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S-412 96 Göteborg, Sweden
e-mail: kadison@math.ntnu.no
e-mail: astolin@math.chalmers.se

Abstract. In Section 1 we introduce Frobenius coordinates in the general setting
that includes Hopf subalgebras. In Sections 2 and 3 we review briefly the theories
of Frobenius algebras and augmented Frobenius algebras with some new material
in Section 3. In Section 4 we study the Frobenius structure of an FH-algebra H
[25] and extend two recent theorems in [8]. We obtain two Radford formulas for
the antipode in H and generalize in Section 7 the results on its order in [10]. We
study the Frobenius structure on an FH-subalgebra pair in Sections 5 and 6. In
Section 8 we show that the quantum double of H is symmetric and unimodular.
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1. Introduction

Suppose A and S are noncommutative associative rings with S a unital subring in A, or
stated equivalently, A/S is a ring extension. Given a ring automorphism β : S → S, a left
S-module M receives the β-twisted module structure βM by s ·β m := β(s)m for each s ∈ S
and m ∈ M . A/S is said to be a β-Frobenius extension if the natural module AS is finite
projective, and

SAA ∼= βHomS(AS, SS)A

[10, 23]. A very useful characterization of β-Frobenius extensions is that they are the ring
extensions having a Frobenius coordinate system. A Frobenius coordinate system for a ring
extension A/S is data (E, xi, yi) where E : SAS → βSS is a bimodule homomorphism, called
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the Frobenius homomorphism, and elements xi, yi ∈ A (i = 1, . . . , n), called dual bases, such
that for every a ∈ A:

n∑

i=1

β−1(E(axi))yi = a =
∑

i

xiE(yia). (1)

One of the most important points about Frobenius coordinates for A/S is that any two of
these, (E, xi, yi) and (F, zj, wj), differ by only an invertible d ∈ CA(S), the centralizer of S
in A: viz. F = Ed and

∑
i xi ⊗ d

−1yi =
∑

j zj ⊗ wj [23]. The Nakayama automorphism η of
CA(S) may be defined by

E(η(c)a) = E(ac)

for every a ∈ A, c ∈ CA(S). Then from Equations (1), η(c) =
∑

i β
−1(E(xic))yi, and

η−1(c) =
∑

i

xiE(cyi). (2)

The Nakayama automorphisms η and γ relative to two Frobenius homomorphisms E and
F = Ed, respectively, are related by ηγ−1(x) = dxd−1 for every x ∈ CA(S) [23]. If A is a
k-algebra and S = k1A, then β is necessarily the identity by a short calculation [20] and
CA(S) = A.
For example, a Hopf subalgebra K in a finite-dimensional Hopf algebra H over a field is a

free β-Frobenius extension. The natural module HK is free by the theorem of Nichols-Zoeller
[21]. By a theorem of Larson-Sweedler in [18], the antipode is bijective, and H and K are
Frobenius algebras with Frobenius homomorphisms which are left or right integrals in the
dual algebra. From Oberst-Schneider [22, Satz 3.2] we have a formula (cf. Equation (40))
that implies that the Nakayama automorphism of H, ηH , restricts to a mapping of K →
K. It follows from Pareigis [23, Satz 6] that H/K is a β-Frobenius extension, where the
automorphism β of K is the following composition of the Nakayama automorphisms of H
and K:

β = ηK ◦ η
−1
H (3)

(cf. Section 5).
This paper continues our investigations in [2, 3, 11, 12] on the interactions of Frobenius al-
gebras/extensions with Hopf algebras. We apply Frobenius coordinates to a class of Hopf
algebras over commutative rings called FH-algebras, which are Hopf algebras that are si-
multaneously Frobenius algebras (cf. Section 4). This class was introduced in [24, 25] and
includes the finite-dimensional Hopf algebras as well as the finite projective Hopf algebras
over commutative rings with trivial Picard group (such as semi-local or polynomial rings).
The added generality would apply for example to a Hopf algebra H over a Dedekind domain
k satisfying the condition that the element represented by the k-module of left integrals

∫ `
H∗

in the Picard group of k be trivial.
This paper is organized as follows. In Section 2, we review the basics of Frobenius algebras

and Frobenius coordinates, as well as separability. In Section 3, we study norms, integrals
and modular functions for augmented Frobenius algebras over a commutative ring, giving a
lemma on the effect of automorphisms and anti-automorphism on s. In Section 4, we derive
by means of different Frobenius coordinates Radford’s Formula (32) for S4 and Formula (27)
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relating S2, t1, t2, where t is a right norm for H. This extends two formulas in [26, 28, k =
field] to FH-algebras with different proofs. Then we generalize two recent results of Etingof
and Gelaki [8], the main one stating that a finite-dimensional semisimple and cosemisimple
Hopf algebra is involutive. We show that with a small condition on 2 ∈ k a separable and
coseparable Hopf k-algebra is involutive (Theorem 4.9). Furthermore, if H is separable and
satisfies a certain bound on its local ranks, then H is coseparable and therefore involutive
(Theorem 4.10).
In Section 5, we prove that a subalgebra pair of FH-algebras H ⊇ K is a β-Frobenius

extension, though not necessarily free. In Section 6, we derive by means of different Frobenius
coordinates Equation (45) relating the different elements in a β-Frobenius coordinate system
for a Hopf subalgebra pair K ⊂ H given by Fischman-Montgomery-Schneider [10]. In Section
7, we prove that a group-like element in a finite projective Hopf algebra H over a Noetherian
ring k has finite order dividing the least common multiple N of the P -ranks of H as a k-
module. From the theorems in Section 4 it follows that S has order dividing 4N , and, should
H be an FH-algebra, that the Nakayama automorphism η has finite order dividing 2N , as
obtained for fields in [26] and [10], respectively. In Section 8, we extend the Drinfel’d notion
of quantum double to FH-algebras, then prove that the quantum double of an FH-algebra H
is a unimodular and symmetric FH-algebra.

2. A brief review of Frobenius algebras

All rings in this paper have 1, homomorphisms preserve 1, and unless otherwise specified k
denotes a commutative ring. Given an associative, unital k-algebra A, A∗ denotes the dual
module Homk(A, k), which is an A-A bimodule as follows: given f ∈ A∗ and a ∈ A, af is
defined by (af)(b) = f(ba) for every b ∈ A, while fa is defined by (fa)(b) = f(ab). We also
consider the tensor-square, A ⊗ A as a natural A-bimodule given by a(b ⊗ c) = ab ⊗ c and
(a⊗ b)c := a⊗ bc for every a, b, c ∈ A. An element

∑
i zi ⊗ wi in the tensor-square is called

symmetric if it is left fixed by the transpose map given by a⊗ b 7→ b⊗ a for every a, b ∈ A.
We first consider some preliminaries on a Frobenius algebra A over a commutative ring

k. A is a Frobenius algebra if the natural module Ak is finite projective (= finitely generated
projective), and

AA ∼= A∗A. (4)

Suppose fi ∈ A∗, xi ∈ A form a finite projective base, or dual bases, of A over k: i.e., for
every a ∈ A,

∑
i xifi(a) = a. Then there are yi ∈ A and a cyclic generator φ ∈ A

∗ such that
the A-module isomorphism is given by a 7→ φa, and

∑

i

xiφ(yia) = a =
∑

φ(axi)yi, (5)

for all a ∈ A. It follows that φ is nondegenerate (or faithful) in the following sense: a linear
functional φ on an algebra A is nondegenerate if a, b ∈ A such that aφ = bφ or φa = φb
implies a = b.
We refer to φ as a Frobenius homomorphism, (xi, yi) as dual bases, and (φ, xi, yi) as a

Frobenius system or Frobenius coordinates. It is useful to note from the start that xy = 1
implies yx = 1 in A, since an epimorphism of A onto itself is automatically bijective [24, 30].
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It is equivalent to define a k-algebra A Frobenius if Ak is finite projective and AA ∼= AA
∗.

