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Abstract. We classify the rotary hypermaps (sometimes called regular hyper-
maps) on an orientable surface of genus 2. There are 43 of them, of which 10 are
maps (classified by Threlfall), 20 more can be obtained from the 10 maps by apply-
ing Mach̀ı’s operations, and the remaining 13 may be obtained from the maps by
using Walsh’s bijection between maps and hypermaps. As a corollary, we deduce
that there are no non-orientable reflexible hypermaps of characteristic −1.

1. Introduction

An orientable hypermap H is said to be rotary if its rotation group, that is, its orientation-
preserving automorphism group Aut+H, acts transitively on the set of brins of H. (Such
hypermaps have often been called regular, but we will avoid this term since it is some-
times used for the stronger condition that the full automorphism group AutH (including
orientation-reversing automorphisms) should act transitively on the blades; following [5] we
will call this condition reflexibility). The rotary hypermaps on the sphere and the torus
have been determined by Corn and Singerman in [4]; in each case, there are infinitely many,
whereas on a surface of genus g ≥ 2 the number must always be finite. Our aim here is to
treat the simplest case, and classify the rotary hypermaps of genus 2. Much of the prelim-
inary work on this problem has already been done: hypermaps include maps, and Threlfall
[8] has determined the rotary mapsM of this genus; there are 10 of them, listed by Coxeter
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and Moser in Table 9 of [5] with their types and rotation groups Aut+M. Similarly Corn
and Singerman, in Table 2 of [4], have determined the possible types and rotation groups of
the remaining rotary hypermaps of genus 2. We shall complete their results by enumerat-
ing, describing and constructing all these hypermaps H and specifying their automorphism
groups AutH.
The 10 rotary mapsM classified by Threlfall and listed in [5] are summarised in Table

1 and are described in detail in §§5–9. We need this information in order to describe the
remaining hypermaps. First one can form another 20 rotary hypermaps as associates of
these maps, that is, simply by regarding the maps as hypermaps and then applying Mach̀ı’s
operations of renaming hypervertices, hyperedges and hyperfaces. There remain 13 rotary
hypermaps which are not associates of maps: these form 5 sets of associates corresponding to
the 5 rows in Table 2 of [4], each set containing a hypermap Hr (1 ≤ r ≤ 5) whose Walsh map
W (Hr) (see §2, also [4, 9]) is one of the 10 rotary mapsM of genus 2. These 13 hypermaps
are summarised in Table 2, and are described in detail in §§11–15. Thus there are, in all,
10 + 20 + 13 = 43 rotary hypermaps of genus 2. By inspection, we find that they are all
reflexible, that is, each has an additional orientation-reversing automorphism. (It follows
easily from [4, §4(D)] that the same happens for genus 0, whereas on the torus most rotary
maps and hypermaps are chiral – not isomorphic to their mirror-images [5, §§8.3, 8.4].)
As an immediate corollary of our classification, we show (in §16) that there are no re-

flexible hypermaps on a non-orientable surface of characteristic −1; this extends the result
of Coxeter and Moser [5, §8.8] on the non-existence of reflexible maps on such a surface.

2. Reflexible and rotary hypermaps

First, we briefly review some facts we need from the theory of hypermaps; see [2] or [6] for
a more general account, and [3] for the orientable case.
We define a hypermap H to be a transitive permutation representation θ : ∆→ G of the

free product
∆ = 〈R0, R1, R2 | R

2
i = 1〉 ∼= C2 ∗ C2 ∗ C2

onto a group G of permutations of a set Ω; the elements of Ω are called blades. The i-faces
of H (i = 0, 1, 2), that is, the hypervertices, hyperedges and hyperfaces of H, are the orbits
in Ω of the dihedral subgroups 〈R1, R2〉, 〈R2, R0〉, 〈R0, R1〉 of ∆, with incidence given by
non-empty intersection.
For a combinatorial model of H, we can take the permutation graph G for ∆ on Ω with

