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46100 Burjassot (València), Spain; e-mail: romeromc@uv.es
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Abstract. We study some properties of submanifolds in Euclidean space concern-
ing their generic contacts with straight lines and hyperplanes and expose some
duality relation associated to these contacts.

Introduction

J.W. Bruce and V.M. Zakalyukin prove in [5] that the hypersurface dual to a caustic whose
generating family is affine in its parameters is isomorphic to certain strata of the bifurcation
diagram of a family of projections obtained through this generating family. This can be
translated, in the case of the family of height functions on a generic surfaceM in R3, into the
fact, explored in [4], that the subset of normals over the parabolic set of M (i.e., the caustic
of the family of height functions) and that of principal asymptotic directions (bifurcation set
of the family of orthogonal projections of M onto planes) are dual as subsets of the 2-sphere.
Similar results for surfaces in R4 were obtained by J.W. Bruce and A.C. Nogueira in [3].
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Our goal in the present paper is to generalize this geometrical interpretation of the duality to
the submanifolds of any dimension in euclidean space. For this purpose we characterize the
singularities of the height functions and orthogonal projections on generic submanifolds from
the geometrical viewpoint. We then conclude as a consequence of the duality result obtained
by Bruce and Zakalyukin that, as it was to be expected as the natural generalization of the
situation for curves and surfaces in 3-space, the dual of the set of binormals of a submanifold
M is the set of its asymptotic directions. (We actually include a direct geometrical proof of
this fact for the smooth part of the bifurcation set of the height functions family).

We also obtain a duality relation, which is not a consequence of the results in [5], concern-
ing the lowest codimensional multilocal phenomena. This also generalizes the results of [4]
relative to bitangencies of curves and surfaces in R3.

The method we follow is based on the consideration of canal hypersurfaces. So, we prove the
results for hypersurfaces first and then extend them for higher codimensional submanifolds by
comparing their contacts with hyperplanes and lines with those of their canal hypersurfaces.

The concepts of binormal and asymptotic directions, which are central in this setting, were
introduced in [10] for submanifolds of codimension 2. We remind here their definitions and
basic facts, extending them to the general case of submanifolds of any codimension.

We shall use some basic concepts of singularity theory throughout the paper, for a general
background we recommend [1] and [7].

1. Some results for hypersurfaces

The family of height functions of an embedding, f : M → Rn+1, of a hypersurface M in
Euclidean space is defined as

λ(f) : M × Sn −→ R
(p, v) 7−→ 〈f(p), v〉 = fv(p).

It is not difficult to see that fv has a singularity at p ∈ M if and only if v is the normal
vector to f(M) at f(p). Moreover, if Γ : M → Sn denotes the normal Gauss map over this
hypersurface, we have that a point p ∈ M is a degenerate (non-Morse) singularity for some
height function fv if and only if v = Γ(p) and p is a singular point of Γ. In fact, the point p is
a singularity of type Ak (with the notation of Arnol’d [1]) of fΓ(p) if and only if the Boardman

symbol of order k of the germ of the map Γ at p is
∑

k−1︷ ︸︸ ︷
1, . . . , 1, 0. (See [13]).

So the bifurcation set (or caustic) of the family λ(f),

∑
(λ(f)) = {v ∈ Sn : ∃p ∈M such that

∂λ(f)

∂p
(p, v) =

∂2λ(f)

∂p2
(p, v) = 0},

is precisely given by the set of unit normal vectors at the parabolic points (i.e., points at
which the Gaussian curvature vanishes) of M .
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Given a unit vector α ∈ Sn, we can also take the orthogonal projection of M into the
hyperplane orthogonal to the direction α in Rn+1,

hα :M −→ Rn
p 7−→ p− 〈α, p〉α.

It is not difficult to see that the map hα has a singularity at a point p ∈ M if and
only if α is a tangent direction of M at p. We recall that a tangent direction to M at
p is said to be asymptotic if the normal curvature of M at p vanishes in this direction.
A principal asymptotic direction is a principal direction of curvature corresponding to a
vanishing principal curvature at a parabolic point. Denote the family of projections of M
into hyperplanes of Rn+1 associated to the embedding f by,

P (f) : M × Sn −→ Rn
(p, α) 7−→ hα(p).