In fact, with φ defined above, the mapping a 7→ aφ is such an isomorphism, by an application
of Equations (5).
Note that the bilinear form on A defined by 〈a, b〉 := φ(ab) is a nondegenerate inner

product which is associative: 〈ab, c〉 = 〈a, bc〉 for every a, b, c ∈ A.
The Frobenius homomorphism is unique up to an invertible element in A. If φ and ψ

are Frobenius homomorphisms for A, then ψ = dφ for some d ∈ A. Similarly, φ = d′ψ for
some d′ ∈ A, from which it follows that dd′ = 1. The element d is referred to as the (left)
derivative dψ

dφ
of ψ with respect to φ. Right derivatives in the group of units A◦ of A are

similarly defined.
If (φ, xi, yi) is a Frobenius system for A, then e :=

∑
i xi⊗ yi is an element in the tensor-

square A ⊗k A which is independent of the choice of dual bases for φ, called the Frobenius
element. By a computation involving Equations (5), e is a Casimir element satisfying ae = ea
for every a ∈ A, whence

∑
i xiyi is in the center of A.

1 It follows that A is k-separable if and
only if there is an a ∈ A such that ∑

i

xiayi = 1. (6)

For each d ∈ A◦, we easily check that (φd, xi, d−1yi) and (dφ, xid−1, yi) are the other Frobenius
systems in a one-to-one correspondence. It follows that a Frobenius element is also unique,
up to a unit in A⊗ A (either 1⊗ d±1 or d±1 ⊗ 1).
A symmetric algebra is a Frobenius algebra A/k which satisfies the stronger condition:

AAA ∼= A(A
∗)A. (7)

Choosing an isomorphism Φ, the linear functional φ := Φ(1) is a Frobenius homomorphism
satisfying φ(ab) = φ(ba) for every a, b ∈ A: i.e., φ is a trace on A. The dual bases xi, yi for
this φ form a symmetric element in the tensor-square, since for every a ∈ A,

∑

i

axi ⊗ yi =
∑

i,j

yj ⊗ φ(axixj)yi

=
∑

j

yj ⊗ xja. (8)

A k-algebra A with φ ∈ A∗ and xi, yi ∈ A satisfying either
∑

i xiφ(yia) = a for every a ∈ A
or
∑

i φ(axi)yi = a for every a ∈ A is automatically Frobenius. As a corollary, one of
the dual bases equations implies the other. For if

∑n
i=1(xiφ)yi = IdA, then A is explicitly

finite projective over k, and it follows that A∗ is finite projective too. The homomorphism

AA → AA
∗ defined by a 7→ aφ for all a ∈ A is surjective, since given f ∈ A∗, we note that

f = (
∑

i f(yi)xi)φ. Since A and A
∗ have the same P -rank for each prime ideal P in k, the

epimorphism a 7→ aφ is bijective [30], whence AA ∼= AA
∗. Starting with the other equation

in the hypothesis, we similarly prove that a 7→ φa is an isomorphism AA ∼= A∗A.
The Nakayama automorphism of a Frobenius algebra A is an algebra automorphism

α : A→ A defined by
φα(a) = aφ (9)

1e is the transpose of the element Q in [3].
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for every a ∈ A. In terms of the associative inner product, 〈x, a〉 = 〈α(a), x〉 for every a, x ∈
A. α is an inner automorphism iff A is a symmetric algebra. The Nakayama automorphism
η of another Frobenius homomorphism ψ = φd, where d ∈ A◦, is given by

η(x) =
∑

i

φ(dxix)d
−1yi =

∑

i

d−1φ(α(x)dxi)yi = d
−1α(x)d, (10)

so that αη−1(x) = dxd−1. Thus the Nakayama automorphism is unique up to an inner
automorphism. A Frobenius algebra A is a symmetric algebra if and only if its Nakayama
automorphism is inner.
Another formula for α is obtained from Equations (9) and (5): for every a ∈ A,

α(a) =
∑

i

φ(xia)yi. (11)

If the Frobenius element
∑

i xi⊗ yi is symmetric, it follows from this equation that α = IdA.
Together with Equation (8), this proves:

Proposition 2.1. A Frobenius algebra A is a symmetric algebra if and only if it has a
symmetric Frobenius element.

Equation (7) generalizes to all Frobenius algebras as follows. A Frobenius isomorphism Ψ :

AA
∼=→ A∗A induces a bimodule isomorphism where one bimodule is twisted by the Nakayama

automorphism α:

AAA ∼= α−1A
∗
A, (12)

since with φ = Ψ(1) Equation (9) yields

Ψ(a1aa2) = φa1aa2 = α
−1(a1)φaa2 = α

−1(a1)Ψ(a)a2.

The left and right derivatives of a pair of Frobenius homomorphisms differ by an application
of the Nakayama automorphism (cf. Equation (9)). A computation applying Equations (5)
and (9) proves that for every a ∈ A,

∑

i

xia⊗ yi =
∑

i

xi ⊗ α(a)yi. (13)

In closing this section, we refer the reader to [6, 2, 12] for more on Frobenius algebras over
commutative rings, and to [32] for a survey of the representation theory of Frobenius over
fields and work on the Nakayama conjecture.

3. Augmented Frobenius algebras

A k-algebra A is said to be an augmented algebra if there is an algebra homomorphism
ε : A→ k, called an augmentation. An element t ∈ A satisfying ta = ε(a)t, ∀ a ∈ A, is called
a right integral of A. It is clear that the set of right integrals, denoted by

∫ r
A
, is a two-sided

ideal of A, since for each a ∈ A, the element at is also a right integral. Similarly for the space
of left integrals, denoted by

∫ `
A
. If
∫ r
A
=
∫ `
A
, A is said to be unimodular.
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Now suppose that A is a Frobenius algebra with augmentation ε. We claim that a
nontrivial right integral exists in A. Since A∗ ∼= A as right A-modules, an element n ∈ A
exists such that φn = ε where φ is a Frobenius homomorphism. Call n the right norm in A
with respect to φ. Given a ∈ A, we compute in A∗:

φna = (φn)a = εa = ε(a)ε = φnε(a).

By nondegeneracy of φ, n satisfies na = nε(a) for every a ∈ A.

Proposition 3.1. If A is an augmented Frobenius algebra, then the set
∫ r
A
of right integrals

is a two-sided ideal which is free cyclic k-summand of A generated by a right norm.

Proof. The proof is based on [24, Theorem 3], which assumes that A is also a Hopf algebra.
Let φ ∈ A∗ be a Frobenius homomorphism, and n ∈ A satisfy φn = ε, the augmentation.
Given a right integral t 6= 0, we note that

φt = φ(t)ε = φ(t)φn = φnφ(t),

whence
t = φ(t)n. (14)

Then 〈n〉 := {ρn| ρ ∈ k} coincides with the set of all right integrals.
Given λ ∈ k such that λn = 0, it follows that

φ(n)λ = ε(1)λ = λ = 0,

whence 〈n〉 is a free k-module. Moreover, 〈n〉 is a direct k-summand in A since a 7→ φ(a)n
defines a k-linear projection of A onto 〈n〉. �

The right norm in A is unique up to a unit in k, since norms are free generators of
∫ r
A
by the

proposition. The notions of norm and integral only coincide if k is a field.
Similarly the space

∫ `
A
of left integrals is a rank one free summand in A, generated by any

left norm. In general the spaces of right and left integrals do not coincide, and one defines an
augmentation on A that measures the deviation from unimodularity. In the notation of the
proposition and its proof, for every a ∈ A, the element an is a right integral since the right
norm n is. From Equation (14) one concludes that an = φ(an)n = (nφ)(a)n. The function

m := nφ : A→ k (15)

is called the right modular function, which is an augmentation since ∀ a, b ∈ A we have
(ab)n = m(ab)n = a(bn) = m(a)m(b)n and n is a free generator of

∫ r
A
.

The next proposition and corollary we believe has not been noted in the literature before.

