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Abstract. Among the different notions of area in a Minkowski space, those due
to Busemann and to Holmes and Thompson, respectively, have found particu-
lar attention. In recent papers it was shown that the Holmes-Thompson area is
integral-geometric, in the sense that certain integral-geometric formulas of Crofton-
type, well known for the area in Euclidean space, can be carried over to Minkowski
spaces and the Holmes-Thompson area. In the present paper, the Busemann area
is investigated from this point of view.
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1. Introduction and results

A Minkowski space (a finite-dimensional real Banach space) carries a natural metric and
hence admits a canonical notion of curve length. The metric gives also rise to Hausdorff
measures of any dimension. For a positive integer k less than the dimension of the space,
the k-dimensional Hausdorff measure can serve as a notion of surface area for k-dimensional
surfaces. There are, however, other reasonable and essentially different ways of introducing
a notion of area in a Minkowski space. This is explained in detail in the book of Thompson
[11]. The few natural requirements for such a notion of area (see [11], Chapter 5, or the
brief summary in [7]) can be satisfied in many different ways. Two particularly well studied
notions of area in Minkowski spaces are the Busemann area and the Holmes-Thompson
area. As soon as there are different notions of area, the question arises whether there are
viewpoints under which one of them might seem preferable. In earlier papers ([9], [7], [8]),
an attempt was made to extend certain integral-geometric results for areas from Euclidean
spaces to Minkowski spaces. It was found that the Holmes-Thompson area is suitable for that
purpose. A similar conclusion can be drawn from some recent results on integral geometry in
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264 R. Schneider: On the Busemann Area in Minkowski Spaces

Finsler spaces (Álvarez & Fernandes [1], [2]). What we intend here is a closer inspection of
the Busemann area from this point of view. For a k-rectifiable Borel set M , the Busemann
k-area ofM coincides with the k-dimensional Hausdorff measure ofM (a proof can be found,
e.g., in [9], Section 5). For that reason, the Busemann area might appear as a first choice
for a notion of area in Minkowski spaces. Our results will show, in particular, that this is no
longer true from an integral-geometric point of view. We restrict our consideration to areas
in codimension one, briefly called areas.
We assume n ≥ 3 and represent an n-dimensional Minkowski space in the form X =

(Rn, ‖ · ‖B), where ‖ · ‖B is a norm on Rn, with unit ball B = {x ∈ Rn : ‖x‖B ≤ 1}. A
Minkowskian (n− 1)-area αn−1 (satisfying the requirements of [11], Chapter 5) will be called
integral-geometric for X, if there exists a translation invariant (locally finite) Borel measure
µ on the space En1 of lines in Rn such that, for every (n− 1)-dimensional compact convex set
K ⊂ Rn, the area of K is given by

αn−1(K) = µ ({L ∈ E
n
1 : L ∩K 6= ∅}) . (1)

Equation (1) is the simplest version of an integral-geometric formula for the area, and if it
holds, then more general versions also hold. In Euclidean space, (1) is true for the Euclidean
(n− 1)-area, if µ is the suitably normalized rigid motion invariant measure on En1 .
The Holmes-Thompson area is integral-geometric for every Minkowski space. In [7] it

was proved that for the spaces `n∞ and `
n
1 , among all Minkowskian areas only the multiples

of the Holmes-Thompson area are integral-geometric. In the following, we investigate more
closely how far the Busemann area deviates from being integral-geometric.
Since we are dealing with properties of isometry classes of Minkowski spaces, we formulate

the results in terms of the Minkowski (or Banach-Mazur) compactumMn. This is the space
of all isometry classes of n-dimensional Minkowski spaces, metrized by the logarithm of the
Banach-Mazur distance. However, in order to simplify the formulations, we often identify a
Minkowski space with its isometry class.
We conjecture that the Busemann area is generically not integral-geometric. The set of

Minkowski spaces for which the Busemann area is not integral-geometric is open inMn, but
we do not know whether it is dense. We have only been able to prove the following.