respect to the generators Ri: this is a trivalent graph with vertex-set Ω; it has edges labelled
i corresponding to the 2-cycles of Ri on Ω, and free edges corresponding to fixed points. For
a topological model, we take a set of 2-simplexes σα, one for each blade α ∈ Ω, with their
vertices arbitrarily labelled i = 0, 1 and 2; whenever (αβ) is a 2-cycle of Ri we join σα to
σβ by identifying the sides opposite their vertices labelled i. This results in a triangulated
surface S (possibly with boundary), the vertices labelled i = 0, 1, 2 so that adjacent vertices
have different labels. The dual of this triangulation is an imbedding of G in S, with faces
labelled i = 0, 1, 2 corresponding to the i-faces of H. Each edge separates faces with different
labels, so if we give it the third available label we recover the edge-labelling of G. We define
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the orientability, characteristic and genus of H to be those of S. The type of H is the triple
(l0, l1, l2), where li is the order of the permutation of Ω induced by the element Xi = Ri+1Ri+2
(subscripts mod (3)). A map is simply a hypermap with l1 = 1 or 2; it is usual to represent
a map topologically by contracting each hypervertex to a point (called a vertex), and each
hyperedge to a 1-simplex (called an edge).
The automorphism group AutH ofH is the group of all permutations of Ω which commute

with G; being the centraliser of a transitive group, it acts semi-regularly on Ω. It is isomorphic
to the quotient group N∆(H)/H, where H is the stabiliser in ∆ of a blade (called a hypermap
subgroup). We say that H is reflexible if AutH acts transitively on Ω; this is equivalent to
G acting regularly on Ω, in which case we can identify Ω with G so that G acts by right-
multiplication. Then H is normal in ∆, with ∆/H ∼= G, and G is just the Cayley graph for
G with respect to the triple r = (r0, r1, r2) of generators ri = Riθ of G (called a ∆-basis of
G); we will call H a reflexible G-hypermap.
When H is reflexible its automorphisms (or equivalently those of G) are induced by the

left-multiplications g 7→ x−1g where x ∈ G, so

AutH ∼= AutG ∼= G ∼= ∆/H.

Two reflexible G-hypermaps H and H′ are isomorphic if and only if their hypermap sub-
groups are equal, that is, their corresponding edge-labelled graphs G and G ′ are isomorphic,
so the reflexible G-hypermaps H with automorphism group AutH ∼= G are in bijective corre-
spondence with the normal subgroups H /∆ with ∆/H ∼= G, or equivalently with the orbits
of AutG on the ∆-bases of G.
A hypermap H is orientable and without boundary if and only if its hypermap subgroup

H is contained in the even subgroup

∆+ = 〈X0, X1, X2 | X0X1X2 = 1〉

of index 2 in ∆. In these circumstances the cycles of R2 in Ω, all of length 2, correspond
to the “brins” of H in [3, 4]. The orientation-preserving automorphism group (or rotation
group) Aut+H, isomorphic to N∆+(H)/H, permutes these brins, and we say that H is rotary
if it does so transitively; this is equivalent to H being normal in ∆+, in which case

Aut+H ∼= ∆+/H

and Aut+H is generated by a ∆+-basis, a triple x = (x0, x1, x2) of elements satisfying
x0x1x2 = 1. If H is reflexible then it is rotary, but the converse is false: a rotary hyper-
map is reflexible if and only if it has an orientation-reversing automorphism, or equivalently
Aut+H has an automorphism inverting two of the terms in x. A rotary hypermap H of type
(l0, l1, l2) has Ni = N/li i-faces, all of valency li, where N = |Aut

+H|; its Euler characteristic
is χ =

∑
Ni −N = N(

∑
l−1i − 1), and its genus is g = 1−

1
2
χ.