Proposition 3.2. If A is an augmented Frobenius algebra and α the Nakayama automor-
phism, then in the notation above,

m ◦ α = ε. (16)
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Proof. We note that φ ◦ α = φ by evaluating each side of Equation (9) on 1. Then for each
x ∈ A,

m(α(x)) = (nφ)(α(x)) = (φα(n))(α(x)) = (φ ◦ α)(x) = φ(x). �

The next corollary follows from noting that if α is an inner automorphism, then m = ε from
the proposition.

Corollary 3.3. If A is an augmented symmetric algebra, then A is unimodular.

We note two useful identities for the right norm,

n =
∑

i

φ(nxi)yi =
∑

i

ε(xi)yi (17)

=
∑

i

xi(nφ)(yi) =
∑

i

xim(yi). (18)

As an example, consider A := k[X]/(Xn) where k is a commutative ring and aX = Xα(a)
for some automorphism α of k and every a ∈ k. Then A is an augmented Frobenius algebra
with Frobenius homomorphism φ(a0+a1X + · · ·+an−1Xn−1) := an−1, dual bases xi = X

i−1,
yi = Xn−i (i = 1, . . . , n), and augmentation ε(a0 + a1X + · · · + an−1Xn−1) := a0. It follows
that a left and right norm is given by n = Xn−1, and A is symmetric and unimodular. A is
not a Hopf algebra unless n is a prime p and the characteristic of k is p (cf. [10]).

The next proposition is well-known for finite-dimensional Hopf algebras [19].

Proposition 3.4. Suppose A is a separable augmented Frobenius algebra. Then A is uni-
modular.

Proof. The Endo-Watanabe theorem in [7] states that separable projective algebras are
symmetric algebras. The result follows then from Corollary 3.3. �

We will use repeatedly in Section 4 several general principles summarized in the next lemma.
Items 1, 2 and 3 below are valid without the assumption of augmentation or ε-invariance.

Lemma 3.5. Suppose (A, ε) is an augmented Frobenius algebra and α (respectively, β) is a
k-algebra automorphism (resp. anti-automorphism) of A satisfying ε-invariance: viz. ε◦α = ε.
Let (φA, xi, yi) be Frobenius coordinates of A. Then
1. The Frobenius system is transformed by α into a Frobenius system

(φA ◦ α
−1, α(xi), α(yi)).

2. The Frobenius system is transformed by β into the Frobenius system

(φA ◦ β
−1, β(yi), β(xi)).

3. If B is another Frobenius k-algebra with Frobenius homomorphism φB, then A ⊗ B is
a Frobenius algebra with Frobenius homomorphism φA ⊗ φB : A⊗B → k.

4. α sends integrals to integrals and norms to norms, respecting chirality.
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5. β sends integrals to integrals and norms to norms, reversing chirality.

Proof. 1 is proven by applying α to
∑

i φA(axi)yi = a, obtaining

∑

i

φAα
−1(α(a)α(xi))α(yi) = α(a)

for every a ∈ A. 2 is proven similarly. 3 is easy. 4 is proven by applying first α to ta = ε(a)t,
obtaining that α(t) ∈

∫ r
A
if t is too. Next, if φAn = ε, then (φA ◦α−1)α(n) = ε as well, which

together with 1 proves 4. 5 is proven similarly. �

4. FH-algebras

We continue with k as a commutative ring. We review the basics of a Hopf algebra H
which is finite projective over k [24]. A bialgebra H is an algebra and coalgebra where the
comultiplication and the counit are algebra homomorphisms. We use a reduced Sweedler
notation given by

∆(a) =
∑

(a)

a(1) ⊗ a(2) :=
∑

a1 ⊗ a2

for the values of the comultiplication homomorphism H → H ⊗k H. The counit is the
k-algebra homomorphism ε : H → k and satisfies

∑
i ε(a1)a2 =

∑
a1ε(a2) = a for every

a ∈ H.
A Hopf algebra H is a bialgebra with antipode. The antipode S : H → H is an anti-

homomorphism of algebras and coalgebras satisfying
∑
S(a1)a2 = ε(a)1 =

∑
a1S(a2) for

every a ∈ H.
A group-like element in H is defined to be a g ∈ H such that ∆(g) = g⊗ g and ε(g) = 1.

It follows that g ∈ H◦ and S(g) = g−1.
Finite projective Hopf algebras enjoy the duality properties of finite-dimensional Hopf

algebras. H∗ is a Hopf algebra with convolution product (fg)(x) :=
∑
f(x1)g(x2). The

counit is given by f 7→ f(1). The unit of H∗ is the counit of H. The comultiplication on H∗

is given by
∑
f1 ⊗ f2(a ⊗ b) = f(ab) for every f ∈ H∗, a, b ∈ H. The antipode is the dual

of S, a mapping of H∗ into H∗, denoted again by S when the context is clear. Note that an
augmentation f in H∗ is a group-like element in H∗, and vice versa, with inverse given by
Sf = f ◦ S.
As Hopf algebras, H ∼= H∗∗, the isomorphism being given by x 7→ evx, the evaluation

map at x: we fix this isomorphism as an identification of H with H∗∗. The usual left and
right action of an algebra on its dual specialize to the left action of H∗ on H∗∗ ∼= H given by
g ⇀ a :=

∑
a1g(a2), and the right action given by a ↼ g :=

∑
g(a1)a2.

We recall the definition of an equivalent version of Pareigis’s FH-algebras [25].

Definition 4.1. A k-algebra H is an FH-algebra if H is a bialgebra and a Frobenius algebra
with Frobenius homomorphism f a right integral in H∗. Call f the FH-homomorphism.2

2The authors have called FH-algebras Hopf-Frobenius algebras in an earlier preprint.
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The condition that f ∈
∫ r
H∗
is equivalent to

∑
f(a1)a2 = f(a)1 (19)

for every a ∈ H. Note that H is an augmented Frobenius algebra with augmentation ε. Let
t ∈ H be a right norm such that ft = ε. Note that f(t) = 1. Fix the notation f and t
for an FH-algebra. We show below that an FH-homomorphism is unique up to an invertible
scalar in k. If H is an FH-algebra and a symmetric algebra, we say that H is a symmetric
FH-algebra.
It follows from [24, Theorem 2] that an FH-algebra H automatically has an antipode.

With f its FH-homomorphism and t a right norm, define S : H → H by

S(a) =
∑

f(t1a)t2. (20)

Then for every a ∈ H

∑
S(a1)a2 =

∑
f(t1a1)t2a2 = f(ta)1 = ε(a)1.

Now in the convolution algebra structure on Endk(H), this shows S has IdH as right inverse.
Since Endk(H) is finite projective over k, it follows that IdH is also a left inverse of S; whence
S is the unique antipode.
The Pareigis Theorem [24] generalizing the Larson-Sweedler Theorem [18] shows that a

finite projective Hopf algebra H over a ground ring k with trivial Picard group is an FH-
algebra. In detail, the theorem proves the following in the order given. The first two items
are proven without the hypothesis on the Picard group of k. The last two items require only
that

∫ `
H∗
be free of rank 1.

1. There is a right Hopf H-module structure on H∗. Since all Hopf modules are trivial,
H∗ ∼= P (H∗)⊗H, for the coinvariants P (H∗) =

∫ `
H∗
.

2. The antipode S is bijective.

3. There exists a left integral f in H∗ such that the mapping Θ : H → H∗ defined by

Θ(x)(y) = f(yS(x)) (21)

is a right Hopf module isomorphism.

4. H is a Frobenius algebra with Frobenius homomorphism f .

It follows from 2. above that an FH-algebra H possesses an ε-invariant anti-automorphism S.
If f ∈ H∗ is an FH-homomorphism, then Sf is a Frobenius homomorphism and left integral
in H∗. It is therefore equivalent to replace right with left in Definition 4.1.
Letm : H → k be the right modular function ofH. Sincem is an algebra homomorphism,

it is group-like in H∗, whence m at times is called the right distinguished group-like element
in H∗.