Theorem 1. In Mn, every neighbourhood of the Euclidean space `
n
2 contains Minkowski

spaces for which the Busemann area is not integral-geometric, as well as spaces (different
from `n2 ) for which the Busemann area is integral-geometric.

In the neighbourhood of other spaces, the situation can be even worse:

Theorem 2. If n = 3 or n is sufficiently large, then in Mn a full neighbourhood of `
n
∞

consists of Minkowski spaces for which the Busemann area is not integral-geometric.

The dimensional restriction in Theorem 2 is probably unnecessary.

2. Preliminaries

For convenience, we equip Rn with an auxiliary Euclidean structure, given by a scalar product
〈·, ·〉 and the induced norm | · |. For notions and results from the theory of convex bodies
that are used without explanation, we refer to [6].
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First we recall the definition of Minkowski (n − 1)-areas. Let Cn−1 denote the set of
all (n − 1)-dimensional convex bodies in Rn which have the origin as centre of symmetry.
By an area generating function we understand a function α : Cn−1 → R+ which is invariant
under non-degenerate linear transformations of Rn, continuous (with respect to the Hausdorff
metric) and normalized by α(C) = κn−1 (the volume of the (n − 1)-dimensional Euclidean
unit ball) if C is an (n−1)-dimensional ellipsoid. If such a function α and a Minkowski space
X = (Rn, ‖ · ‖B) are given, the induced Minkowski area of a compact C1-hypersurface M in
X is defined by

αBn−1(M) :=

∫

M

α(B ∩ TxM)

λn−1(B ∩ TxM)
dλn−1(x),

where TxM denotes the tangent space of M at x, considered as a linear subspace of Rn, and
λn−1 is the (n−1)-dimensional Lebesgue area measure induced by the Euclidean metric. The
Minkowski area αBn−1(M) does not depend on the choice of this metric. We consider only
area generating functions α for which the scaling function defined by

σα,B(u) := |u|
α(B ∩ u⊥)

λn−1(B ∩ u⊥)
for u ∈ Rn \ {0} (2)

is convex. (The scaling function depends on the Euclidean structure, but not its convexity
property.) Under this assumption, σα,B is the support function of a convex body Iα,B, which
is called the isoperimetrix of the pair (α,B) (see [11] for the motivation and for further
discussion).

Lemma 1. The Minkowski area αn−1 is integral-geometric for (Rn, ‖ · ‖B) if and only if the
isoperimetrix Iα,B is a zonoid.

Essentially, this is a special case of Theorem 3.1 in [9]. For the reader’s convenience, we give
the short proof. If αn−1 is integral-geometric, there is a translation invariant, locally finite
Borel measure µ on the space En1 of lines such that (1) holds whenever K ⊂ u

⊥, u ∈ Sn−1.
Since µ is translation invariant, there is a finite, even measure ϕ on the sphere Sn−1 such
that ∫

En1

f dµ =

∫

Sn−1

∫

v⊥

f(t+ lin{v}) dλn−1(t) dϕ(v)

for every nonnegative measurable function f on En1 (a proof may be found, e.g., in [10],
Section 4.1). This gives

αBn−1(K) = λn−1(K)

∫

Sn−1

|〈u, v〉| dϕ(v),

and since αBn−1(K) = σα,B(u)λn−1(K), we obtain

σα,B(u) =

∫

Sn−1

|〈u, v〉| dϕ(v) for u ∈ Rn \ {0}. (3)
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Since σα,B is the support function of Iα,B, this body is a zonoid. The argument can be
reversed.

