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Abstract. We prove several improvements and analogs of Leon Bankoff’s theorem
on asymmetric propellers from directly similar triangles.

1. Propellers from directly similar triangles
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Figure 1. Asymmetric propeller from directly similar triangles determines in every position
of blades directly similar triangle UVW

The propeller from triangles has a triangle ABC as a shaft and three triangles APX, Y BQ,
and RZC as blades. There are some interesting results on propellers from triangles which
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show that regardless of the way in which the blades are glued to the shaft the triangle UVW
on the midpoints of segments Y R, ZP , and XQ shares certain properties with the shaft and
the blades. For example, if the shaft and the blades are equilateral triangles, then UVW
is also an equilateral triangle. This equilateral propeller theorem and its special cases and
extensions have long history and numerous contributions. Many of them are collected in
Section 2 of the excellent survey [8]. From it we recall papers by A. Hofmann [6] referring to
the historical origin of the propeller theorem, by W. Götz [4] showing a subcase of Bankoff’s
theorem which corresponds with a joint figure from kinematics already known in the seventies
of the 19th century and connected with names like W. Clifford and A. Cayley, and (regarding
the interesting variety of proof methods) the papers [12], [7], [9], and [11]. (The latter paper
shows the connection between the famous three-circles theorem and propellers, see also Math.
Reviews 81c:51010.)
Another example is the following improvement of the equilateral propeller theorem by

Leon Bankoff [3] where the shaft and the blades are directly similar (see the above Figure 1).
Its proof in [3] is geometric while our proof below uses complex numbers and is algebraic.

Theorem 1. Let ABC, PQR, and XY Z be triangles such that ABC, APX, Y BQ, and
RZC are directly similar. Then the triangle UVW on midpoints of segments Y R, ZP , and
XQ is also directly similar to ABC.

Proof. Let us use the convention that a point with a capital Latin letter as a label is
represented with the complex number (its affix) which is denoted with the same small Latin
letter. The complex conjugate of p is p̄ and P̄ (the reflection of P in the real axis) is a point
whose affix is p̄.
It is well-known (see [5, p.57]) that triangles ABC and PQR are directly similar if and

only if the determinant D(ABC, PQR) of the matrix with the first row a, b, c, the second
row p, q, r, and the third row 1, 1, 1 is zero.
Hence, if ABC and APX are directly similar, then D(ABC, APX) = 0 so that we

can solve for x to get x = −(db p+ a da)/dc, where da = b− c, db = c− a, and dc = a− b.
Similarly, y = −(dc q + b db)/da and z = −(da r + c dc)/db.
The determinant D(ABC, UVW ) is (D1 −D2 −D3)/2, where

D1 =

∣∣∣∣∣∣

a b c
r p q
1 1 1

∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣

a b c
q dc
da

r da
db

p db
dc

1 1 1

∣∣∣∣∣∣
, D3 =

∣∣∣∣∣∣

a b c
b db
da

c dc
db

a da
dc

1 1 1

∣∣∣∣∣∣
.

One can easily check thatD1 = D2 andD3 = 0. Hence, D(ABC, UVW ) = 0 so that triangles
ABC and UVW are directly similar. 2

From the above theorem we can get many related results if we observe that for directly
similar triangles ABC and PQR and for any real number λ the triangle λPAλ

Q
Bλ

R
C is also

directly similar to ABC, where λPA is A for A = P and for A 6= P and λ = −1 it is P while
for A 6= P and λ 6= −1 it is the unique point X on the line AP such that the quotient
|AX|/|XP | of oriented distances is λ. Since the affix of λPA is (a+ λ p)/(λ+ 1) (for λ 6= −1),
the above claim follows from the fact that the determinant is a linear functional (of rows).
In particular, from this we immediately get the following result.
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Corollary 1. Let ABC, PQR, and XY Z be triangles such that ABC, APX, Y BQ, and
RZC are directly similar. Then the triangle DEF on centroids of triangles ARY , BPZ, and
CQX is directly similar to ABC.