In [2] we defined the seven 2-blade hypermaps B = B+,Bi and Bî, where i = 0, 1, 2; these
are reflexible hypermaps with AutB ∼= C2 = {±1}. The ∆-basis for C2 corresponding to B+

is r = (−1,−1,−1); in the case of Bi it is given by ri = 1, rj = rk = −1, while for Bî we
have ri = −1, rj = rk = 1. When B = B+, the corresponding hypermap subgroup B / ∆
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is ∆+; the subgroups B /∆ corresponding to Bi and Bî are denoted by ∆i and ∆î. If H is
a hypermap which does not cover one of these hypermaps B (that is, whose map subgroup
H is not contained in B), then we can form the double covering H × B = H+,Hi or Hî of
H, the hypermap corresponding to the hypermap subgroup H ∩B of ∆, as described in [2].
When B = B+, for example, this is the (unbranched) orientable double covering H+ of H;
when B = Bi or Bî however, we obtain a double covering branched over those j- and k-faces
of H with odd valency.
The Walsh map W (H) of a hypermap H is the dual of the tessellation of S obtained by

contracting each hyperface of H to a point; it is a bipartite map on S, its two sets of vertices
(conventionally coloured black and white) corresponding to the hypervertices and hyperedges
of H, its edges to the brins, and its faces to the hyperfaces of H. As Walsh showed in [9], W
gives a bijection between hypermaps and bipartite maps on the same surface.
Mach̀ı’s group S ∼= S3 of hypermap operations [7] transforms one hypermap H to another

(called an associate Hπ of H) by renaming hypervertices, hyperedges and hyperfaces of H,
that is, by applying a permutation π ∈ S3 to the edge-labels i = 0, 1, 2 of G. These operations
preserve the underlying surface, and if H is reflexible or rotary then so are all its associates,
with the same automorphism and rotation groups. In classifying the rotary hypermaps of
genus 2 it is therefore sufficient for us to find one representative from each S-orbit.

3. The rotary maps of genus 2

The rotary maps M of genus 2 were classified by Threlfall [8] in 1932, completing earlier
work of Brahana [1] (see Table 9 of [5]). They are the mapsM0, . . . ,M5 described in Table
1 and illustrated in Figure 1, together with the duals of M1,M3,M4 and M5, which are
denoted byM(02)

1 , etc., to indicate a transposition of 0- and 2-faces (vertices and faces).

Map Notation in [5] Hyp. type σ N0N1N2 Aut+M AutM

M0 {8, 8}1,0 8 2 8 3 1 4 1 C8 D8

M1 {10, 5}2 5 2 10 2 5 1
6 C10 D10

M
(02)
1 {5, 10}2 10 2 5 1 5 2

M2 {6, 6}2 6 2 6 3 2 6 2 C6 × C2 D6 × C2

M3 {8, 4}1,1 4 2 8 4 8 2
6 〈−2, 4 | 2〉 Hol(C8)

M
(02)
3 {4, 8}1,1 8 2 4 2 8 4

M4 {6, 4 | 2} 4 2 6 6 12 4
6 (4, 6 | 2, 2) D3 ×D4

M
(02)
4 {4, 6 | 2} 6 2 4 4 12 6

M5 {4 + 4, 3} 3 2 8 16 24 6
6 GL2(3) GL2(3) o C2

M
(02)
5 {3, 4 + 4} 8 2 3 6 24 16

Table 1
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The entries in each of the six rows are explained as follows: the first two columns give our
notation forM and that in [5, Table 9]. The third column gives the type (l0, l1, l2) = (l,m, n)
ofM as a hypermap: thus each i-face ofM is incident with li j-faces and li k-faces, where
{i, j, k} = {0, 1, 2}, so in the notation of [5],M is a map of type {l2, l0}. The next column
gives the number σ of non-isomorphic associates Mπ of M (π ∈ S3); this is the length of
the S-orbit containingM. The fifth column gives the number Ni of i-faces ofM, the sixth
describes the rotation-group Aut+M (of order N = Nili), and the final column gives the full
automorphism group AutM (of order 2N since each mapM is reflexible); these groups will
be explained in more detail in §§5–9.
The mapsM0, . . . ,M5 are illustrated in Figure 1. In each case we have indicated a pair

of sides to be identified; the remaining identifications can be deduced by symmetry about
the centre, since the maps are rotary. Where a map is bipartite, we have indicated this by
2-colouring the vertices; such maps Mr will reappear in §§11–15 as Walsh maps of other
rotary hypermaps Hr of genus 2, with AutHr corresponding to the subgroup Aut

0̂Mr of
AutMr preserving the vertex-colours, so we will determine these subgroups in §§5–9.

