is x. In this model, the betweenness axioms A1–A7 hold, but not A8 and not A9. So do the
axioms of Σ, with the exception of one axiom schema (A14n in [10]). One can check that ϕ2
fails in this model by choosing a1 = (0, a), a2 = (a

2, 0), b1 = (a, 0), b2 = (0,−a).
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