Proof. Since the centroids D, E, F divide segments AU , BV , CW in ratio 2, we can use
Theorem 1 and the above observation for λ = 2 and triangles ABC and UVW . 2

Another supply of directly similar to ABC triangles in Bankoff’s propellers is offered by the
following lemma.

Lemma 1. Let ABC, PQR, and XY Z be triangles such that PX, QY , RZ have equal
oriented length and are parallel to segments joining A, B, and C with the circumcentre O
of ABC. Then the triangles ABC and XY Z are directly similar if and only if the triangles
ABC and PQR are directly similar.

Proof. Let the common oriented length of segments PX, QY , and RZ be a real number h.
We can assume that the unit circle of all unimodular complex numbers is the circumcircle of
ABC. Then x = p+ h a, y = q + h b, and z = r + h c. The linearity of the determinant with
respect to rows implies that D(ABC, PQR) = 0 if and only if D(ABC, XY Z) = 0. 2

Corollary 2. With the notation and the assumptions of Theorem 1, the triangle DEF on
endpoints of segments at midpoints U , V , and W of equal oriented length and parallel to
segments joining A, B, and C with the circumcentre O of ABC is directly similar to ABC.

2. Rotating blades in Bankoff’s propellers

In this section we explore what happens with the triangle UVW while points P , Q, and R
rotate with constant angular speed on circles of equal radius with centres at A, B, and C,
respectively.

Theorem 2. Let points P , Q, and R rotate with the constant angular speed ϕ around the
vertices of ABC on circles of radius k. Let X, Y , and Z be points such that triangles APX,
Y BQ, and RZC are directly similar to ABC. The midpoints U , V , and W of segments Y R,
ZP , and XQ rotate with the angular speed ϕ on circles with centres at midpoints Am, Bm,
and Cm of BC, CA, and AB and with radii k times

|BBm|
|BC| ,

|CCm|
|CA| , and

|AAm|
|AB| , respectively.

Proof. We again assume that the unit circle of all unimodular complex numbers is the
circumcircle of ABC. Then p = a+ k ei ϕ, q = b+ k ei ϕ, and r = c+ k ei ϕ. It follows that
x = a− k ei ϕ db/dc, y = b− k ei ϕ dc/da, and z = c− k ei ϕ da/db, so that u = (b + c)/2 +
k ei ϕ (da − dc)/(2 da). From this the claim about the rotation of the point U follows easily.
The points V and W are treated similarly. 2

We shall use S to denote the area of ABC and `a, `b, and `c for lengths of its sides. The
symmetric functions of `a, `b, and `c we denote as follows.

s = `a + `b + `c, m = `a `b `c, t = `b `c + `c `a + `a `b, sa = −`a + `b + `c,
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sb = `a − `b + `c, sc = `a + `b − `c, ma = `b `c, mb = `c `a, mc = `a `b,

ra = `b − `c, rb = `c − `a, rc = `a − `b, za = `b + `c, zb = `c + `a, zc = `a + `b.

For each k ≥ 2, sk, ska, skb, and skc are derived from s, sa, sb, and sc with the substitution
`a = `

k
a, `b = `

k
b , `c = `

k
c . In a similar fashion we can define analogous expressions using letters

m, r, t, and z.

Theorem 3. Under the assumptions of Theorem 2,
• The circumcentre of UVW rotates with the angular speed ϕ on the circle with the centre
at the centre of the nine-point circle of ABC and with the radius k times

√
2 s4−5 t2
8S

.

• The centroid of UVW rotates with the angular speed ϕ on the circle with the centre at
the centroid of ABC and with the radius k times

√
21m2+5 g1−s6−3 g2

6m
, where g1 = ga,c4,2 =

`4a `
2
c + `

4
c `
2
b + `

4
b `
2
a and g2 = g

a,b
4,2.

• The orthocentre of UVW rotates with the angular speed ϕ on the circle with the centre
at the circumcentre of ABC and with the radius k times

√
g

8Sm
, where g = ga10 − g

a,b
8,2 −

4 ga,c8,2 − 3 g
a,b
6,4 + 6 g

a,c
6,4 + g

a,b,c
6,2,2 + 3 g

a,b,c
4,4,2.