As a first consequence of Lemma 1, we see that the set Iα of (isometry classes of) Minkowski
spaces for which a given Minkowski area αn−1 is integral-geometric, is a closed subset ofMn.
In fact, let (mi)i∈N be a sequence in Iα converging tom ∈Mn. We can choose representatives
of mi,m with unit balls Bi, B so that Bi → B in the Hausdorff metric. From (2) and the
continuity of the area generating function α it follows that σα,Bi → σα,B pointwise, and this
implies Iαi,Bi → Iα,B in the Hausdorff metric ([6], Theorems 1.8.12 and 1.8.11). Each Iα,Bi
is a zonoid, and the set of zonoids is closed in the space of convex bodies. Hence Iα,B is a
zonoid, which means that αn−1 is integral-geometric for (Rn, ‖ · ‖B) and thus m ∈ Iα.
The Busemann area βn−1 is defined by the constant area generating function, β(C) = κn−1

for C ∈ Cn−1. Hence, its scaling function is given by

σβ,B(u) = |u|
κn−1

λn−1(B ∩ u⊥)
for u ∈ Rn \ {0}. (4)

Here

λn−1(B ∩ u
⊥) =

1

n− 1

∫

su

ρ(B, v)n−1 dσ(v), (5)

where ρ(B, ·) denotes the radial function of B,

su := {v ∈ S
n−1 : 〈u, v〉 = 0}

is the great subsphere Sn−1∩u⊥, and σ is the (n−2)-dimensional spherical Lebesgue measure
on su. The intersection body IB of B is defined by its radial function

ρ(IB, u) =
1

|u|
λn−1(B ∩ u

⊥) for u ∈ Rn \ {0}, (6)

hence
Iβ,B = κn−1I

oB,

where IoB := (IB)o denotes the polar body of IB.

3. Proof of Theorem 1

The isoperimetrix of the Busemann area for the Minkowski space (Rn, ‖ · ‖B) will now be
denoted by IB. The proof of the first part of Theorem 1 requires the construction of unit
balls B for which IB is not a zonoid. Let B be given. We write

g(v) :=
1

(n− 1)κn−1
ρ(B, v)n−1, v ∈ Sn−1,

and

G(u) :=

∫

su

g(v) dσ(v) for u ∈ Rn \ {0},
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so that G is homogeneous of degree zero. We extend also g to Rn \ {0} by homogeneity of
degree zero. By (4), (5), the support function of the isoperimetrix IB is given by

h(IB, u) =
|u|

G(u)
for u ∈ Rn \ {0}. (7)

We compute the directional derivatives of G. Let u ∈ Sn−1 and w ∈ Sn−1 with w ⊥ u be
given, let 0 < ε < 1. Let ϑ ∈ SOn be the rotation with

ϑu =
u+ εw

|u+ εw|

and ϑx = x for x ∈ lin{u,w}⊥. Then

ϑw =
w − εu

|w − εu|
.

Let v ∈ su \ {±w} and write

v = αw +
√
1− α2 v with v ∈ su ∩ w

⊥.

Then α = 〈v, w〉. Determine t so that v + tu ⊥ u + εw. This condition gives t = −εα. We
have

ϑv = ϑ
(
αw +

√
1− α2 v

)
= α

w − εu

|w − εu|
+
√
1− α2 v

=
v + tu

|v + tu|
+ (v + tu)

(
1−

1

|v + tu|

)
+ α(w − εu)

(
1

|w − εu|
− 1

)
,

hence, using t = −εα and |α| ≤ 1,
∣∣∣∣ϑv −

v + tu

|v + tu|

∣∣∣∣ ≤ 2ε
2.

Since the radial function of a convex body with 0 in the interior is a Lipschitz function on
Sn−1 ([6], Lemma 1.8.10 and Remark 1.7.7), we get

|g(ϑv)− g(v + tu)| ≤ cε2

with a constant c depending only on B. We deduce that

G(u+ εw)−G(u) =

∫

su

[g(ϑv)− g(v)] dσ(v)

=

∫

su

[g(v + tu)− g(v)] dσ(v) +O(ε2)

=

∫

su

[g(v − ε〈v, w〉u)− g(v)] dσ(v) +O(ε2).
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The radial function of a convex body with interior points has directional derivatives on
Rn \ {0}, hence the same holds for g. It follows that

lim
ε→0+

1

ε
[g(v − ε〈v, w〉u)− g(v)] = g′(v; (−sgn〈v, w〉)u)|〈v, w〉|.