By a generic f :M → Rn+1 we shall understand an embedding f such that both families
λ(f) and P (f) are locally versal at all the points (see [1] for the definition of versality). For
n ≤ 6 this is equivalent to requiring a finite number of transversality conditions on appropriate
multijets of f (see [8]) and thus we have that the generic embeddings form an open and dense
subset. Then we have that if M is a generically embedded submanifold of dimension n ≤ 6,
λ(f) is a family of functions whose singularities may have at most codimension n and hence
they can only be simple singularities of types Ak, Dk, Ek (see Arnold’s list [1]).

For a generic embedding f : M → Rn+1, the subset S1(Γ) of parabolic points of corank 1 of
the Gauss mapping Γ is a smooth (n − 1)-submanifold of M . Now, given a parabolic point
p ∈ S1(Γ) there is a unique asymptotic direction α of M at p. This direction can also be
characterized by the fact, shown in [10], that it generates the kernel of the Hessian quadratic
form of the height function fΓ(p). So we have a one-to-one correspondence between normals
at parabolic points and asymptotic directions over the subset S1(Γ).

Denote

B1(f) = {v ∈ Sn : v is a normal vector at a point p of type
∑1,0 of Γ(f)},

A1(f) = {α ∈ Sn : α is a principal asymptotic direction at a point p of type
∑1,0 of Γ(f)}.

For a generic M both subsets define smooth (n-1)-submanifolds of Sn. In fact, we know that
the subset S1,0(Γ(f)) = {p ∈ S1(Γ) : p is of type

∑1,0} is an open subset of S1(Γ) and the
restriction of Γ to S1,0(Γ(f)) is a local diffeomorphism onto Γ(S1,0(Γ(f))). Thus B1(f) is an
(n− 1) smooth submanifold of Sn. On the other hand, we can define Ψ : S1,0(Γ(f)) 7−→ Sn,
given by Ψ(p) = α, the unique asymptotic direction of p, which is a local diffeomorphism
and thus A1(f) is also a (n− 1)-submanifold of Sn.

Suppose that Y is a smooth (n − 1)-submanifold of Sn. Given any point y ∈ Y , there is a
unique maximal (n − 1)-sphere, Sy ∈ Sn which is tangent to Y at y. As y varies in Y the
poles of Sy describe another submanifold Y

∗ of Sn that is called dual of Y . Clearly, Y ∗ can
be regarded as lying in RP n−1. In the case that Y has singular points then Y ∗ is defined as
the closure of the dual of the smooth part of Y . In the case that Y and Y ∗ are smooth it
can be seen that (Y ∗)∗ = Y .
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Theorem 1. The sets B1(f)and A1(f) are hypersurfaces and B1(f)∗ = A1(f) and A1(f)∗ =
B1(f).

Proof. Take v ∈ B1(f), so there is p ∈ M such that p is a fold point of fv, or in
other words p is a point of type Σ1,0 of Γ. We can take now a neighbourhood V of v
and an orthonormal frame {e1, . . . , en} in a neighborhood U of p in M such that e1 is
the asymptotic direction at p. Then the fact that p is of type

∑1,0 implies that e1(p)
is transversal to S1,0(Γ) = {x ∈ M : x is of type Σ1,0 for Γ}. And since DΓ(p) leaves its
eigenspaces invariant, we have that TvB1(f) must be generated by the vectors e2(p), . . . , en(p).
In this way, the pole of the hypersphere obtained by sectioning Sn with the hyperplane
<v>⊕ TvB1(f) (tangent to B1(f) at v ) has the direction of e1(p) and we get that the dual
of B1(f) is contained in A1(f).

We now see that A1(f)∗ = B1(f). Consider α ∈ A1(f), so there is some p in M such that
Γ(f) has a singularity of type Σ1,0 at p, or in other words the height function in the direction
Γ(f)(p) has a non-Morse singularity at p. We can also take a neighbourhoodW of α in A1(f)
and an orthogonal coordinate neighbourhood (U, {e1(p), . . . , en(p)}) at p in such way that
e1(p) = α. Moreover let Ψ(U ∩S1,0(Γ(f))) ⊂ W , where Ψ is the diffeomorphism that assigns
to each point q in S1,0(Γ(f)) the unique asymptotic direction of M at q.