Proof. While it is possible to prove this theorem using complex numbers, with the help of
computers, it is simpler to apply Cartesian coordinates because in this approach it is easier
to identify the radii of revolving circles.
Here is an outline of the key steps in the proof for the circumcentre of UVW . Let

A(0, 0), B(0, h (f + g)), and C( (f
2−1) g h
f g−1 , 2 f g h

f g−1 ), where h is the inradius of ABC and f and

g are cotangents of angles A/2 and B/2. The coordinates of P are k (1−ψ2)
1+ψ2

and 2 k ψ
1+ψ2
, where

ψ = tan ϕ
2
. In coordinates of Q and R we must add coordinates of B and C to these values.

In the next step we determine the coordinates of points X, Y , and Z and then U , V ,
and W . Let T be the circumcentre of UVW with coordinates Tx and Ty. When we eliminate
the parameter ψ from equalities x = Tx and y = Ty the equation of the required locus will
emerge. This equation has the form (x− Fx)2 + (y − Fy)2 − r2O = 0, where Fx and Fy are
coordinates of the centre F of the nine-point circle of ABC and rO is an expression in terms
of f , g, h, and k which has the above form when we apply equalities

f =
z2a − `

2
a

4S
, g =

z2b − `
2
b

4S
, h =

2S

s
. 2

3. Propellers from reversely similar and orthologic triangles

Recall that triangles ABC and PQR are reversely similar provided triangles ABC and P̄ Q̄R̄
are directly similar. In other words, D(ABC, P̄ Q̄R̄) = 0 is a necessary and sufficient con-
dition for ABC and PQR to be reversely similar. In the next theorem we shall show that
reverse similarity is equivalent with two interesting geometric properties of triangles known
as paralogy and orthology whose definitions are as follows.
Triangles ABC and XY Z are orthologic provided the perpendiculars from the vertices

of ABC on the sides Y Z, ZX, and XY of XY Z are concurrent. The point of concurrence
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of these perpendiculars is denoted by [ABC, XY Z]. It is well-known (see [2] or [10]) that
the relation of orthology for triangles is reflexive and symmetric. Hence, the perpendiculars
from the vertices of XY Z on the sides BC, CA, and AB of ABC are concurrent at the point
[XY Z, ABC].

Lemma 2. Triangles XY Z and PQR are orthologic if and only if

O(XY Z, PQR) = x(q̄ − r̄) + x̄(q − r) + y(r̄ − p̄) + ȳ(r − p) + z(p̄− q̄) + z̄(p− q) = 0.

Proof. The line QR is [q̄ − r̄, r − q, q r̄ − q̄ r] so that the perpendicular perXQR through X
onto QR is the line [q̄ − r̄, q − r, x (r̄ − q̄) + x̄ (r − q)]. The perpendiculars perYRP and per

Z
PQ

through Y and Z onto RP and PQ are relatives of perXQR. These three perpendiculars are
concurrent if and only if Θ = 0, where Θ denotes the determinant

∣∣∣∣∣∣∣∣

q̄ − r̄ q − r x (r̄ − q̄) + x̄ (r − q)

r̄ − p̄ r − p y (p̄− r̄) + ȳ (p− r)

p̄− q̄ p− q z (q̄ − p̄) + z̄ (q − p)

∣∣∣∣∣∣∣∣
.

But, Θ = O(XY Z, PQR) Ω, where Ω = p (q̄ − r̄) + q (r̄ − p̄) + r (p̄− q̄). Since Ω = 0 if and
only if points P , Q, and R are collinear (and our assumptions exclude this possibility), we
conclude that the triangles XY Z and PQR are orthologic if and only if O(XY Z, PQR) = 0.