The next proposition is obtained in an equivalent form in [22], [10] and [2], though in some-
what different ways.
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Proposition 4.2. Let H be an FH-algebra with FH-homomorphism f and right norm t.
Then (f, S−1t2, t1) is a Frobenius system for H.

Proof. Applying S−1 to both sides of Equation (20) yields

∑
S−1(t2)f(t1a) = a, (22)

for every a ∈ H. It follows from the finite projectivity assumption on H that (f, S−1(t2), t1)
is a Frobenius system. �

It follows from the proposition that t ↼ f = 1. Together with the corollary below this implies
that f is a right norm in H∗, since 1 is the counit for H∗. It follows that g is another FH-
homomorphism for H iff g = fλ for some λ ∈ k◦. From Equation (18) and the proposition
above it follows that

S(t) = t ↼ m. (23)

Proposition 4.3. H is an FH-algebra if and only if H∗ is an FH-algebra.

Proof. It suffices by duality to establish the forward implication. Suppose f is an FH-
homomorphism for H and t a right norm. Now Equation (20) and the argument after it work
for H∗ and the right integrals t, f since t ↼ f is the counit on H∗. It follows that

S(g) =
∑
(f1g)(t)f2 (24)

is an equation for the antipode in H∗. By taking S−1 of both sides we see that

(t, S−1f2, f1)

is a Frobenius system for H∗. Whence t is an FH-homomorphism for H∗ with right norm
f . �

It follows that H∗ is also an augmented Frobenius algebra. Next, we simplify our criterion
for FH-algebra.

Proposition 4.4. If H is an FH-algebra if and only if H is a Frobenius algebra and a Hopf
algebra.

Proof. The forward direction is obvious. For the converse, we use the fact that the k-
submodule of integrals of an augmented Frobenius algebra is free of rank 1 (cf. [24, Theorem

3] or Proposition 3.1). It follows that
∫ `
H
∼= k. From Pareigis’s Theorem we obtain that the

dual Hopf algebra H∗ is a Frobenius algebra. Whence
∫ `
H∗
∼= k and H is an FH-algebra. �

Let b ∈ H be the right distinguished group-like element satisfying

gf = g(b)f (25)

for every g ∈ H∗.
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The convolution product inverse of m is m−1 = m ◦ S. Given a left norm v ∈ H, we
claim that

va = vm−1(a).

Since t is a right norm, S an anti-automorphism and ε-invariant, it follows that St is a left
norm. Then we may assume v = St. Then S(at) = StSa = m(a)St, whence vx = vmS−1(x)
for every a, x ∈ H. The claim then follows from m ◦ S2 = m, since this implies that
m ◦ S−1 = m−1. But m ◦ S2 = m−1 ◦ S = m, since m−1 is group-like.

Lemma 4.5. Given an FH-algebra H with right norm f ∈ H∗ and right norm t ∈ H such
that f(t) = 1, the Nakayama automorphism, relative to f , and its inverse are given by:

η(a) = S2(a ↼ m−1) = (S2a)↼ m−1, (26)

η−1(a) = S−2(a ↼ m) = (S−2a)↼ m.

Proof. Using the Frobenius coordinates (f, S−1t2, t1), we note that

η−1(a) =
∑

S−1(t2)f(t1η
−1(a)) =

∑
S−1(t2)f(at1).

We make a computation as in [10, Lemma 1.5]:

S2(η−1(a)) =
∑

f(at1)St2

=
∑

f(a1t1)a2t2St3

=
∑

f(a1t)a2

= a ↼ m

since a ↼ f = f(a)1, at = m(a)t for every a ∈ H and f(t) = 1. Whence η−1(a) = S−2(a ↼
m). Since mS−2 = m, it follows that η−1(a) = (S−2a)↼ m.
It follows that a = (S−2ηa) ↼ m, so let the convolution inverse m−1 act on both sides:

(a ↼ m−1) = S−2η(a). Whence η(a) = S2(a ↼ m−1) = (S2a) ↼ m−1, since m−1S2 =
m−1. �

As a corollary, we obtain [22, Folg. 3.3] and [3, Proposition 3.8]: If H is a unimodular
FH-algebra, then the Nakayama automorphism is the square of the antipode.
Now recall our definition of b after Proposition 4.3 as the right distinguished group-like

in H. Equation (27) below was first established in [28] for finite-dimensional Hopf algebras
over fields by different means.

Theorem 4.6. If H is an FH-algebra with FH-homomorphism f and right norm t, then

∑
t2 ⊗ t1 =

∑
b−1S2t1 ⊗ t2. (27)
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Proof. On the one hand, we have seen that (f, S−1t2, t1) are Frobenius coordinates for H.
On the other hand, the equation f ⇀ x = bf(x) for every x ∈ H follows from Equation (25)
and gives

∑
S(t1)bf(t2a) =

∑
S(t1)t2a1f(t3a2)

=
∑

a1f(ta2)

=
∑

a1ε(a2)f(t) = a.

Then (f, S(t1)b, t2) is another Frobenius system for H.
Since (S−1(t2), t1) and (S(t1)b, t2) are both dual bases to f , it follows that

∑
S−1t2⊗t1 =∑

S(t1)b⊗ t2. Equation (27) follows from applying S ⊗ 1 to both sides. �

Proposition 4.2 with a = S−1t gives
∑

S−1t2f(t1S
−1t) = S−1tf(S−1t) = S−1t.

Since S−1t is a left norm, it follows that

f(S−1t) = 1. (28)

The next proposition is not mentioned in the literature for Hopf algebras.

Proposition 4.7. Given an FH-algebra H with FH-homomorphism f , the right distinguished
group-like element b is equal to the derivative d of the left integral Frobenius homomorphism
g := S−1f with respect to f :

b =
dg

df
. (29)

Proof. By Lemma 3.5, another Frobenius system for H is given by (g, St1, t2), since S is an
anti-automorphism. Then there exists a (derivative) d ∈ H◦ such that

df = g. (30)

g is a left norm in H∗ since S−1 is an ε-invariant anti-automorphism. Also bf is a left integral
in H∗ by the following argument. For any g, g′ ∈ H∗, we have b(gg′) = (bg)(bg′) as b is
group-like. Then for every h ∈ H∗

h(bf) = b[(b−1h)f ]

= b[(b−1h)(b)f ]

= h(1)(bf).

Now both g(t) and bf(t) equal 1, since f(S−1t) = 1, f(tb) = ε(b)f(t) = 1 and b is group-like.
Since bf is a scalar multiple of the norm g, it follows that

g = bf. (31)

Finally, d = b since df = bf from Equations (30) and (31), and f is nondegenerate. �
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We next give a different derivation for FH-algebras of a formula in [26] for the fourth power
of the antipode of a finite-dimensional Hopf algebra. The main point is that the Nakayama
automorphisms associated with the two Frobenius homomorphisms S−1f and f differ by an
inner automorphism determined by the derivative in Proposition 4.7.

Theorem 4.8. Given an FH-algebra H with right distinguished group-like elements m ∈ H∗

and b ∈ H, the fourth power of the antipode is given by

S4(a) = b(m−1 ⇀ a ↼ m)b−1 (32)

for every a ∈ H.