Now, given u ∈ TαA1(f), we have curves β : (−ε, ε) −→ W such that β(0) = α, β′(0) = u,
and δ : (−ε, ε) −→ U ∩ S1,0(Γ(f)) is a curve such that δ(0) = p and δ′(0) = w, where w
is the unique vector such that DΨ(p)(w) = u. Since Ψ(δ(t)) ∈ A1(f)∀t, this implies that
v(t) = Γ(δ(t)) provides a height function with a non-Morse singularity at δ(t), ∀t ∈ (−ε, ε).
We then have that

(i) 〈Ψ(δ(t)), v(t)〉 = 0 and

(ii) 〈Ψ(δ(t)), v′(t)〉 = 0,

for v′(t) = DΓ(δ(t)) · (δ′(t)) and δ(t) ∈ S1,0(Γ).

From (i) we get <DΨ(δ(t))(δ′(t)), v(t)> = 0, which in particular for t = 0 tells us that
<DΨ(p)(δ′(0)), v(0)> = <u, v> = 0. And hence v ⊥ TαA1(f), so α∗ = v. 2

Now, a consequence of this theorem and the Theorem 3 in [5] is that α ∈ A1(f) if and only if
the projection hα of M into the hyperplane orthogonal to the principal asymptotic direction
α has at p ∈M a Σ1 non-transverse singularity.

A normal form for hα in a neighbourhood of p was given in Proposition 5 in [5]:

(x1, . . . , xn) 7−→ (x
3
1 +

n∑

i=2

±x1x
2
i , x2, . . . , xn)

Moreover, Theorem 1 above can be seen as a special case of the following one, which is
a consequence of the more sophisticated methods exposed in [5].

Theorem 2. ([5], Theorem 3) Let B(f) and A(f) denote respectively the closures of B1(f)
and A1(f). These subsets are dual in Sn.
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2. Canal hypersurfaces, binormals and asymptotic directions

Suppose now that f : M → Rn+1 is a codimension 2 embedding of a submanifold M . We
can also define in this case the families λ(f) and P (f) as above, that is, λ(f)(p, v) = fv(p)
and P (f)(p, α) = hα(p).

We observe that the singular set of the family λ(f)

∑
(λ(f)) = {(p, v) ∈M × Sn :

∂λ(f)

∂p
(p, v) = 0}

can be identified with the circle bundle over M whose fibre at a point p is the unit circle in
the normal plane of f(M) at f(p). This is also known as the canal hypersurface of M , which
can actually be considered as a hypersurface in Rn+1 by means of an embedding

f̃ : CM −→ Rn+1
(p, v) 7−→ f(m) + εv.

for ε small enough.

We have the following maps on CM

a) the bundle map
ξ(f) : CM −→ M

(p, v) 7−→ p

b) the Gauss map
Γ(f) : CM −→ Sn

(p, v) 7−→ v

c) the Gaussian curvature function

K(f) : CM −→ R
(p, v) 7−→ detDΓ(f)(p, v).

It is not difficult to check that p is a degenerate singularity of fv if and only if (p, v) is a
singular point of Γ(f) if and only if K(f)(p, v) = 0. We choose now a coordinate system
U ×W for CM at (p, v) in such a way that

a) U is an orthogonal coordinate system for M at p (through which we can identify p with
the origin of Rn−1) such that
i) f(x) = (x, f1(x), f2(x))

ii) fv(x) = f2(x), ∀x ∈ U

iii) ∂fi
∂xj
(0) = 0 for i = 1, 2 and j = 1, . . . , n, and

b) W is a coordinate system for S1 at v = (0, 1) obtained by identifying some open neigh-
bourhood of v in S1 with its image through stereographic projection s : S1 − (0, 1) −→ R.

In these coordinates we have that the Hessian matrices of fv and f̃v at p and (p, v) respectively,
satisfy

H(fv)(p)⊕ I1 = H(f̃v)(p, v) = DΓ(f)(p, v)
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where I1 denotes the identity over R and DΓ(f)(p, v) represents the Jacobian matrix of the
Gauss map Γ(f) at the point (p, v).