2

Triangles ABC and XY Z are paralogic provided the parallels through the vertices of ABC
with the sides Y Z, ZX, and XY of XY Z are concurrent. The point of concurrence of these
parallels is denoted by ‖ABC, XY Z‖. The relation of paralogy for triangles is symmetric so
that the parallels through the vertices of XY Z with the sides BC, CA, and AB of ABC are
concurrent at the point ‖XY Z, ABC‖.

Lemma 3. Triangles XY Z and PQR are paralogic if and only if

P (XY Z, PQR) = x(q̄ − r̄)− x̄(q − r) + y(r̄ − p̄)− ȳ(r − p) + z(p̄− q̄)− z̄(p− q) = 0.

Proof. The line QR is [q̄ − r̄, r − q, q r̄ − q̄ r] so that the parallel parXQR through X with QR
is the line [q̄ − r̄, r − q, x (r̄ − q̄)− x̄ (r − q)]. The parallels parYRP and par

Z
PQ through Y and

Z with RP and PQ are relatives of parXQR. The rest of the proof is the same as the proof of
Lemma 2. 2

Theorem 4. Triangles ABC and XY Z are reversely similar if and only if they are both
paralogic and orthologic.

Proof. Let ∆ = D(XY Z, P̄ Q̄R̄), Ω = O(XY Z, PQR), and Π = P (XY Z, PQR). Since
Π + Ω = 2∆ and Π− Ω = −2 ∆̄, we see that ∆ = 0 if and only if Π = 0 and Ω = 0. 2

Theorem 5. Let ABC, PQR, and XY Z be triangles such that APX, Y BQ, and RZC are
reversely similar to ABC. Then the triangle UVW on midpoints of segments Y R, ZP , and
XQ is orthologic to ABC and never paralogic to it.
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Proof. Since ABC and APX are reversely similar, D(ABC, ĀP̄ X̄) = 0 so that we can solve
for x to get x = −(d̄b p+a d̄a)/d̄c. Similarly, y = −(d̄c q+b d̄b)/d̄a and z = −(d̄a r+c d̄c)/d̄b. We
can now easily compute affixes of midpoints U , V , and W and verify that O(ABC,UVW ) =
0. On the other hand, P (ABC, UVW ) is equal (up to a sign) to Λ = ā da+ b̄ db+ c̄ dc, where
Λ = 0 is the condition for points A, B, and C to be collinear. 2

With a similar argument, the above theorem could be slightly improved to the following
statement: If ABC, PQR, and XY Z are triangles such that APX, Y BQ, and RZC are
orthologic to ABC, then the triangle UVW on midpoints of segments Y R, ZP , and XQ
is also orthologic to ABC. On the other hand, we have: If ABC, PQR, and XY Z are
triangles such that APX, Y BQ, and RZC are paralogic to ABC, then the triangle UVW
on midpoints of segments Y R, ZP , and XQ is never paralogic to ABC.
The method employed in the proof of Corollary 1 implies the following.

Corollary 3. Let ABC, DEF , PQR, and XY Z be triangles such that APX, Y BQ, and
RZC are orthologic to ABC. Then the triangle UVW on centroids of triangles DY R, PEZ,
and XQF is orthologic to ABC if and only if DEF is orthologic to ABC.

Our last theorem on propellers with the blades orthologic to the shaft is similar to Corol-
lary 2 and gives a large supply of triangles orthologic to the shaft ABC. For an efficient
formulation of this result we need the following notation and definitions.
For an expression ε in terms of `a, `b, and `c and a real number h, let ε[h] denote the triple

(h ε, hϕ(ε), h ψ(ε)). More precisely, the coordinates ε[h]1, ε[h]2, ε[h]3 of ε[h] are products
with h of ε, the first cyclic permutation ϕ(ε) of ε, and the second cyclic permutation ψ(ε) of
ε, respectively. For example, a[h] = (h a, h b, h c) and sa[h] = (h sa, h sb, h sc).
Let Ti, for i = 1, . . . , 13, denote the following expressions: 1, `