Figure 1. The rotary mapsMr

For eachM =M0, . . . ,M5 in Figure 1, AutM is generated by three automorphisms a, b, c;
we take a to be the rotation (in the anticlockwise direction) by 2π/n about the central face,
b to be the reflection in the vertical axis (so that 〈a, b〉 = 〈a, b | an = b2 = (ab)2 = 1〉 ∼= Dn is
the subgroup preserving that face), and c to be the rotation by π about the midpoint of the
lowest edge of that face (so that bc = cb and 〈a, c〉 = Aut+M). Alternatively, AutM can be
generated by the reflections a0 = b, a1 = ab and a2 = bc in the sides of a triangle, satisfying

a2i = (a1a2)
m = (a2a0)

2 = (a0a1)
n = 1

(see Figure 2).



44 A. J. Breda d’Azevedo; G.A. Jones: Rotary Hypermaps of Genus 2

Figure 2. Generators for AutM

4. Some dihedral maps

Before discussing the maps Mr in detail, we need to describe some maps with dihedral
automorphism group

Dn = 〈a, b | a
n = b2 = (ab)2 = 1〉,

since some of these are isomorphic to mapsMr or arise as their direct factors.
The ∆-basis r = (r0, r1, r2) = (b, ab, b) of Dn corresponds to a reflexible hypermap D∗n of

type (n, 1, n) on the sphere; this is a map with one vertex, one face, and n free edges (Figure
3):

Figure 3. D∗6 as a hypermap and as a map

Taking r = (b, ab, 1) we obtain a reflexible hypermap D◦n of type (2, 2, n) on a closed disc;
this is a map with n vertices and n edges (forming the boundary) and one face (Figure 4):

Figure 4. D◦6 as a hypermap and as a map

If n = 2m is even and we take r = (b, ab, amb) we obtain a reflexible orientable map D�n
with one face, m edges, and one or two vertices as m is even or odd; D�n has characteristic
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χ = 2−m or 3−m, and hence has genus g = m/2 or (m− 1)/2 respectively. One can form
D�n by identifying opposite sides of a regular n-gon (see Figure 5 for the cases n = 4 and
n = 6).

Figure 5. D�4 and D
�
6

If n = 2m with m odd, and r = (b, a2b, am), we obtain a reflexible spherical map D	n with
two faces and an equatorial belt of m vertices and m edges (see Figure 6 for D	6 ).

Figure 6. D	6

5. The mapsM0 andM1

The mapsM0 andM1 each consist of a single n-gon, where n = 8 or 10 respectively, with
opposite sides identified to form 4 or 5 edges and 1 or 2 vertices, soM0

∼= D�8 andM1
∼= D�10.

If a, b and c are as in Figure 2, then since the identifications imply that c = an/2 we have

Aut+M = 〈a | an = 1〉 ∼= Cn

and
AutM = 〈a, b | an = b2 = (ab)2 = 1〉 ∼= Dn.

For n = 8 and 10, Dn has a ∆-basis r = (r0, r1, r2) = (b, ab, a
n/2b) of type (8, 2, 8)

(resp. (5, 2, 10)) which is unique up to automorphisms, so M0 and M1 are the unique
reflexibleDn-maps of their given types. In particular,M0 is self-dual, since the automorphism
a 7→ a5, b 7→ a4b of D8 sends r to the reverse ∆-basis r(02) = (r2, r1, r0). However,M1 is not

self-dual: its dualM(02)
1 is another reflexible D10-map of genus 2, with two pentagonal faces,

one vertex and five edges (all loops). As hypermaps,M0 andM1 therefore lie in S-orbits of
lengths σ = 3 and 6 respectively.

The subgroup Aut0̂M1 of AutM1 fixing the two vertices is 〈a2, ab〉 ∼= D5; since AutM1
∼=

Aut0̂M1 × 〈a5〉 ∼= D5 × C2, it follows thatM1 decomposes as a disjoint product

M1
∼= D∗5 × B

0̂ = (D∗5)
0̂,
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whereM1/Aut
0̂M1 is the 2-blade disc map B0̂, andM1/〈a5〉 is the reflexible spherical D5-

map D∗5 (see Figure 7); thus M1 is a double covering of D∗5 with branch-points on its five

edges. This decomposition of AutM1 is not unique: one can replace the first factor Aut
0̂M1

with 〈a2, b〉 ∼= D5, giving
M1
∼= D∗5 × B

0 = (D∗5)
0.

