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1. Introduction

Let S = ®S(4,v) be a standard bigraded R-algebra over an Artinian local ring K = S(g,0),
i.e. S is generated by finitely many forms of degree (1,0) and (0,1) over K. The Hilbert
function of S is defined as

H(u,v) := £(Su,)),

where ¢ denotes the length of the underlying K-module. Van der Waerden [12] proved
that if K is a field, then H(u,v) is given by a polynomial

rn= 3 w(0)6)

for large u and v, where a;; are integers. This has been extended to the Artinian case by
Bhattacharya [1].

A bihomogeneous prime ideal p of S is called relevant if p does not contain S(; gy and
S(0,1)- Let BiProj(S) denote the set of the relevant bihomogeneous prime ideal of S. The
relevant dimension of S is defined as

rdim S := max{dim S/p | p € BiProj(95)}.

As shown by D. Katz, S. Mandal and J. K. Verma [4], deg P(u,v) = rdimS — 2. The
numbers a;; with 7 4+ j = rdim S — 2 are called the mixed multiplicities of S.
Let (R, m) be a local ring of positive dimension d and I an ideal of R . We can associate

with I the Rees algebra R[It] = @ I't". Let M := (m,It) be the maximal graded ideal
i>0

of R[It]. The associated graded ring gr,,R[It] :== @& M™/M"*! has a natural bigrading
with =0
(g?"MR[It])(uﬂ,) = m“I“/m““I”.
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As shown by Bhattacharya [1], the numerical function dim; m“I¥/m“T1[" is given by a
polynomial in v and v for all large values of u and v. Let s be the degree of this polynomial
and write the terms of total degree s as

a
E —Lutv?
ilg!

i+j=s

where a;; are non negative integers.

Teissier and Risler [9] linked these numbers to the Milnor numbers of general hyper-
plane sections of complex analytic hypersurfaces with isolated singularities. They called
the number a;; a mixed multiplicity of the pair (m,I) and denoted it by e;;(m|l). The
multiplicity of the Rees algebra R[It] and of the extended Rees algebra R[It,t™1] can be
expressed in terms of the mixed multiplicities as follows:

e(RIN =Y ey(mlI)

i+j=d—1

if I has positive height and, if I C m?,

e(RIIt,t | =e(R)+ > ei(ml).
i+j=d—1

See [11, Theorem (3.1)], [5, Proof of (3.7)] for more details. Though we have a well
developed theory on mixed multiplicities when I is an m-primary ideal [9], [6], there have
been few cases where the mixed multiplicities can be computed in terms of well-known
invariants of m and I when [ is not an m-primary ideal.

In this paper we study the case R = & R, is a standard graded algebra over a field
n>0

k= Rop, m= & R, and I a homogeneous ideal of R. Note that we can define the mixed
n>0

multiplicities e;;(m|I) as in the local case and that the above formulas for the multiplicities
of the Rees algebras can be proved similarly.

Let z1,...,z, be a sequence of homogeneous elements in R with deg z; < ... <
deg z,. Let I denote the ideal (z1,...,z,). The multiplicity of the Rees algebra R|[It]
was computed by Herzog, Trung, and Ulrich [2] when z1,... ,z, is a d-sequence and by
Trung [10] when 1, ... ,x, is a subsystem of parameters which is filter-regular. They used
a technique which is similar to that of Grobner bases and which does not involve mixed
multiplicities. Using this technique Raghavan and Verma [7] were able to compute the
mixed multiplicities e;;(m|I) when 1, ... ,z, is a d-sequence. However, their method is a
bit complicated and can not be applied to study the case I is generated by a subsystem of
parameters.

In Section 2 of this paper we will use a simpler argument to compute the mixed multiplic-
ities e;;(m|I) when z1,... ,z, is a d-sequence. Let I; = (z1,... ,zi—1) 25, 1 = 1,... ,n,
dy =dim R/I; and r = max{i | dim R/I; = d; — i + 1}. We obtain the formula

0 if0<e<dy —r—1,

idy—i— 1) =
€id 1(m|I) {G(R/Idl—i) ifdi —r<i<d; —1
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We point out that this formula is more precise than that of Raghavan and Verma.