Proof. Let g := S−1f and denote the left norm St by Λ. Note that g(Λ) = 1 = g(S−1Λ)
since f(t) = 1 = f(S−1t). We note that (g,Λ2, S

−1Λ1) are Frobenius coordinates for H, since
S is an anti-automorphism of H.
Then the Nakayama automorphism α associated with g has inverse satisfying

α−1(a) =
∑
Λ2g(aS

−1Λ1)

whence

S−1α−1(a) =
∑

S−1g(Λ1Sa)S
−1(Λ2)

=
∑

S−1(Λ3)S
−1g(Λ1Sa2)Λ2Sa1

=
∑

S−1g(ΛSa2)Sa1

= g(S−1Λ)
∑

m−1(Sa2)Sa1 = S(m ⇀ a),

since Sm−1 = m. It follows that

α−1(a) = S2(m ⇀ a) = m ⇀ S2a (33)

α(a) = m−1 ⇀ S−2a = S−2(m−1 ⇀ a). (34)

From Proposition 4.7 we have g = bf = fη(b), where η is the Nakayama automorphism
of f . By Equation (10) and Lemma 4.5,

m−1 ⇀ S−2a = α(a)

= η(b−1)η(a)η(b)

= m−1(b−1)b−1(S2(a)↼ m−1)bm−1(b)

= b−1S2(a)b ↼ m−1,

since b and m are group-likes and S2 leaves m and b fixed. It follows that

a = m ⇀ b−1S4(a)b ↼ m−1,

for every a ∈ H. Equation (32) follows. �
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The theorem implies [3, Corollary 3.9], which states that S4 = IdH , if H and H
∗ are uni-

modular finite projective Hopf algebras over k. For localizing with respect to any maximal
idealM, we obtain unimodular Hopf-Frobenius algebras HM ∼= H ⊗ kM and its dual, since
the local ring kM has trivial Picard group. By Theorem 4.8, the localized antipode satisfies
(SM)

4 = Id for every maximal idealM in k; whence S4 = IdH [30].

Theorem 4.9. Let k be a commutative ring in which 2 is not a zero divisor and H a finite
projective Hopf algebra. If H is separable and coseparable, then S2 = Id.

Proof. First we note that H is unimodular and counimodular. Then it follows from the
theorem above that S4 = Id. Localizing with respect to the set T = {2n, n = 0, 1, . . .} we
may assume that 2 is invertible in k. Then H = H+ ⊕ H− where H± = {h ∈ H : S2(h) =
±h}, respectively. We have to prove that H− = 0. It suffices to prove that (H−)M = 0
for any maximal ideal M in k. Since HM/MHM is separable and coseparable over the
field k/M, we deduce from the main theorem in [8] that (H−)M ⊂ MHM and therefore
(H−)M ⊂ M(H−)M. The desired result follows from the Nakayama Lemma because H− is
a direct summand in H. �

In [3] it was established that if H is separable over a ring k with no torsion elements,
then S2 = Id. We may improve on this and similar results by an application of the last
theorem. If k is a commutative ring and M is a finitely generated projective k-module, we
let rankM : Spec k → Z be the rank function, which is defined on a prime ideal P in k by

rankM(P) := dim k/P (M ⊗k k/P)⊗k/P k/P

where k/P is the field of fractions of k/P . The range of rankM is finite and consists of a set
of positive integers n1, n2, . . . , nk.
Now for any prime p ∈ Z, let Spec(p)k ⊆ Spec k be the subset of prime ideals P for which

the characteristic char (k/P ) = p. Suppose that Spec(p)k is non-empty and

rankM(Spec
(p)k) = {ni1 , . . . , nis}.

For such p and φ the Euler function, we define

N(M, p) := max
m=1,...,s

{n
φ(nim )

2
im

}.

Theorem 4.10. Let k be a commutative ring in which 2 is not a zero divisor and H be a
f.g. projective Hopf algebra. If H is k-separable such that N(H, p) < p for every odd prime
p, then H is coseparable and S2 = Id.

Proof. First we note that 2 may be assumed invertible in k without loss of generality by
localization with respect to powers of 2. LetM in k be a maximal ideal. The characteristic
of k/M is not 2 by our assumption.
It is known that an algebra A is separable iff A/MA is separable over k/M for every

maximal ideal M ⊂ k [4]: whence H/MH is k/M-separable. Furthermore note that if
d(M) := dimk/MH/MH is greater than 2, then

d(M)
φ(d(M))

2 < char (k/M).
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It then follows from [8] that H∗/MH∗ ∼= (H/MH)∗ is k/M-separable for suchM.
If d(M) = 2 and k/M denotes the algebraic closure of k/M, then H∗/mH∗ ⊗k k/M is

either semisimple or isomorphic to the ring of dual numbers. But the latter is impossible since
it is not a Hopf algebra in characteristic different from 2. Hence H∗/MH∗ is k/M-separable
for all maximal idealsM. Hence H∗ is k-separable by [4]. By Theorem 4.9 then, S2 = Id. �

In closing this section, we note that Schneider [29] has established Equation (32) by different
methods for k a field. Equation (32) is generalized in a different direction by Koppinen [16].
Waterhouse sketches a different method of how to extend the Radford formula to a finite
projective Hopf algebra [31].

5. FH-subalgebras

In this section we prove that a Hopf subalgebra pair of FH-algebras B ⊆ A form a β-Frobenius
extension. The first results of this kind were obtained by Oberst and Schneider in [22] under
the assumption that H is cocommutative.
The proposition below sans Equation (36) is more general than [9, Theorem 1.3] and

a special case of [23, Satz 7]: the proof simplifies somewhat and is needed for establishing
Equation (36).

Proposition 5.1. Suppose A and B are Frobenius algebras over the same commutative ring
k with Frobenius coordinates (φ, xi, yi) and (ψ, zj, wj), respectively. If B is a subalgebra of A
such that AB is projective and the Nakayama automorphism ηA of A satisfies ηA(B) = B,
then A/B is a β-Frobenius extension with β the relative Nakayama automorphism,

β = ηB ◦ η
−1
A , (35)

and β-Frobenius homomorphism

F (a) =
∑

j

φ(azj)wj, (36)

for every a ∈ A.

Proof. Since B is finite projective over k, it follows that AB is a finite projective module.
It remains to check that BAA ∼= β(AB)

∗
A, which we do below by using the Hom-Tensor

Relation and Equation (12) twice (for A and for B). Let η−1A denote the restriction of η
−1
A to

B below.

BAA ∼= η−1A
Homk(A, k)A

∼= Homk(A⊗B Bη−1A
, k)A

∼= HomB(AB, η−1A
Homk(B, k)B)A

∼= η−1A
HomB(AB, ηBBB)

∼= ηB◦η
−1
A
HomB(AB, BB)A.

By sending 1A along the isomorphisms in the last set of equations, we compute that the
Frobenius homomorphism F : BAB → βBB is given by Equation (36). One may double check
that F (bab′) = β(b)F (a)b′ for every b, b′ ∈ B, a ∈ A by applying Equation (13). �



374 L. Kadison; A. A. Stolin: An Approach to Hopf Algebras via Frobenius Coordinates

Given a commutative ground ring k, we assume H and K are Hopf algebras with H a finite
projective k-module. K is a Hopf subalgebra of H if it is a pure k-submodule of H [17] and
a subalgebra of H for which ∆(K) ⊆ K ⊗k K and S(K) ⊆ K. It follows that K is finite
projective as a k-module [17]. The next lemma is a corollary of the Nicholls-Zoeller freeness
theorem.

Lemma 5.2. If H is a finitely generated free Hopf algebra over a local ring k with K a Hopf
subalgebra, then the natural modules HK and KH are free.

Proof. It will suffice to prove that HK is free, the rest of the proof being entirely similar.
First note that HK is finitely generated since Hk is. IfM is the maximal ideal of k, then the
finite-dimensional Hopf algebra H := H/MH is free over the Hopf subalgebra K := K/MK

by purity and the freeness theorem in [21]. Suppose θ : K
n ∼=→ H is a K-linear isomorphism.

Since K is finitely generated over k, MK is contained in the radical of K. Now θ lifts to
a right K-homomorphism Kn → H with respect to the natural projections H → H and
Kn → K

n
. By Nakayama’s lemma, the homomorphism Kn → H is epi (cf. [30]). Since Hk

is finite projective, τ is a k-split epi, which is bijective by Nakayama’s lemma applied to the
underlying k-modules. Hence, HK is free of finite rank. �

Over a non-connected ring k = k1 × k2, it is easy to construct examples of Hopf subalgebra
pairs

K := k[H1 ×H2] ⊆ H := k[G1 ×G2]

where G1 > H1, G2 > H2 are subgroup pairs of finite groups and HK is not free (by counting
dimensions on either side of H ∼= Kn). The next proposition follows from the lemma.