According to the work of Montaldi [12], the contact between two submanifolds M1 and M2
that are tangent at a given point p can be determined through the K-singularity class of a
contact map, defined as the composition of an embedding whose image isM1 and a submersion
that cuts out M2. In the particular case of a submanifold M and a tangent hyperplane H,
this contact map is precisely the height function defined by the orthogonal direction to H on
M . For a genericM , most height functions present Morse singularities and the subset of unit
vectors leading to height functions with degenerate singularities overM has codimension 1 in
the unit hypersphere of the ambient space. It was shown in [10] that on a generic submanifold
M embedded with codimension 2 in the Euclidean space it is possible to find at most two
normal vectors at each point, for which the corresponding height functions have a degenerate
singularity at the given point p. These were called binormals and the tangent hyperplane of
M at p orthogonal to them, osculating hyperplane. The higher contact of these osculating
hyperplanes with M must take place along the lines generated by the kernel directions of the
Hessian quadratic form of the height function in the corresponding binormal direction (see
[10]). These directions were actually characterized in [10] as the asymptotic directions of M
at p. They satisfy the following,

θ ∈ Ker Hess(fv)(p)↔ θ ∈ Ker DΓ(f)(p, v)

↔ θ is a principal asymptotic direction for CM at (p, v).

It is not difficult to check now that an asymptotic direction for M at p is the image through
Dξ(f)(p) of a principal asymptotic direction for CM at (p, v).

In the case of a higher codimensional submanifoldM , the subset of normal directions leading
to height functions with degenerate singularities will not be finite in general at a given point
ofM . In fact, ifM is a generic k-codimensional submanifold of Rn+1, the unit normal bundle
ΣpM of M at p is a (k − 1)-sphere. Then the unit vectors inducing height functions with
degenerate singularities form a singular variety of codimension 1 in ΣmM . We call these
degenerate directions on M at p and reserve the name binormal for those v ∈ ΣpM for which
the germ of fv at p has A-codimension greater than or equal than k − 1. For this implies
that we will just have a finite number of them at a generic point of M . The corresponding
osculating hyperplane will be the one having the highest generically possible order of contact
with M at the considered point. A detailed study of their existence and distribution over a
generically embedded surface in 5-space is made in [11]. Clearly, the concepts of degenerate
and binormal directions coincide over the submanifolds of codimension 2. In the present paper
we shall be concerned with all the degenerate directions at each point of the submanifold.

By exactly the same arguments as in the case of codimension 2, we can say that any degenerate
direction v on M has at least one associated asymptotic direction θ ∈ Ker(Hess(fv)(p)). We
notice that each degenerate direction v over a point p of S1(Γ(f)) defines a unique asymptotic
direction in TpM . But a given tangent direction may be the generator of the kernel of
more than one degenerate normal direction. In particular, if dim(M) < codim(M) − 1
the dimension of the set of degenerate directions at each point is higher than that of TpM
and we shall have a whole cone of degenerate directions in NpM corresponding to the same
asymptotic direction in TpM .
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3. Singularities of height functions and orthogonal projections in higher codimen-
sions

Given a generic codimension k embedding f : M → Rn+1, we consider the following subsets
of the canal hypersurface CM ,

Si1,...,ik(Γ(f)) = {(p, v) ∈ CM : the germ of Γ(f) at (p, v) is of type Σ
i1,...,ik}

We observe that (p, v) ∈ Si1,...,ik(Γ(f)) provided the height function fv has a singularity of
corank i1 at the point p. Under appropriate transversality conditions on the k-jets of f
we get that Γ(f) is a k-generic map and thus the Si1,...,ik(Γ(f)) are submanifolds of CM .
In particular, for a generic embedding f , the subsets S1,..(k)..,1,0(Γ(f)) are submanifolds of
codimension k in CM . A point (p, v) ∈ S1,..(k)..,1,0(Γ(f)) is a singularity of type Ak+1 of
fv. Moreover, the points of S1,..(k+1)..,1(Γ(f)) are characterized by the fact that the kernel of
Hess(fv)(p) is tangent to the (n − k)-submanifold S1,..(k)..,1,0(Γ(f)). We want to give next
a geometric characterization of these singularities in terms of the normal sections of the
submanifold M . Suppose that M has codimension k in Rn+1. Given any point p ∈ M and
any unit vector ω tangent to M at p, we denote by γω the curve obtained by intersecting M
with the (k + 1)-Euclidean space spanned by the normal k-plane of M at p and the tangent
direction ω. The curve γω is called the normal section of M in the direction ω at p.

If we take two linearly independent tangent vectors ω1 and ω2 at p, then the (k+2)-Euclidean
space spanned by NpM together with ω1 and ω2 intersects M in a surface which shall be
called the normal section of M along the tangent plane 〈ω1, ω2〉.