Figure 7. D∗5, B
0̂ and B0

6. The mapM2

In Figure 1(c), one hexagonal face of M2 is obvious, while the six small triangles make up
the other face. The automorphism group AutM2 is

〈a, b, c | a6 = b2 = (ab)2 = c2 = 1, ac = a, bc = b〉 ∼= D6 × C2,

where a is a rotation of Figure 8 by 2π/6 and b is the reflection in the horizontal axis (these
generate the factor D6, the subgroup preserving the two faces), while c is a half-turn reversing
each edge and transposing the two faces and the two vertices.

Figure 8. Generators for AutM2

It follows that Aut+M2 = 〈a, c〉 ∼= C6×C2. The direct decomposition AutM2 = 〈a, b〉×〈c〉 ∼=
D6 × C2 gives

M2
∼= D∗6 × B

0 = (D∗6)
0,
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whereM2/〈c〉 ∼= D∗6 (see Figure 3) andM2/〈a, b〉 ∼= B0 (Figure 7). These decompositions of
AutM2 and ofM2 are not unique: one can replace the direct factor 〈c〉 with 〈a3c〉 ∼= C2, so
that

M2
∼= D�6 × B

0 = (D�6)
0

where M2/〈a3c〉 is the torus map D�6 shown in Figure 5; one can also replace 〈a, b〉 with

〈ac, b〉 ∼= D6 (the subgroup Aut
0̂M2 of AutM2 fixing the two vertices), thus replacing B0

with B0̂, so that
M2
∼= (D∗6)

0̂ ∼= (D�6)
0̂.

Further decompositions ofM2 can be obtained by using the isomorphism D6 ∼= D3 × C2.
As a ∆-basis for D6 × C2 corresponding toM2 one can take r = (ab, b, abc), reflections

in the sides of the triangle in Figure 8. The automorphism a 7→ ac, b 7→ b, c 7→ c reverses r,
thus confirming thatM2 is self-dual.

7. The mapM3

Like M2, M3 has two faces, one made up of the outer triangles in Figure 1(d). It has
automorphism group

AutM3 = 〈a, b, c | a
8 = b3 = c2 = 1, ab = a−1, ac = a3, bc = b〉,

where a is a rotation through 2π/8, b is a horizontal reflection, and c is a rotation about the
midpoint of an edge. The rotation group is

Aut+M3 = 〈a, c | a
8 = c2 = 1, ac = a3〉,

a group of order 16 isomorphic to 〈−2, 4 | 2〉 in [5, §6.6], while the subgroup preserving each
of the two faces is

〈a, b | a8 = b2 = 1, ab = a−1〉 ∼= D8.

It is clear from the presentation that 〈a〉 is a normal subgroup of AutM3, complemented
by the Klein 4-group 〈b, c〉 which induces all four automorphisms a 7→ a±1, a±3 of 〈a〉; thus
AutM3 is isomorphic to the holomorph HolC8 of C8. The mapM3 is bipartite, the subgroup

Aut0̂M3 preserving the vertex-colours being the “even subgroup” 〈a2, ac, bc〉. This is a central
product

Aut0̂M3
∼= Q8 · C4,

of
Aut0̂M3 ∩ Aut

+M3 = 〈a
2, ac〉 ∼= Q8

(a quaternion group of order 8), and

〈a2bc〉 ∼= C4,

amalgamating their central subgroups 〈a4 = (ac)2〉 and 〈(a2bc)2 = a4〉 (both isomorphic to
C2).
Like AutM0, AutM3 is indecomposable (as a direct product), soM3 does not arise as

a disjoint product of simpler maps. As a ∆-basis for AutM3, we can take r = (b, ab, bc); by

reversing r we obtain the dual ofM3, a reflexible mapM
(02)
3 with four quadrilateral faces.
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8. The mapM4

M4 has four hexagonal faces: the central face in Figure 1(e) meets two of the others alter-
nately across its six edges, and meets the fourth face at the six vertices. The automorphism
group is a direct product

AutM4 = 〈a, b〉 × 〈c, d〉 ∼= D3 ×D4,

where a and c are rotations by 2π/3 and π about the central face, and b and d are reflections
in the vertical axis and in a horizontal edge (Figure 9).