In Section 3 we will use the same argument to compute the mixed multiplicities e;;(m|I)
when z1,...,z, is a subsystems of homogeneous parameters which is filter-regular with
respect to I. Put degx; = a;. We obtain the formula

0 if0<i<d—mn-—1,
ai...aq—i—1e(R) ifd—n<i<d-1.

eid—i—1(m|l) = {

This formula was posed as a problem in [10]. It is worth to mention that the condition
x1,...,Tn is a filter-regular sequence with degz; < ... < degx,, is automatically satisfied
in a generalized Cohen-Macaulay ring or if I is generated by elements of the same degree.

We do not know whether there is a compact formula for e;;(m|]) in the above cases
when the degrees of z1,... ,x, are not increasing.

Acknowledgement. The author would like to thank Prof. Ngo Viét Trung for his guid-
ance.
2. Mixed multiplicities of ideals generated by d-sequences
Let R = @ R, be a standard graded algebra over a field kK = Ry and m = & R,,. Let
n>0 n>0

x1,...,%, be a sequence of homogeneous elements of R and I = (z1,... ,z,).

Let A denote the polynomial ring R[T1,... ,T,]. If we map T; to z;t, i =1,... ,n, we
get a representation of the Rees algebra

R[It]| =2 A/J,

where J is the ideal of A generated by the forms vanishing at z1,...,z,. For all h =
(ag, ... ,a,) € N*T1 put
Ap = Ro, 17 ... T

Then A= @ Ay, that is, A is an N"*lgraded ring. Note that (m,T},...,T},) is the
heNnt+1

maximal graded ideal of A. Define the following degree-lexicographic order on N**+1!:

(ao,al,... ,an) < (bo,bl,... ,bn)

if the first non-zero component from the left side of

(zn:ai —En:bi, agp —bo, ey Qp —bn)
=0 =0

is negative. Then < is a terms order on N**!. Set

FhA = @ Ah/.
K >h

It is clear that F' = {FpA}penn+1 is a filtration of A. The filtration F' imposes a filtration
on A/J which we also denote by F.
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For every polynomial f € A, we denote by f* the initial term of f, i.e. f* = f,. if

f= S fnand A :=min{h|f, # 0}. Let J* denote the ideal of A generated by all
heNnt1
elements f*, f € J. Then

grr(A/J) = A/J .
The N**!_graded structure imposes a bigrading on A with

A(u,v) — a1+...€—?an:vA(u7a1’m ,0n,)

for all (u,v) € N2. Since J* is an N"T!-bigraded ideal of A, J* is also a bigraded ideal of
A. Hence A/J* is a bigraded algebra over k with respect to the bigrading induced from
A.

Now we shall see that the Bhattacharya function of (m, ) coincides with the Hilbert
function of A/J*.

Lemma 2.1. For all (u,v) € N? we have
dimg (m“I” /m“ 1) = dimg (A/J*) (u,0)-
Proof. We know that
m“I° fm T = (grarR[It]) u,0)-
Let M = (m,T1,...,T,) be the maximal graded ideal of A. Then
gruR[It) = gron(A/J).
The bigrading on grj; R[It] imposes a bigrading on gron(A/J) with

gri)ﬁ(A/J)(u,v) =
( E@ A(ozo,..‘ o) T J)/( 62 A(ao,... ,0n) + gB A(ao,... ) T J)
apgZu apzu a07u+1
Lt tensy ay+...fop>v+1 ay+...fan>v
= /.
O‘1+~--+o¢n:v(u’a1:--- ,Qp,) + /

Using the filtration F' on A/J we can decompose the latter module into a series of graded
pieces of the associated ring grp(A4/J) =2 A/J* and we obtain

dimyg gTW(A/'])(uw) = Z dimy, (A/J*)(u,al,... ,0n)
al+...+ap,=v
= dlmk ©® (A/J*)(u,al,... ,0tp,)
a1+...fan,=v

= dimy (A/J") (.- -

According to Lemma 2.1 we can use the Hilbert function of A/J* to compute the mixed

multiplicities e;(m|I). Herzog-Trung-Ulrich [2] computed J* explicitly when z1,... ,z, is
a d-sequence of homogeneous elements with increasing degrees. Recall that z1,...,z, is
said to be a d-sequence if