Given a curve γ : R → Rk+1 denote its Frenet frame by {t, n1, . . . , nk} and its Euclidean
curvatures by {κi}ki=1. We have the following characterization for the singularities of the
height functions fγv on γ.

Lemma 1. The height function fγv in the direction v has a singularity of type Aj at s0 if
and only if v ∈ 〈nj, . . . , nk〉(s0), 1 ≤ j ≤ k. And fγv has a singularity of type Ak+1 at s0 if
and only if v = nk(s0) and κk(s0) = 0 (i.e., s0 is a flattening of γ).

Proof. It follows from considering the successive derivatives of the function fγv (s) and applying
the Frenet formulae in exactly the same way that is done in [2, p. 37] for curves in 3-space.2

Let θ be the asymptotic direction for M at a point p and γθ the corresponding normal
section of M . Then θ spans the kernel of the quadratic form Hess(fv) at p and we have
that fγθv = fv|γθ , so Ker(Hess(f

γθ
v ) = Ker(Hess(fv)). In this case we have that p is an Aj

singularity of fv if and only if p is an Aj singularity of f
γθ
v . Hence we have the following

geometric characterization for the singularities of corank 1 of fv.

Theorem 3. Given an asymptotic direction θ at a point p of a k-codimensional submanifold
M , suppose that v is a binormal direction associated to θ and that p is a singularity of corank
1 of fv, then we have

i) p is an Aj singularity of fv if and only if v ∈ 〈nj, . . . , nk〉, where {ni}ki=1 represent the
normal vectors in the Frenet frame of the normal section γθ of M and v · nj 6= 0.
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ii) p is an Ak singularity of fv if and only if v = nk and p is not a flattening of γθ.

iii) p is an Aj singularity of fv, for some j > k if and only if v = nk and p is a flattening
of γθ. Moreover, p is of type Aj, (j > k) if and only if θ is tangent to S1,..(j)..,1(Γ(f))
but transversal to S1,..(j+1)..,1(Γ(f)).

Suppose now that M is a submanifold of codimension k in a Euclidean (n+1)-space as above
and let p be a singularity of corank 2 of some height function fv on M . For instance:

a) When n+1 = 4 and k = 2 this is geometrically characterized by the fact that the curvature
ellipse of M at p is a radial segment (see [9]).

b) When n+1 = 5 and k = 3 it has been proven in [11] that this is equivalent to saying that

the point p is 2-singular in the sense of Feldman [6], i.e., the vectors {∂f
∂x
, ∂f
∂y
, ∂
2f
∂x2
, ∂

2f
∂x∂y
, ∂
2f
∂y2
}

are linearly dependent in R5.

In general, if corank(fv)(p) = 2 the kernel of Hess(fv)(p) is a plane. Take two linearly
independent generators θ1 and θ2 and let Sθ1,θ2 be the normal section along this plane. If
we denote fSv = fv|Sθ1,θ2 the height function in the direction v restricted to this surface, it

follows that Ker(Hess(fv))(p) = Ker(Hess(f
S
v ))(p) and thus we can state the following

Theorem 4. a) If M is a submanifold of codimension 2 in Rn+1 then p is a corank 2
singularity for some height function if and only if p is an inflection point of some normal
section of M along a tangent plane of M .

b) If M is a submanifold of codimension 3 in Rn+1 then p is a corank 2 singularity for some
height function if and only if p is a 2-singular point of some normal section of M along a
tangent plane of M .

Remark. For a generic embedding f :M → Rn+1 if n+1 ≤ 6, the only possible singularities
of corank 2 of the height functions onM are those in the series {Dj}nj=3. Then it is not difficult
to check (through a straightforward calculation in local coordinates) that p is a Dj singularity
of fv if and only if it is a Dj singularity of f

S
v .

We shall consider now the orthogonal projections of higher codimensional submanifolds of
Rn+1 into hyperplanes. Let f : M → Rn+1 be an embedding of such a submanifold and
suppose that θ is an asymptotic direction of M at a point p. As in codimension 2 case, we
can choose coordinate systems for f in a neighbourhood U of p = (0, . . . , 0) such that

1) f(x) = (x1, . . . , xr, f1(x), . . . , fk(x))

2) ∂fi
∂xj
(0) = 0, i = 1, . . . , k, j = 1, . . . , r

3) θ = e1 = (1, 0, . . . , 0)

4) fv(x) = fk(x), ∀x ∈ U , where v is the degenerate direction associated to θ.