Using the bounded convergence theorem, we obtain

G′(u;w) =

∫

su,w

g′(v;−u)|〈v, w〉| dσ(v) +

∫

su,−w

g′(v;u)|〈v, w〉| dσ(v)

with
su,w := {v ∈ su : 〈v, w〉 ≥ 0}.

From (7) we get

h′(IB, u;w) =
〈u,w〉

G(u)
−
G′(u;w)

G(u)2
for u ∈ Sn−1,

hence

h′(IB, u;w) + h
′(IB, u;−w)

= −h(IB, u)
2

∫

su

|〈v, w〉|[g′(v;u) + g′(v;−u)] dσ(v) (8)

for u ∈ Sn−1.
We use this to construct the required examples. We start with the Euclidean unit ball

Bn and choose orthogonal unit vectors u, z ∈ Sn−1 and a number ε > 0. Let

B0 := conv (B
n ∪ (1 + ε)(Bn ∩ u⊥))

and B := B0 + ε[−z, z], where [−z, z] is the closed segment with endpoints −z and z. For
this body B, let g be defined as above. One easily checks that

g′(v;u) + g′(v;−u) < 0 for v ∈ su. (9)

From (8) and (9) it follows that

h′(IB, u;w) + h
′(IB, u;−w) > 0 (10)

for all w ∈ Sn−1 with w ⊥ u. If F (IB, u) denotes the support set of the convex body IB with
outer normal vector u, then

h′(IB, u;x) = h(F (IB, u), x) for x ∈ Rn

(Theorem 1.7.2 in [6]). Therefore, (10) implies that the face F (IB, u) is of dimension n− 1.
Since B is invariant under reflection in the line lin{u}, this face is centrally symmetric, hence
we get

h(F (IB, u), w) =
1

2
h(IB, u)

2

∫

su

|〈v, w〉| |g′(v;u) + g′(v;−u)| dσ(v)
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for w ∈ su. In particular, the face F (IB, u) is a zonoid, and since |g′(v;u) + g′(v;−u)| has a
positive lower bound, this face has a summand K which is an (n− 1)-dimensional ball.
The body B has a cylindrical part, namely Z := (B ∩ z⊥) + ε[−z, z]. There is a neigh-

bourhood U of the vector z so that B ∩ y⊥ = Z ∩ y⊥ for all y ∈ U ∩ Sn−1. For these vectors
y, we have

λn−1(B ∩ y
⊥) =

λn−1(B ∩ z⊥)

〈y, z〉

and hence
h(IB, y) = h(IB, z)〈y, z〉.

This means that the point z0 := h(IB, z)z is a vertex of the isoperimetrix IB (that is, a point
with n-dimensional normal cone).
If we now assume that IB is a zonoid, then the face F (IB, u) is a summand of IB (Corollary

3.5.6 in [6]). In particular, IB has a summand K which is an (n− 1)-dimensional ball. There
is a translate K ′ of K such that z0 ∈ K ′ ⊂ IB (Theorem 3.2.2 in [6]). But this is not possible,
since z0 is a vertex of IB. Thus IB cannot be a zonoid.
If a neighbourhood (with respect to the Hausdorff metric) of the unit ball Bn is given,

the number ε can be chosen so small that B is contained in that neighbourhood. It follows
that every neighbourhood of `n2 inMn contains Minkowski spaces for which the isoperimetrix
of the Busemann area is not a zonoid. By Lemma 1, this completes the proof of the first part
of Theorem 1.