2
a, s2a, `a/za, 1/za, 3 s2a +

4
√
3S, 3 s2a− 4

√
3S, s2a+4

√
3S, s2a− 4

√
3S, z2a, `

2
a (z

2
2a−m

2
a), (r

2
2a− `

2
a z2a)(s

2
2− 2m

2
a),

z4a − `2a z2a.
For a triple h = (s1, s2, s3) of real numbers and for triangles ABC and XY Z, let

[ABC, XY Z, h] denote the triangle UVW such that the segments XU , Y V , ZW are parallel
to lines AO, BO, CO joining the circumcentre O of ABC with its vertices and the directed
distances |XU |, |Y V |, |ZW | are equal to s1, s2, s3, respectively. When s1 = 0, we put
U = X, and we do similar assignments when s2 and s3 are zero. For s1 > 0 the vector ~XU
points towards outside of ABC while for s1 < 0 it points towards inside.

Theorem 6. Let ABC, PQR, and XY Z be triangles such that triangles APX, Y BQ, and
RZC are orthologic to ABC. Let U , V , and W be midpoints of segments Y R, ZP , and XQ.
Then for every real number h and every integer i from 1 to 13 the triangle [ABC, UVW, Ti[h]]
is also orthologic to ABC.

Proof. We shall give proof only for i = 2 because the procedure for other values of i is
similar.
Let us assume again that the circumcircle of ABC is the set of all unimodular complex

numbers. Since ABC and APX are orthologic, O(ABC,APX) = 0 so that we can solve for
x to get that x is any complex number whose complex conjugate is

x

a b
+
(c− a)(p− c a p̄)

c a (a− b)
+
(b− c)(a2 − b c)

a b c (a− b)
.
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Similarly, y and z are any complex numbers whose complex conjugates are related to them-
selves by relations that are cyclic relatives of the above relation between x̄ and x.
We can now easily find that the affixes of the vertices of [ABC, UVW, T2[h]] are

y + r

2
+
h a (b− c)2

b c
,

z + p

2
+
h b (c− a)2

c a
,

x+ q

2
+
h c (a− b)2

a b
,

and verify that O(ABC, [ABC, UVW, T2[h]]) = 0. 2

4. Propellers from isocentric triangles

In the rest of this paper we consider propellers in which the blades share centroids with the
shaft. Once again this property is retained by the triangle UVW .
Recall that triangles ABC and PQR are isocentric provided they have the same centroid.

For example, ABC and its Brocard triangle AbBbCb are isocentric.

Theorem 7. Let ABC, PQR, and XY Z be triangles such that triangles ABC, APX, Y BQ,
and RZC are isocentric. Then the triangle UVW on midpoints of segments Y R, ZP , and
XQ is isocentric with ABC.
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Figure 2. For a propeller from isocentric triangles the triangle UVW is also isocentric with
ABC.

Proof. The affixes of the centroids of ABC and APX are (a+ b+ c)/3 and (a+ p+ x)/3.
They will coincide if and only if x = b+ c− p. In the same way we get that the affixes of Y and
Z are y = c+ a− q and z = a+ b− r. Then u = (c+ a− q + r)/2, v = (a+ b− r + p)/2,
and w = (b+ c− p+ q)/2. Hence, ABC and UVW are isocentric. 2
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The following theorem is analogous to Corollaries 1 and 3.

Theorem 8. Let ABC, DEF , PQR, and XY Z be triangles such that ABC, APX, Y BQ,
and RZC are isocentric. Then the triangle UVW on centroids of triangles DY R, PEZ, and
XQF is isocentric with ABC if and only if DEF is isocentric with ABC.

Proof. Let U , V , and W be the centroids of triangles DY R, PEZ, and XQF . Since
x = b+ c− p, y = c+ a− q, and z = a+ b− r it follows that

u =
d+ c+ a− q + r

3
, v =

e+ a+ b− r + p

3
, w =

f + b+ c− p+ q

3
.

The centroid G of UVW has affix (d+ e+ f + 2(a+ b+ c))/9. This complex number
will be (a+ b+ c)/3 (the affix of the centroid of ABC) if and only if d+ e+ f = a+ b+ c
which holds if and only if ABC and DEF are isocentric. 2
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