5) fj(x) is a nondegenerate Morse function, ∀j = 1, . . . , k − 1.

We then have the following

Lemma 2. Given an asymptotic direction θ of an r-submanifold M embedded with codimen-
sion k in Rn+1 at a point p, let v be the associated binormal direction. If (p, v) ∈ S1,0(Γ(f))
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then the projection hθ has a non-stable singularity of Ae-codimension 1 at p and it is A-
equivalent to one of the normal forms:

hθ(x1, x̄) ∼ (x2, . . . , xr, x1x2, . . . , x1xr, x
3
1 + (

r∑

i=2

±xi
2)x1)

Proof. The proof follows easily from the chosen coordinate system. Also, it is in fact a
particular case of Proposition 5 in [5]. 2

Now, for each asymptotic direction θ ofM , there is a principal asymptotic direction θ̃ of CM
at (p, v), for some normal vector v such that Dξ(f)(θ̃) = θ. As before, let us denote by

f̃ : the embedding of the canal hypersurface in Rn+1,

B1(f̃) = {v ∈ Sn : v is a normal vector at a point p of type
∑1,0 of Γ(f)},

A1(f̃) = {α ∈ Sn : α is a principal asymptotic direction at a point p of type∑1,0 of Γ(f)}.

We can see that B1(f̃) = B1(f) and that A1(f̃) = A1(f), where

B1(f) = {v ∈ Sn : fv has a unique A2 singularity at some point p of M},

A1(f) = {α ∈ Sn : α is an asymptotic direction corresponding to a degenerate
direction v at a point p such that (p, v) ∈ S1,0(Γ(f))}.

Then we have the following result on duality:

Theorem 5. Given a generic embedding f of a submanifoldM in Rn+1, such that dim(M) ≥
codim(M) − 1, the subsets B1(f) and A1(f) are dual one of each other in Sn. Moreover, if
dim(M) < codim(M)− 1, then A1(f) is the dual of B1(f).

Proof. The result follows from the above observation that B1(f) = B1(f̃) and that A1(f) =
A1(f̃) and the duality result, obtained in Section 1 for hypersurfaces, applied to the canal
hypersurface CM of M .
The restriction on the dimensions is due to the fact that for a generic f , B1(f) is a

hypersurface in Sn, but the dimension of the stratum A1(f) (which is necessarily less than
2dim(M)) must be less than n− 1 in case that dim(M) < codim(M)− 1, and thus it cannot
be a hypersurface in Sn. So, in the terms that we have previously defined the concept of
duality, it only makes sense to speak of the dual of B1(f) in Sn. 2

4. Duality for the multilocal strata

Let M be a hypersurface embedded in Rn+1. Denote by B2(f) the set of all the normal
directions to bitangent hyperplanes of the submanifold M . These normal directions define
height functions on M having a double critical value corresponding to two critical points of
Morse type. On the other hand denote by A2(f) the set of bitangent directions of M . That
is, v ∈ A2(f) ⊂ Sn if and only if the mapping hv(p) = p − 〈v, p〉v has some tangent double
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point, in other words, there exist nondegenerate critical points p1 and p2 of hv such that
hv(p1) = hv(p2) and Dhv(Tp1M) = Dhv(Tp2M) . We observe that B2(f) and A2(f) are, for
a generic M , smooth (n− 1)-dimensional submanifolds of Sn.

Theorem 6. (Duality for hypersurfaces) Let f be a generic embedding of a hypersurface
M in Rn+1, then B2(f)∗ = A2(f) and A2(f)∗ = B2(f).

Proof. Consider the tangent double point stratum A2(f). This is a hypersurface X ⊂ Sn

that we can describe as follows: given a bitangent pair (p, q) ⊂M ×M , i.e., two points of M
such that the vectors {f(p)− f(q), ∂f

∂xi
(p), ∂f

∂xi
(q)}ni=1 form a linear system of rank n in Rn+1,

and we have that the unit vector v = f(p)−f(q)
‖f(p)−f(q)‖ ∈ X.