Remark. The definition of ‘integral-geometric’ may be relaxed, by requiring only the ex-
istence of a signed measure instead of a positive measure (such signed measures, given by
densities, appear in the Crofton formulas treated in [1]). Then Lemma 1 remains true if
‘zonoid’ is replaced by ‘generalized zonoid’, and also the first part of Theorem 1 with its
proof given above remains valid.

Now we prove the second part of Theorem 1. Let f : Sn−1 → R be an even function of class
C∞. For sufficiently small ε > 0, the function ρ(B(ε), ·) defined by

ρ(B(ε), u) := (1 + εf(u))
1
n−1

for u ∈ Sn−1 and extended to Rn \ {0} by positive homogeneity of degree −1, is the radial
function of a centrally symmetric convex body B(ε). (In fact, 1/ρ(B(ε), ·) is convex for
sufficiently small ε > 0, as follows from the uniform convergence, for ε → 0, of the second
derivatives of this function, together with Theorem 1.5.10 in [6].) We choose for f a spherical
harmonic of even degree m ≥ 2; then

∫

su

f(v) dσ(v) = (n− 1)κn−1amf(u) for u ∈ Sn−1

with a constant am 6= 0 (see, e.g., [4]). It follows that

h(IB(ε), u) = |u|
κn−1

ρ(IB(ε), u)
= |u|

1

1 + εamf(u/|u|)
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for u ∈ Rn \ {0}. The function h(IB(ε), ·) is of class C∞. For ε → ∞, the partial derivatives
of this function converge, uniformly on Sn−1, to the corresponding partial derivatives of
h(IB(0), ·) = h(Bn, ·). Since h(IB(ε), ·) is of class C∞, the integral equation

h(IB(ε), u) =

∫

Sn−1

|〈u, v〉|gε(v) dω(v), u ∈ Sn−1,

where ω denotes the spherical Lebesgue measure on Sn−1, has a continuous even solution
gε on S

n−1. As shown in [5], ‖gε‖max ≤ ‖h(IB(ε), ·)‖r, where ‖ · ‖max is the maximum norm
on Sn−1 and ‖ · ‖r is a certain norm involving derivatives up to order at most n + 3. From
the uniform convergence of the derivatives just mentioned, it follows that ‖gε − g0‖max ≤
‖h(IB(ε), ·) − h(Bn, ·)‖r → 0 for ε → 0, where g0 is a positive constant. Hence, if ε is
sufficiently small, the function gε is positive, and hence the isoperimetrix IB(ε) is a zonoid.
The assertion of the second part of Theorem 3 now follows from Lemma 1, if one observes
that B(ε) is not an ellipsoid.

4. Proof of Theorem 2

Let (e1, . . . , en) be an orthonormal basis of Rn, with respect to the chosen scalar product.
We need the inequality

∑

εj=±1

|ε1ξ1 + . . .+ εnξn| ≥ γ(n)
n∑

j=1

|ξj| with γ(n) := 2

(
n− 1[
n−1
2

]
)
, (11)

for ξ1, . . . , ξn ∈ R, for which we first give a proof. For reasons of homogeneity and symmetry,
it suffices to prove (11) for (ξ1, . . . , ξn) taken from the simplex

∆ :=
{
(ξ1, . . . , ξn) ∈ Rn : ξj ≥ 0,

∑
ξj = 1

}
.

Denote the left-hand side of (11) by F (ξ1, . . . , ξn). Since F is a convex function and the
restriction F |∆ is invariant under the affine symmetry group of ∆, the function F |∆ attains
its minimum at the points of a nonempty compact convex set containing the centroid of ∆.
It follows that

F (ξ1, . . . , ξn) ≥ F

(
1

n
, . . . ,

1

n

)
=
1

n

∑

εj=±1

|ε1 + . . .+ εn|

=
1

n

n∑

j=0

(
n

j

)
|n− 2j| = γ(n),

where the last equation is proved by induction.
By Q := conv {±e1, . . . ,±en} we denote the crosspolytope.