(].) ZT; ¢ (:l?l, oo 3 Li—1y L1y - ,.’En),

(2) (x1,... ,x;) s xjp12k = (T1,... ,x;) sz for all k > i+ 1 and all 4 > 0.
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Lemma 2.2. [2, Lemma 1.2] Let z1,...,z, be a homogeneous d-sequence of R with
degxy <...<degz,. Then
J = (LT,...,L,T,),

where I; = (x1,... ,xj_1) 1 x; for 1 <j<mn.
Now we come to the main result of this section.

Theorem 2.3. Let I be an ideal generated by a homogeneous d-sequence x1,... ,x, of
R with degx; < ... < degx,. Let Iy =0, I, = (x1,... ,2;-1) : 2, t = 1,...,n and
dy = dim R/I;. Then the degree of the Hilbert polynomial of graysR[It] is dy — 1 and
0 if0<i<d; —r—1,
€id,—i—1(m|I) = . .
e(R/I4,—;) ifdy—r<i<d;—1,
where r = max{i|dim R/I; = d; — i+ 1}.

Proof. We will use an idea from [8, Theorem 3.7] to estimate the coefficients of the terms
of the total degree of H 4, s (u,v). For this we will compute the function

Hyyg+(ao,. .. ,an) = dimg(A/J")(a,... an)-

Any element f € J* with deg f = (ao,... ,ay) is of the form yT7* ... T3 with y € (I;)q,
for some i =1,... ,n with a; # 0. Since Iy, ... , I, is an increasing sequence of ideals, we
get

J(*ao,... ) (Im(ah--- ,an))aoTlal . 'szxn

where m(aq, ... ,ap) = max{i| a; # 0}. Therefore
Hayp (o, ... o) = dimg(R/Ln(ay,... ,an))ao = HR/Iy 0, o) (@0)

if (a1,...,a,) # 0. From this we get the Hilbert function of A/J* as a bigraded algebra:

Hyyge (u,v) = Z HR/Im<a1,...,an>(“)

ay+...+a,=v

" fv+i—2
= Hg/r
S (") e

where the latter equality follows from the fact that the number of vectors (aq,...,an,)
with a3 + ...+ a, = v and m(aq, ... ,a,) =i is given by (”j’_ﬁz)

Put d; = dim R/I;. Then

I; ,
Hpr,(u) = e(R—/l))ud’_l + terms of lower degree.

Therefore,

- R/I; ,
HA/J*(% v) = Z [( ) e(R/ - ) u® 19"~ 4+ terms of total degree < d; +1 — 2| .
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Since x;_1 is a non-zerodivisor modulo I;_; we have
di = dlmR/Iz S dimR/(IZ’_l,$i_1) = dlIIlR/IZ_l —1= di—l — 1.

From this it follows that d; < d;_1 < ... < d;. Hence d; — 1 is the total degree of
Hy/5+(u,v). By the assumption, d; = dy —i+1if 1 <7 < r,and d; < dy —i+1if
r < i < n. Hence from the above formula for H 4, ;- (u,v) we obtain

0 ifOSiSdl—r—l,

tdy—1— I) =
€id 1(m|I) {G(R/Idl—i) ifdy —r<i<d;—1. .

Remark. Raghavan and Verma [7] already computed the bigraded Hilbert series grop R[It].
From this they get the formula

eij(mll) = e;(R/Ij11) — ei(R/1j2) (i+j=s),

where for a standard graded algebra B over a field the symbol e;(B) denotes the i-th
coefficient of the Hilbert polynomial Pg(u) of B, i.e. Pg(u) = > _e;(B) (“;”). This formula
is not explicit as our formula in Theorem 2.3. 20

Examples 2.4. It is known that the sequence z1,... ,x, is a d-sequence in the following
cases (see [3]). Hence we can use Theorem 2.3 to compute the mixed multiplicities.