Figure 9. Generators for AutM4

(One can easily check that a and b commute with c and d, and that they satisfy a3 = b2 =
(ab)2 = c2 = d2 = (cd)4 = 1.)
This decomposition of AutM4 yields

M4
∼= D◦3 × (D

◦
4)
(02),

whereM4/〈c, d〉 andM4/〈a, b〉 are the disc maps D◦3 and (D
◦
4)
(02) shown in Figure 10.

Figure 10. D◦3 and (D
◦
4)
(02)

The rotation group Aut+M4 is a split extension of 〈a, c, cd〉 ∼= C3×C2×C2 by 〈e〉 ∼= C2, where
e = bd is a half-turn about the midpoint of a horizontal edge, inverting a and transposing c
and cd. This is isomorphic to the group

(4, 6 | 2, 2) = 〈y, z | y4 = z6 = (yz)2 = (y−1z)2 = 1〉
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of [5, §8.5]: we can take y = ace and z = acd (rotations about a vertex and a face).

The subgroup Aut0̂M4 of AutM4 preserving the two vertex-colours is isomorphic to (but
distinct from) Aut+M4, being a split extension of 〈a, d, dc〉 ∼= C3 × C2 × C2 by 〈bc〉 ∼= C2,
with bc inverting a and transposing d and dc. An isomorphism with (4, 6 | 2, 2) is given by
putting y = adbc and z = adc.
As a ∆-basis for AutM4 we can take r0 = b, r1 = abc and r2 = d. Transposing r0 and r2

we obtain the dual map
M(02)
4
∼= (D03)

(02) ×D04,

a reflexible map with six quadrilateral faces.

9. The mapM5

M5 has six octagonal faces. The central face in Figure 1(f) meets four others, each across
two edges, but does not meet the sixth face.
It is simplest to start with the rotation group

Aut+M5 = 〈x, y, z | x
2 = y3 = z8 = xyz = (xz4)2 = 1〉,

where x, y and z are rotations about an edge, vertex and face (all incident), as in Figure 11.

Figure 11. Generators for AutM5

This group can be identified with GL2(3) by putting

x =

(
0 1

1 0

)

, y =

(
1 1

0 1

)

, z =

(
2 1

1 0

)

,

so that z4 is the central involution −I. It is also isomorphic to the group

〈−3, 4 | 2〉 = 〈r, s | r−3 = s4, (rs)2 = 1〉
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of [5, §6.6]: we can take r = −y and s = z (so that r−3 = s4 = −I).
Now AutGL2(3) ∼= PGL2(3) × C2, with PGL2(3) (= GL2(3)/〈−I〉 ∼= S4) the group

of inner automorphisms, and the factor C2 generated by the outer automorphism α : g 7→
det(g).g of GL2(3). The full automorphism group AutM5 is generated by Aut

+M5 together
with the reflection t shown in Figure 11. This acts on Aut+M5 by x

t = x, yt = y−1, so t
induces the automorphism τ : g 7→ det(g).u−1gu of GL2(3) where u =

(
2 0
0 1

)
, that is, τ =

α ◦ iu = iu ◦α where iu is the inner automorphism induced by u. (The rotation u is shown in
Figure 11.) If we identify Aut+M5 with GL2(3) as above, and define v = tu ∈ AutM5, then
AutM5 is also generated by Aut

+M5 = GL2(3) and v, with v
2 = (tu)2 = ut.u = −u.u = −I

and v inducing the automorphism α of GL2(3) by conjugation. The subgroup of AutM5

preserving the vertex-colours is Aut0̂M5 = 〈SL2(3), t〉 ∼= GL2(3), isomorphic to but distinct
from Aut+M5. As a ∆-basis for AutM5 we can take r0 = xt, r1 = ty and r2 = t; transposing
r0 and r2 we obtainM

(02)
5 , a reflexible map with 16 triangular faces.