We can actually find some small enough open subset neighbourhood U of the origin in
Rn and local embeddings,

f1 : (U, 0) −→ (M, p)
f2 : (U, 0) −→ (M, q)

in such a way that X is locally parametrized at v by

g : (U, 0) −→ (X, v)

x 7−→ f1(x)−f2(x)
‖f1(x)−f2(x)‖

Then the tangent hyperplane to X at v is given by the intersection of Sn with the
hyperplane spanned by the vectors { f1(0)− f2(0),

∂f1
∂x1
(0)− ∂f2

∂x1
(0), . . . , ∂f1

∂xn
(0)− ∂f2

∂xn
(0)}. This

hyperplane coincides with the hyperplane spanned by {f(p)− f(q), ∂f
∂x1
(p), . . . , ∂f

∂xn
(p)}, the

tangent hyperplane to M at p which coincides in turn with the tangent hyperplane to M at
q. Consequently the poles of this hypersphere are ±NM(f(p)) = ±NM(f(q)), which is an
element of B2(f). It is not difficult to see that any element of B2(f) is dual to some element
of A2(f)∗. So A2(f)∗ = B2(f).
On the other hand, given v ∈ B2(f), we can find (p, q) ∈ M ×M such that Γ(f)(p) =

Γ(f)(q) = v and f(p)− f(q) ∈ Tf(p)M = Tf(q)M .
By working locally we can parametrize M in small neighbourhoods U and V of p and q

respectively
f1 : (Rn, 0) −→ (U, p)
f2 : (Rn, 0) −→ (V, q)

such that Γ(f1 |(Rn×{0})) = Γ(f2 |(Rn×{0})).

So B2(f) is parametrized either by Γ(f1 |(Rn×{0})) = γ1 or Γ(f2 |(Rn×{0})) = γ2 in a neigh-
bourhood of v. And hence the tangent hypersphere to B2(f) at v is given by the intersection
of Sn with the hyperplane of Rn+1 spanned by {γ1(0), ∂γ1∂x1 (0), . . . ,

∂γ1
∂xn
(0)}. Now observe that

<(f1(x)−f2(x)), γ1(x)> = 0, ∀x. So
∂
∂xi
(<f1−f2, γ1>) = <

∂f1
∂xi
− ∂f2
∂xi
), γ1>+<f1−f2,

∂γ1
∂xi
>,

i = 1, . . . , n. And since <∂f1
∂xi
(0) − ∂f2

∂xi
(0), γ1(0)> = 0, i = 1, . . . , n, we get that <f1(0) −

f2(0),
∂γ1
∂xi
(0)> = 0, i = 1, . . . , n, i.e., <f(p) − f(q), ∂γ1

∂xi
(0)> = 0, i = 1, . . . , n. Consequently

±(f(p)−f(q)) are the poles of this hypersphere. The reciprocal inclusion follows analogously.
And we conclude that B2(f)∗ = A2(f). 2
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Theorem 7. (Duality for submanifolds of codimension higher than 1) Given any generic
embedding f , of an r-manifold M in Rn+1 with 2r ≥ n − 1, we have A2(f)∗ = B2(f) and
B2(f)∗ = A2(f).

Proof. This result follows from observing that any bitangent affine hyperplane to CM is
obtained by translation of some bitangent affine hyperplane of M in the direction of the
normal to this hyperplane. And hence they define the same point in Sn. Therefore B2(M) =
B2(CM). On the other hand, if (p, q) is a bitangent pair in M , the corresponding points in
CM are (p+v, q+v), where v is the normal vector to the bitangent plane defined by p and q.
Then the unit vector in the direction of the segment p̄q gives in both cases the corresponding
direction of A2. Consequently A2(M) = A2(CM). 2

Remark. Given a pair of points p, q ∈ M , a hyperplane H is bitangent to M at p and q
if and only if it contains the r-spaces TpM and TqM and the straight line defined by the
points p and q. Then, in the case that 2dim(M) < n− 1, each couple (p, q) defines a whole
k-parameter family (k = n − (2dim(M) + 1)) and we thus have a whole k-sphere in B2(f)
corresponding by duality to a single point (direction of p̄q) in A2(f). In fact, in this case
dimA2(f) < n − 1. So A2(f) is not a hypersurface in Sn (similarly to what happens with
A1(f), as we have seen previously), therefore it has no meaning to speak of its dual in the
way we have defined it in this paper. In any case we still have:

The dual of B2(f) is A2(f).

We must point out that this is also the case for the canal hypersurface of such an M , but
these hypersurfaces are non-generic (as hypersurfaces!) in the sense that a small perturbation
transforms them into generic “non-canal” hypersurfaces for which both the subsets A1(f) and
A2(f) have codimension 1 in Sn.
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