(1) Regular sequence. Let I be generated by an R-sequence z1,...,x, of homogeneous
elements with degx; = a;,a1 < ... < a,. Since e(R/I;) = a; ...a;—1e(R), we have

eid_i_l(m|I) =ar... ai_le(R), 1 S 1 S n.

(2) Subsystem of parameters of Buchsbaum rings. Let R be a graded Buchsbaum ring and
an ideal of R generated by a subsequence z7 ... , x, of a homogeneous system of parameters
of R with degz; = a4, a1 < ... < a,. By [2, Corollary 1.5] e(R/I;) = a1 ...a;,-1e(R).
Hence

eid_i_l(m|I) =aj... ai_le(R), 1 S 1 S n.

(3) Almost complete intersection. Let R be a Gorenstein ring and I = (z1,...,2,) a
homogeneous almost complete intersection of R of height n — 1 > 0 which satisfies the
following conditions:

(i) z1,...,T,_1 is a regular sequence,

(i) a1 < ... < ay, a; = dega;,

(iii) R/I is Cohen-Macaulay,

(iv) IRp = (z1,... ,p—_1) p for all minimal prime ideals P of I.
Note that e(R/I;) = ay...a;—1e(R) for i = 1,...,n — 1, and e(R/I,) = ai...ap_1
e(R) — e(R/I) because (z1,... ,2y—1) = I, N 1. Then we obtain

aj...a;—1e(R) if1<i<n-—1,

eia—i—1(m[I) = { ai...an_1e(R) —e(R/I) ifi=n.
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3. Mixed multiplicities of subsystems of parameters

Let R= @ R, be a standard graded algebra over a field k, m= & R, and [ =(x1,... ,2,)
n>0 n>0

a homogeneous ideal of R. Assume that R[It] = A/J, where A = R[Ty,...,T,]. As we
have seen in Section 2, A has a natural N**!-graded structure. The degree lexicographical
order on N"*! induces a filtration F' on R[[t]. We may write

grrR[It] = A/J",

where J* is the ideal generated by the initial elements of J. Moreover, A/J* is a bigraded
algebra with respect to the bigrading induced from A. By Lemma 2.1, the Bhattacharya
function £(m“I¥ /m“T117) coincides with the Hilbert function of A/J*.

We shall see that the ideal J* can be estimated if I is generated by a filter-regular
sequence. Recall that a sequence z1,... ,x, of elements of R is called filter-regular with
respect to I if z; ¢ P for all associated prime ideals P 2 I of (z1,...,zi—1),i=1,...,n
(see e.g. [10]). Fori =1,... ,n we set

Ji = U;’;:l(l‘l, NN ;xi—l) I

Note that J; is equal to the intersection of all primary components of (z1,...,z;—1) whose
associated prime ideals do not contain I.

Lemma 3.1. [10, Lemma 3.1] Let I be generated by a filter-reqular sequence x1,... ,x,
with respect to I with degzy < ... < degx,. Let P := (J1iT1,...,Jn,T,). Then

J*CP.

Set I; := (x1,... ,2,-1)R, 1 =1,... ,n, and
L:=(LT,,...,I,T,).
Since L is the ideal generated by the initial forms of the relations x;T; — z;7T; we have
LCJ".

If I is generated by a subsystem of parameters with increasing degrees which is filter-
regular, we can use Lemma 2.1 to show that the mixed multiplicities of A/J* and A/L
are the same. Note that every subsystem of parameters of R is filter-regular if R is a
generalized Cohen-Macaulay ring.

Proposition 3.2. Let I be a homogeneous ideal generated by a subsystem of parameters
X1,...,Ty which is a filter-regular sequence with degxy < ... < degz,. Then the mixed
multiplicities of A/J* and A/L are equal.

To prove Proposition 3.2 we shall need the following observation on the additivity of mixed
multiplicities.
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Lemma 3.3. Let S be a standard bigraded algebra with 0 = Q1 N ... N Qs N Q, where

Q1,...,Qs are the relevant primary components of highest dimension. Then

S

e;(S) =) _¢;(5/Qu).

i=1
Proof. We use induction on s. If s = 1, from the exact sequence

0—=S=5/1NQ — S/Q:1®5/Q — 5/Q1+Q —0

we get
Hs(u,v) = Hgq, (u,v) + Hg/q(u,v) — Hg/g, +0(u,v).