Proposition 5.3. If H is a finite projective Hopf algebra and K is a finite projective Hopf
subalgebra of H, then the natural modules HK and KH are finite projective.

Proof. We prove only that HK is finite projective since the proof that KH is entirely similar.
First note that HK is finitely generated.
If k is a commutative ground ring, Q → P is an epimorphism of K-modules, then it

will suffice to show that the induced map Ψ : HomK(HK , QK)→ HomK(HK , PK) is epi too.
Localizing at a maximal ideal M in k, we obtain a homomorphism denoted by ΨM. By
adapting a standard argument such as in [30], we note that for every module MK

HomK(HK ,MK)M ∼= Hom
r
KM
(HM,MM) (37)

since Hk is finite projective. Then ΨM maps

HomrKM(HM, QM)→ Hom
r
KM
(HM, PM).

By Lemma 5.2, HM is free over KM. It follows that ΨM is epi for each maximal idealM,
whence Ψ is epi. �

Suppose K ⊆ H is a pair of FH-algebras where K is a Hopf subalgebra of H: call K ⊆ H a
FH-subalgebra pair. We now easily prove that H/K is a β-Frobenius extension.
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Theorem 5.4. If H/K is an FH-subalgebra pair, then H/K is a β-Frobenius extension where
β = ηK ◦ η

−1
H .

Proof. The Nakayama automorphism ηH sends K into K by Equation (26), since K is a
Hopf subalgebra of H. HK is projective by Proposition 5.3. The conclusion follows then from
Proposition 5.1. �

From the theorem and Lemma 4.5 we readily compute β in terms of the relative modular
function χ := mH ∗m

−1
K , obtaining the formula [10, 1.6]: for every x ∈ K,

β(x) = x ↼ χ. (38)

Applying mK to both sides of this equation, we obtain

mH(x) = mK(β(x)), (39)

a formula which extends that in [10, Corollary 1.8] from the case β = IdK .

6. Some formulas for a Hopf subalgebra pair

It follows from Theorem 5.4 and Lemma 5.2 that a Hopf subalgebra pair K ⊆ H over a local
ring k is a free β-Frobenius extension. Since HK is free and therefore faithfully flat, the proof
in [10] that (E, S−1(Λ2),Λ1), defined below, is a Frobenius system carries through word for
word as described next.
From Proposition 4.2 it follows that (f, S−1(tH(2)), tH(1)) is a Frobenius system for H

where f ∈ H∗ and tH in H are right integrals such that f(tH) = 1. Given right and left
modular functions mH and m

−1
H , a computation using Equation (2) determines that

η−1H (a) = S
−2(a ↼ mH), (40)

for every a ∈ H. Let tK be a right integral for K. Now by a theorem in [21], HK and KH
are free. Then there exists Λ̂ ∈ H such that tH = Λ̂tK . Let Λ := ηH(S

−1(Λ̂)). Then a
β-Frobenius system for H/K is given by (E, S−1Λ(2),Λ(1)) where

E(a) =
∑

(a)

f(a(1)S
−1(tK))a(2), (41)

for every a ∈ H [10]. For example, if K is the unit subalgebra, E = f and Λ = t.
The rest of this section is devoted to comparing the different Frobenius systems for a

Hopf subalgebra pair K ⊆ H over a local ring k implied by our work in Sections 4 and 5.
Suppose that f ∈

∫ r
H∗
and t ∈

∫ r
H
such that ft = ε, and that g ∈

∫ r
K∗
and n ∈

∫ r
K
satisfy

gn = ε|K . Then by Section 4 (f, S−1(t2), t1) is a Frobenius system for H, and (g, S−1(n2), n1)
is a Frobenius system for K, both as Frobenius algebras.
By Equation (36), we note that a Frobenius homomorphism F : H → K of the β-

Frobenius extension H/K is given by

F (a) =
∑

f(aS−1(n2))n1. (42)
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Comparing E in Equation (41) and F above, we compute the (right) derivative d such that
F = Ed:

d =
∑

F (S−1(Λ2)Λ1

=
∑

f(S−1(Λ2)S
−1(n2))n1Λ1

=
∑
(S−1f)(n2Λ2)n1Λ1 = (S

−1f)(nΛ)1H ,

since S−1f ∈
∫ `
H∗
. Hence, (S−1f)(nΛ) ∈ k◦.

We next make note of a transitivity lemma for Frobenius systems, which adds Frobenius
systems to the transitivity theorem, [23, Satz 6].

Lemma 6.1. Suppose A/S is a β-Frobenius extension with system (ES, xi, yi) and S/T is a
γ-Frobenius extension with system (ET , zj, wj). If β(T ) = T , then A/T is a γ ◦ β-Frobenius
extension with system

(ET ◦ E, xizj, β
−1(wj)yi).

Proof. The mapping ETES is clearly a bimodule homomorphism TAT → γ◦βTT . We compute
for every a ∈ A:

∑

i,j

xizjETES(β
−1(wj)yia) =

∑

i

xi
∑

j

zjET (wjES(yia))

=
∑

i

xiES(yia) = a,

∑

i,j

(γβ)−1(ETES(axizj))β
−1(wj)yi =

∑

i

β−1(
∑

j

γ−1(ET (ES(axi)zj))wj)yi

=
∑

i

β−1(ES(axi))yi = a. �

Applying the lemma to the Frobenius system (E, S−1(Λ2),Λ1) forH/K and Frobenius system
(g, S−1(n2), n1) for K yields the Frobenius system for the algebra H,

(g ◦ E, S−1(Λ2)S
−1(n2), β

−1(n1)Λ1).

Comparing this with the Frobenius system (f, S−1(t2), t1), we compute the derivative d
′ ∈ H◦

such that (gE)d′ = f :

d′ =
∑

f(S−1(n2Λ2))β
−1(n1)Λ1. (43)

We note that f = gF , since for every a ∈ H,

g(
∑

f(aS−1(n2))n1) = f(a
∑

S−1(n2)g(n1)) = f(a).

Now apply g from the left to F = Ed and conclude that d = d′. It follows that gE is a right
norm in H∗ like f , since d ∈ k◦.
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Since ft = ε and mH(d
′) = d = (S−1f)(nΛ)1H , we see that dt is a right norm for gE.

Using Equation (17), we compute that

dt =
∑

ε(S−1(n2Λ2))β
−1(n1)Λ1

= β−1(n)Λ. (44)

Recalling from Section 1 that t = Λ̂n, we note that

β−1(n)Λ = Λ̂nd. (45)

Multiplying both sides of the equation β−1(n)Λ = td from the left by β−1(x), where x ∈ K,
derives Equation (39) by other means for local ground rings.

7. Finite order elements

Let M be a finite projective module over a commutative ring k. Let rankM : Spec(k) → Z
be the rank function as in Section 4. We introduce the rank number D̂(M,k) of M as the
least common multiple of the integers in the range of the rank function on M :

D̂(M,k) = l.c.m.{n1, n2, . . . , nk}.

Let H be a finite projective Hopf algebra over a Noetherian ring k. Let d ∈ H be a
group-like element. In this section we provide a proof that dN = 1 where N divides D̂(H, k)
(Theorem 7.7). In particular if H has constant rank n, such as when Spec(k) is connected,
then N divides n. Then we establish in Corollaries 7.8 and 7.9 that the antipode S and
Nakayama automorphism η satisfy S4N = η2N = IdH as corollaries of Theorem 4.8.
Let k[d, d−1] denote the subalgebra of H generated over k by 1 and the negative and

positive powers of d. Let k[d] denote only the k-span of 1 and the positive powers of d.
Clearly k[d, d−1] is Hopf subalgebra of H. d has a minimal polynomial p(x) ∈ k[x] if p(x) is
a polynomial of least degree such that p(d) = 0 and the gcd of all the coefficients is 1. We
first consider the case where k is a domain.