Lemma 2. If Z is a zonoid with centre at the origin and λ > 0 is a real number satisfying

Q ⊂ Z ⊂ λQ, (12)
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then λ ≥ λmin := 2−nnγ(n).

Proof. Let the zonoid Z satisfy (12). Its support function has a representation

h(Z, x) =

∫

Sn−1

|〈u, x〉| dρ(u), x ∈ Rn,

with an even measure ρ on the unit sphere Sn−1. Using (11), we get

∑

εj=±1

h(Z, ε1e1 + . . .+ εnen)

=

∫

Sn−1

∑

εj=±1

|ε1〈u, e1〉+ . . .+ εn〈u, en〉| dρ(u)

≥ γ(n)

∫

Sn−1

n∑

j=1

|〈u, ej〉| dρ(u) = γ(n)
n∑

j=1

h(Z, ej)

≥ γ(n)
n∑

j=1

h(Q, ej) = nγ(n).

The right-hand inclusion of (12) implies

∑

εj=±1

h(Z, ε1e1 + . . .+ εnen) ≤ λ
∑

εj=±1

h(Q, ε1e1 + . . .+ εnen) = 2
nλ.

Both inequalities together yield the assertion of Lemma 2.

Now we prove Theorem 2. The space `n∞ can be considered as (Rn, ‖·‖C), where C is the cube
with vertices ±e1 ± . . .± en. The support function of the isoperimetrix IC of the Busemann
area for this space is given by

h(IC , u) = |u|
κn−1

λn−1(C ∩ u⊥)
for u ∈ Rn \ {0}.

We normalize the isoperimetrix by defining

I :=
2n−1

κn−1
IC ;

then h(I, ei) = 1 for i = 1, . . . , n. Since I has the same Euclidean symmetries as C, it follows
that ei ∈ I for i = 1, . . . , n and hence that

Q ⊂ I. (13)

Let z := e1 + . . .+ en. We want to show that

h(I, z) < λminh(Q, z). (14)
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Here, h(Q, z) = 1. Now

h(I, z) =
√
n

2n−1

λn−1(C ∩ z⊥)
=

√
n

S(n)
,

where S(n) denotes the (n− 1)-volume of the intersection of the unit cube 1
2
C with a hyper-

plane through its centre and orthogonal to a main diagonal. It is given by

S(n) =

√
n

2n−1(n− 1)!

[n2 ]∑

j=0

(−1)j
(
n

j

)
(n− 2j)n−1 =

2

π

√
n

∞∫

0

(
sinx

x

)n
dx

(see Chakerian & Logothetti [3], also for references). Using

lim
n→∞

S(n) =

√
6

π

([3], p. 238) and Stirling’s formula, one shows that (14) is true for all sufficiently large
dimensions. By direct computation, (14) is proved for n = 3, 5, . . . , 9. For n = 4, (14) is true
with equality instead of inequality. Probably (14) holds for all n 6= 4.
Now let n be a dimension for which (14) is true. By symmetry, (14) holds also if z is

replaced by ±e1± . . .± en. It follows that the normalized isoperimetrix I is contained in the
interior of the crosspolytope λminQ. By (13), I contains the crosspolytope Q. Hence, there
exist a factor a > 1 and a number λ < λmin so that

Q ⊂ int aI ⊂ intλQ.

Forming the isoperimetrix is a continuous operation. Hence, in Kn (the space of convex
bodies in Rn, equipped with the Hausdorff metric) there is a neighbourhood U of the cube
C so that, for all centred convex bodies B ∈ U , the isoperimetrix IB of the Busemann area
for (Rn, ‖ · ‖B) still satisfies

Q ⊂ int

(
a
2n−1

κn−1
IB

)
⊂ intλQ.

Since λ < λmin, it follows from Lemma 2 that IB cannot be a zonoid. This implies that the
Busemann area for (Rn, ‖ · ‖B) is not integral-geometric.
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