10. The remaining hypermaps

We have now described the 10 rotary maps of genus 2. By regarding them as hypermaps, and
by taking their associates (under the action of S), we obtain 30 of the 43 rotary hypermaps of
genus 2; we will now consider the remaining 13 hypermaps, whose properties are summarised
in Table 2, each row describing a representative Hr (r = 1, . . . , 5) of an S-orbit of length σ.

Hypermap H Hyp. type σ N0N1N2 Aut
+H AutH

H1 = W−1(M1) 5 5 5 3 1 1 1 C5 D5

H2 = W−1(M2) 6 6 3 3 1 1 2 C6 D6

H3 = W−1(M3) 4 4 4 1 2 2 2 Q8 Q8 · C4

H4 = W−1(M4) 4 4 3 3 3 3 4 D̂3 (4, 6 | 2, 2)

H5 = W−1(M5) 3 3 4 3 8 8 6 SL2(3) GL2(3)

Table 2

This table is an extension of Table 2 of [4], where Corn and Singerman determined the
possible types and rotation groups Aut+H of the rotary hypermaps H of genus 2. (Note that
the presentation immediately following Table 2 in [4] should read 〈a, b, c | ar = bs = ct = abc〉,
and not as given.) We shall continue their work by enumerating these hypermaps, dividing
them into S-orbits, showing that they are all reflexible, and determining their automorphism
groups AutH. Before investigating these hypermaps in detail, we point out that (as indicated
in the first column of Table 2) our chosen representativesHr have as their Walsh mapsW (Hr)
the five bipartite rotary mapsMr (r = 1, . . . , 5) in Table 1; onlyM0, which is not bipartite,
does not arise in this way.
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11. The hypermap H1

The first case in Corn and Singerman’s list is that of a rotary hypermap H of type (5, 5, 5)
with Aut+H ∼= C5 = 〈c | c5 = 1〉. Now AutC5 ∼= C4, generated by c 7→ c2, and this
has three orbits on the ∆+-bases for C5 of type (5, 5, 5), containing x(i) = (c

i−1, c−i, c) for
i = 2, 3, 4. Thus there are (up to isomorphism) three rotary hypermaps H(i) = H(2),H(3)
and H(4) of type (5, 5, 5), corresponding to the triples x(i). Any rotary hypermap with an
abelian rotation group must be reflexible, since each abelian group admits an automorphism
inverting every element; hence each H(i) is reflexible, with

AutH(i) ∼= D5 = 〈c, b | c
5 = b2 = 1, cb = c−1〉.

As a ∆-basis for D5 corresponding to H(i) we can take r(i) = (b, bc, bci). These three
hypermaps, which can be distinguished from each other by the property that r0r2 = (r0r1)

i,
are shown in Figure 12.

Figure 12. The hypermaps H(i)

In each case, the sides of the decagon are identified as indicated, to give one hyperver-
tex, one hyperedge, and one hyperface; AutH(i) is generated by a rotation through 2π/5
about the centre, and a reflection in the horizontal axis. Note that W (H(3)) is the bipar-
tite rotary map M1 we have already discussed, while H(4) is the hypermap in Figure 9 of
[4]. The automorphism of D5 which transposes b(= r0) and bc(= r1) sends bc

i to bc1−i, so
H(2)(01) ∼= H(4) and H(3)(01) ∼= H(3). (This property of H(3) corresponds to the fact that
M1, being rotary and bipartite, has an automorphism interchanging its black and white
vertices.) Similarly H(3)(02) ∼= H(2), so all three hypermaps are associates of each other; we
have chosen H(3) = W−1(M1) as our representative H1 of this S-orbit in Table 2.

12. The hypermap H2

The second case in [4] concerns a rotary hypermap H of type (6, 6, 3) – or some permutation
of this – with

Aut+H ∼= C6 = 〈c | c
6 = 1〉.