Lemma 7.1. If k is a domain, each group-like d ∈ H has a minimal polynomial of the form
p(x) = xs − 1 for some integer s. Moreover, s divides dimk(H ⊗k k) and f(d

s) 6= 0, where k
denote the field of fractions of k, f is FH-homomorphism for k[d, d−1].

Proof. We work at first in the Hopf algebra H ⊗k k in which H is embedded. Since k[d, d−1]
is a finite-dimensional Hopf algebra, there is a unique minimal polynomial of d, given by
p(x) = xs + λs−1x

s−1 + · · ·+ λ01. Since d is invertible, λ0 6= 0 and k[d, d−1] = k[d].
k[d] is a Hopf-Frobenius algebra with FH-homomorphism f : k[d]→ k. Then f(dk)dk =

f(dk)1 for every integer k, since each dk is group-like. If f(dk) 6= 0, then k ≥ s, since
otherwise d is root of xk − 1, a polynomial of degree less than s.
Thus, f(d) = · · · = f(ds−1) = 0, but f(1) 6= 0 since f 6= 0 on k[d]. Then f(p(d)) =

f(ds) + λ0f(1) = 0, so that f(d
s) = −λ0f(1) 6= 0. Since f(ds)ds = f(ds)1, it follows that

ds − 1 = 0. Clearly k[d] is a Hopf subalgebra of H ⊗k k of dimension s over k and it follows
from the Nichols-Zoeller theorem that s divides dimk(H ⊗k k).
For H over an integral domain we arrive instead at r(ds − 1) = 0 for some 0 6= r ∈ k.

Since H is finite projective over an integral domain, it follows that ds − 1 = 0. �
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It follows easily from the proof that if g(x) ∈ k[x] such that g(d) = 0, then ds = 1 for some
integer s ≤ deg g.

Theorem 7.2. Let H be a finite projective Hopf algebra over a commutative ring k, which
contains no additive torsion elements. If d ∈ H is a group-like element, then dN = 1 for
some N that divides D̂(H, k).

Proof. Let P be a prime ideal in k and rankH(P) = ni. Let D = D̂(H, k). Note that
H/PH ∼= H⊗k(k/P) is a finite projective Hopf algebra over the domain k/P . By Lemma 7.1,
there is an integer sP such that d

sP − 1 ∈ PH and sP divides ni. It follows that

dD − 1 ∈ PH

for each prime ideal P of k. Since H is finite projective over k, a standard argument gives
Nil(k)H = ∩(PH) over all prime ideals, where the nilradical Nil(k) = ∩P is equal to the
intersection of all prime ideals in k. Thus, dD − 1 =

∑
riai where ri ∈ Nil(k). Let ki be

integers such that rkii = 0. Then

(dD − 1)(
∑n
i=1 ki)+1 = 0. (46)

It is clear that P (x) := (xD − 1)(
∑n
i=1 ki)+1 is a monic polynomial with integer coefficients.

In general, let m ∈ Z be the least number such that m · 1 = 0: we will call m the
characteristic of k. Clearly in this case m = 0 and Z ⊆ k. Again by Equation (46),
Z[d, d−1] = Z[d] is a Hopf algebra over Z. Moreover, since k has no additive torsion elements,
we conclude that Z[d] is a free module over Z.
Now by Lemma 7.1 q(x) = xs − 1 is the minimal polynomial for d over Z and therefore

xs − 1 divides P (x) in Z[x]. Since P (x) has the same roots in C as xD − 1 it follows that a
primitive s-root of unity is a D-root of unity and whence s divides D. �

In preparation for the next theorem, observe that if (k,M) is a local ring of positive charac-
teristic, then char(k) = pt for some positive power of a prime number p and char(k/M) = p.

Theorem 7.3. Let k be a local ring of positive characteristic and H be a finite projective
Hopf algebra over k of rank n. If d ∈ H is group-like, then ds = 1 where s is the order of the
image of d in H/MH (and therefore s divides n).

Proof. Zpt is clearly a subring of k. Since we can choose a spanning set of H over k of the
form 1, d, . . . , ds−1, ts, · · · tn where the elements of the set are linearly independent moduloM,
it follows that 1, d, . . . , ds−1 generate a free module over Zpt . We claim that Zpt [d] coincides
with this module and therefore is free over Zpt .
First we need to prove thatMH∩Zpt [d] = pZpt [d]. To do this, we observe thatM∩Zpt =

pZpt and thus pZpt [d] ⊂MH ∩Zpt [d]. Then there is a canonical epimomorphism of algebras

over Zp :
Zpt [d]

pZpt
→

Zpt [d]

MH∩Zpt [d]
. Let d̄ denote the image of d in H/MH. Since d̄s = 1

over k/M, we deduce that d̄s = 1 over Zp from the fact that Zp is the prime subfield of

k/M. Thus there is a canonical algebra epimorphism Zp[πs] →
Zpt [d]

pZpt
, where πs is a cyclic

group of order s. Since 1, d, . . . , ds−1 are linearly independent modulo M, it follows that
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dimZp(
Zpt [d]

MH∩Zpt [d]
) ≥ s while dimZp(Zp[πs]) = s. Therefore all three Zp-algebras above have

dimension s andMH ∩ Zpt [d] = pZpt [d].
The next step we need is to prove that d satisfies a monic polynomial equation of degree s

over k. Clearly ds−1 ∈MH∩Zpt [d] and hence ds−1 = Σaidi with ai ∈ pZpt . If all i < s then
this is exactly what we need. Otherwise we can replace as+kd

s+k by as+kd
k + as+kΣaid

i+k.
However new coefficients as+kai are divisible by p

2. Continuing this process we will arrive at
a monic polynomial in d of degree s because pt = 0 and all the monomials of degree greater
than s will be eliminated.
Now it follows that Zpt [d, d−1] = Zpt [d] is a Hopf algebra over Zpt and a free module of

rank s. Then Zpt [d] is a Hopf-Frobenius algebra because Zpt is a local ring. Let f be a Hopf-
Frobenius homomorphism for Zpt [d]. If f̄ = fmod p, it is clear that this is a Hopf-Frobenius
homomorphism for Zp[d̄]. Since f̄(d̄s) 6= 0, it follows that f(ds) is an invertible element of
Zpt . Hence, the relation f(ds)ds = f(ds) · 1 implies that ds = 1, which proves the theorem. �

Definition 7.4. We say that a commutative ring k is a GH-ring if any group-like element
d of any finite projective Hopf algebra H satisfies dD̂(H,k) = 1.

We have already proved that fields, rings without additive torsion, and local rings of positive
characteristic are GH-rings. Next we make the following easy remarks:

Remark 7.5. If k1, . . . , kn are GH-rings then ⊕ni=1ki is a GH-ring.

Let g : k → K be a ring homomorphism (g(1) = 1) and let g∗ : Spec(K) → Spec(k) be the
induced continuous mapping. Then it is well-known (see for instance [1]) that rankM⊗kK =

g∗◦rankM for any projective k-moduleM and it follows that D̂(M⊗kK,K) divides D̂(M,k).
Then we can make the following

Remark 7.6. If g : k → K is an embedding and K is a GH-ring, then k is a GH-ring.

Theorem 7.7. Noetherian rings are GH-rings.