Since rdim S/Q1 > rdim S/Q > rdim S/Q; + Q,
5(5) = ¢5(5/Qu).

Ifs>1,put P=Q>N...NQs N Q. From the exact sequence
0—=-S=8Q1NnP—=S5/QQ1eS/P—S/Qi1+P —0
we get

Hgs(u,v) = Hg)q, (u,v) + Hg/p(u,v) — Hg/q, 1+ p(u,v).

Since the associated prime ideals of P are not contained in the associated prime ideal of
Q1, rdim S/Q1 + P < rdim S/Q; = rdim S/P = rdim S. Hence

e;j(5) = €;(5/Q1) +¢;(S/P).
By induction we may assume that

S

e;(S/P) = €;(S/Qi).

=2

Therefore,

e;j(S) = €;(5/Qi). O

i=1
Proof of Proposition 3.2. By Lemma 3.3 we only need to show that the relevant primary
components of highest dimension of J* and L are equal. The ideal L has the decomposition

L= ﬂ?zl(liaTH-la o 7Tn)'

It is clear that every relevant primary component of highest dimension of L must be of the
form (q,7;41,...,T),) for some primary component q of I; with

dmR/q=dimR/I;=dimR—-i+4+1,i=1,... ,n.
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Let p denote the associated prime ideal of q. Then I ¢ p because dim R/I < dim R/p.
Therefore

From this we deduce that q O J;. On the other hand, the ideal P = (J,11,... ,J,T,) has
the following decomposition

P=n"(Ji,Tis1, ..., T) N (Ty,... ., Tp).

So P is contained in all relevant primary components of highest dimension of L. But
L C J* C P by Lemma 3.1. Therefore, the relevant primary components of highest
dimension of L and J* must be equal. 0

Now we will compute the mixed multiplicities of A/L and therefore the mixed multiplicities
€ij (m]I ) .

Lemma 3.4. [10, Lemma 1.6] Let x be a homogeneous filter-reqular element with respect
to an ideal I of R with ht I > 2, set a := degx. Then

e(R/(x)) = ae(R).

Theorem 3.5. Let I be a homogeneous ideal of R generated by a subsystem of parameters
x1,...,Ty, which is a filter-reqular sequence with respect to I with degxr; = a7 < ... <
degz, = a,. Then

0 f0<i<d—n—1,
ay...aqg—i—1e(R) ifd—n<i<d-1.

eid—i—1(m|I) = {

Proof. By Lemma 2.1 and Lemma 3.2, €;;(A/J*) = €;;(A/L). Therefore we only need to
compute the mixed multiplicities of A/L. As in the proof of Theorem 2.3 we have

" (vFi—2
B = Y Hu, =3 ("7 ) .

a1t...tan=v i=1
Since dim R/I; =d — i+ 1,

e(R/L;)
(d—1)!

Hp/p,(u) = u?~" 4 terms of lower degree.

Using Lemma 3.4 we can easily show that
e(R/I;) =ay...a;—1e(R).

Thus

_ i aj...a;—1e(R) ydigi—1

v~ " 4 terms of total degree < d — 1.



472 Nguyen Duc Hoang: On Mixed Multiplicities of Homogeneous Ideals

From this it follows show that

0 if0<i<d—n-1,

id—i— I) =
Cid 1(m|) {al...ad_i_le(R) ifd—néiéd—l- D

Remark. The formula of Theorem 3.5 was posed as a problem in [10, Remark of Th. 3.3].

Using the characterization of the multiplicity of the Rees algebra R[It] and the extended
Rees algebra R[It,t~1] we immediately obtain the following result which was proved in
[10] by a different method.

Corollary 3.6. [10, Corollary 3.6 and Corollary 4.4] Let I be as in Theorem 3.5. Then

e(R[It]) = (1 + nz_:l aj .. .ai)e(R),

e(R[It,t71]) = (1 + Z ap... ai)e(R),

where 1 is the largest integer for which aj =1 (I =0 and ay...a; = 1 if a; > 1 for all
i=1,...,n).
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