Proof. Let k be a Noetherian ring and T (k) ⊂ k be the set of all torsion elements, i.e. for
any a ∈ T (k) there exists a positive integer m such that ma = 0. T (k) is clearly an ideal
of k. Since T (k) is finitely generated over k, there exists a positive integer t(k) such that
t(k)T (k) = 0. Let π1 : k →

k
T (k)
and π2 : k →

k
t(k)·k be canonical surjections. We claim that

π1 ⊕ π2 : k →
k

T (k)
⊕ k

t(k)·k is an embedding. Indeed, if (π1 ⊕ π2)(x) = 0 then x ∈ T (k) and

x = t(k)a for some a ∈ k. Obviously then a ∈ T (k) and x = t(k)a = 0.
Since k

T (k)
has no additive torsion and therefore is a GH-ring, it remains to prove that a

Noetherian ring of a positive characteristic is a GH-ring. For that let us consider a multi-
plicatively closed set S consisting of all the non-divisors of zero of k. It is well-known that
k → S−1k is an embedding and S−1k is a semi-local ring if k is Noetherian (see [1]). So,
it is sufficient to prove that a semi-local ring A of positive characterestic is a GH-ring. Let
M1, . . . ,Mn be the set of all maximal ideals of A and AMi

be the corresponding localizations.
Now let us consider a homomorphism f : A→ ⊕AMi

induced by canonical homomorphisms
fi : A→ AMi

. We claim that f is an embedding. Let in contrary f(x) = 0. Then fi(x) = 0
for any i and there exists ai ∈ A\Mi such that aix = 0. Let us consider the ideal I generated
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by all ai. Clearly Ix = 0. On the other hand I cannot belong to Mi because ai is not in
Mi. Therefore we get that I = A and consequently x = 0. Since any AMi

is a local ring of
positive characteristic, Theorem 3.2 implies the required result. �

As a consequence of Proposition 4.8, Theorem 7.2 and Equation (26), we obtain the following
corollaries.

Corollary 7.8. Let H be an FH-algebra over a Noetherian ring k. Then S4D̂(H,k)=η2D̂(H,k)=
IdH .

Proof. Note that D̂(H, k) = D̂(H∗, k). �

Corollary 7.9. Let H be a finite projective Hopf algebra over a Noetherian ring k. Then
S4D̂(H,k) = IdH .

Proof. Localizing with respect to S = k − {zero divisors} we reduce the statement to a
semi-local ring A. Then it is well-known (see [1]) that Pic(A) = 0 and hence the statement
follows from the Hopf-Frobenius case. �

8. The quantum double of an FH-algebra

Let k be a commutative ring. We note that the quantum double D(H), due to Drinfel’d [5],
is definable for a finite projective Hopf algebra H over k: at the level of coalgebras it is given
by

D(H) := H∗ cop ⊗k H,

where H∗ cop is the co-opposite of H∗, the coproduct being ∆op.
The multiplication on D(H) is described in two equivalent ways as follows [19, Lemma

10.3.11]. In terms of the notation gx replacing g ⊗ x for every g ∈ H∗, x ∈ H, both H and
H∗ cop are subalgebras of D(H), and for each g ∈ H∗ and x ∈ H,

xg :=
∑
(x1gS

−1x3)x2 =
∑

g2(S
−1g1 ⇀ x ↼ g3). (47)

The algebra D(H) is a Hopf algebra with antipode S ′(gx) := SxS−1g, the proof proceed-
ing as in [15]. A Hopf algebra H ′ is almost cocommutative, if there exists R ∈ H ′⊗H ′, called
the universal R-matrix, such that

R∆(a)R−1 = ∆op(a) (48)

for every a ∈ H ′. A quasi-triangular Hopf algebra H ′ is almost cocommutative with universal
R-matrix satisfying the two equations,

(∆⊗ Id)R = R13R23 (49)

(Id⊗∆)R = R13R12. (50)

By a proof like that in [15, Theorem IX.4.4], D(H) is a quasi-triangular Hopf algebra with
universal R-matrix

R =
∑

i

ei ⊗ e
i ∈ D(H)⊗D(H), (51)
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where (ei, e
i) is a finite projective base of H [5].

The next theorem is now a straightforward generalization of [27, Theorem 4.4].

Theorem 8.1. If H is an FH-algebra, then the quantum double D(H) is a unimodular FH-
algebra.

Proof. Let f be an FH-homomorphism with t a right norm. Then T := S−1f is a left norm
in H∗. Let b−1 be the left distinguished group-like element in H satisfying Tg = g(b−1)T for
every g ∈ H∗. Moreover, note that ` := S−1(t) is a left norm in H.
In this proof we denote elements of D(H) as tensors in H∗ ⊗H. We claim that T ⊗ t is

a left and right integral in D(H). We first show that it is a right integral.
The transpose of Formula (27) in Theorem 4.6 is

∑
t1 ⊗ t2 =

∑
t2 ⊗ b−1S2t1. Applying

∆⊗ S−1 to both sides yields
∑
t1 ⊗ t2 ⊗ S−1t3 =

∑
t2 ⊗ t3 ⊗ (St1)b. It follows easily that

∑
S−1t3b

−1t1 ⊗ t2 = 1⊗ t. (52)

We next make a computation like that in [19, 10.3.12]. Given a simple tensor g⊗ x ∈ D(H),
note that in the second line below we use Tg = g(b−1)T for each g ∈ H∗, and in the third
line we use Equation (52):

(T ⊗ t)(g ⊗ x) =
∑

Tg(S−1t3(−)t1)⊗ t2x

= Tg(S−1t3b
−1t1)⊗ t2x

= g(1)T ⊗ tx

= g(1)ε(x)T ⊗ t.

In order to show that T ⊗ t is also a left integral, we note that Formula (27) applied to the
right norm T ′ = S−1T in H∗ is

∑
T ′1 ⊗ T

′
2 =
∑
T ′2 ⊗m

−1S2T ′1. Apply S ⊗ S to obtain

∑
T2 ⊗ T1 =

∑
T1 ⊗ S

2T2m. (53)

Applying ∆⊗ S−1 to both sides yields
∑
T2 ⊗ T3 ⊗mS−1T1 =

∑
T1 ⊗ T2 ⊗ ST3. Whence

∑
T2 ⊗ T3mS

−1T1 =
∑

T1 ⊗ T2ST3

= T ⊗ 1. (54)

Then

(g ⊗ x)(T ⊗ t) =
∑

gT2 ⊗ (S
−1T1 ⇀ x ↼ T3)t

=
∑

gT2 ⊗ S
−1T1(x3)T3(x1)x2t

=
∑

gT2 ⊗ [T3mS
−1T1](x)t

= gT ⊗ ε(x)t = g(1)ε(x)T ⊗ t.

Thus T ⊗ t is also a left integral.
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Next we note that T ⊗ t is an FH-homomorphism for D(H)∗, since D(H)∗ ∼= Hop ⊗H∗,
the ordinary tensor product of algebras (recall that D(H) is the ordinary tensor product
of coalgebras (Hop)∗ ⊗ H). This follows from T ⊗ t being a right integral in D(H) on the
one hand, while, on the other hand, Hop and H∗ are FH-algebras with FH-homomorphisms
T = S−1f and t.
Since T ⊗ t is an FH-homomorphism for D(H)∗, it follows that T ⊗ t is a right norm in

D(H). Since T ⊗ t is a left integral in D(H), it follows that it is a left norm too. Hence,
D(H) is unimodular. �

Corollary 8.2. S(t)⊗ f is an FH-homomorphism for D(H).

Proof. Note that S(t) ⊗ f is a right integral in D(H)∗ ∼= Hop ⊗ H∗, since S(t) and f are
right integrals in Hop and H∗, respectively. Then

(T ⊗ t)(S(t)⊗ f) = εD(H)∗T (S(t))f(t) = εD(H)∗ . (55)

so that S(t)⊗ f is a right norm in D(H)∗. By Proposition 4.3, D(H) is an FH-algebra with
FH-homomorphism S(t)⊗ f . �

The next theorem implies that the quantum double D(H) of an FH-algebra is a symmetric
algebra, of which [3, Corollary 3.12] is a special case.

Theorem 8.3. A unimodular almost commutative FH-algebra H ′ is a symmetric algebra.

Proof. Since H ′ is unimodular, Lemma 4.2 shows that H ′ has Nakayama automorphism
S2. Since H ′ is almost commutative, a computation like Drinfeld’s (cf. [19, Proposition
10.1.4]) shows that S2 of an almost commutative Hopf algebra H is an inner automorphism:
If R =

∑
i zi ⊗ wi is the universal R-matrix satisfying Equation (48), then S

2(a) = uau−1

where u =
∑

i(Swi)zi. Thus, the Nakayama automorphism is inner, and H
′ is a symmetric

algebra. �
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