Now AutC6 (of order 2, generated by c 7→ c−1) has a single orbit on the ∆+-bases for C6
of type (6, 6, 3), represented by x = (c, c, c−2); thus we find a single rotary hypermap H2 of
type (6, 6, 3), and as in case (1) since C6 is abelian H2 must be reflexible, with

AutH2 ∼= D6 = 〈b, c | b
2 = c6 = 1, cb = c−1〉.
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This uniqueness implies that H(01)2 ∼= H2, so H2 lies in an S-orbit of length 3, its associates
having types (3, 6, 6) and (6, 3, 6). The latter is illustrated in Figure 10 of [4], while our
Figure 13 shows two views of H2:

Figure 13. The hypermap H2

The first illustrates the fact that W (H2) = M2 (see Figure 1(c)), while the second shows
that AutH2 ∼= D6. As a ∆-basis for D6 corresponding to H2 we can take r = (b, bc2, bc).
Since D6 = 〈b, c2〉 × 〈c3〉 ∼= D3 × C2, H2 is a disjoint product

H2 = H2/〈c
3〉 × H2/〈b, c

2〉 ∼= W−1(D�6)× B
2̂ ∼= W−1(D�6)

2̂

(see Figure 14).

Figure 14. The hypermaps W−1(D�6) and B
2̂

In this decomposition one can replace 〈b, c2〉 with 〈bc, c2〉, thus replacing B2̂ with B2.

13. The hypermap H3

The third possibility in [4] is that H has type (4, 4, 4) with Aut+H isomorphic to Q8, the
quaternion group {±1,±i,±j,±k } with

i2 = j2 = k2 = −1, ij = −ji = k, etc.

Now AutQ8 (∼= S4) has just one orbit on ∆+-bases of type (4, 4, 4), represented by x =
(i, j,−k), so there is a unique rotary hypermap H3 of type (4, 4, 4) with rotation group
Q8. By its uniqueness, H3 must be reflexible and S-invariant, with automorphism group
AutH3 = 〈Q8, t〉 where t2 = 1, it = −i and jt = −j (so kt = k); now ik = −i and jk = −j,



A. J. Breda d’Azevedo; G.A. Jones: Rotary Hypermaps of Genus 2 53

so AutH3 = 〈Q8, u〉 where u := kt centralises Q8 and satisfies u2 = k.kt = k2 = −1; thus
AutH3 is a central product

AutH3 = Aut
+H3 · 〈u〉 ∼= Q8 · C4

of Q8 by C4, amalgamating the central subgroup {±1} = 〈u2〉 ∼= C2. Being a nilpotent group
with an indecomposable centre (namely 〈u〉 ∼= C4), AutH3 must also be indecomposable, so
H3 is not a disjoint product of smaller hypermaps.

Figure 15. The hypermap H3

By comparing Figures 15 and 1(d), we see that W (H3) ∼=M3. The six elements of order 4
in Aut+H3 are the quarter-turns fixing the centres of the two hypervertices, hyperedges and
hyperfaces respectively, so the element −1 rotates each of these through a half-turn, while
u (which is fixed-point-free) transposes each of these three pairs. The quotient hypermap
H3 = H3/〈−1〉 is the unique rotary hypermap D of type (2, 2, 2) with AutD ∼= (C2)3, shown
in Figure 16; thus H3 is a 2-sheeted covering of D, branched over its two hypervertices, two
hyperedges and two hyperfaces.

Figure 16. The hypermap D

Comparison of Figures 15 and 1(f) shows that if we remove the face-labelling of H3 then
the underlying trivalent map is just M5. This is reflexible, corresponding to the fact that
H3 (alone among the rotary hypermaps of genus 2) is S-invariant; in general, a reflexible
hypermap will give rise in this way to a vertex-transitive (but not necessarily reflexible)
trivalent map on the same surface.
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14. The hypermap H4

In the next case, H has type (4, 4, 3) – or some permutation of this – with Aut+H isomorphic
to the binary dihedral group

D̂3 = 〈a, b, c | a
2 = b2 = c3 = abc〉 = 〈b, c | c6 = 1, b2 = c3, cb = c−1〉;

this group (denoted by 〈2, 2, 3〉 in §6.5 of [5]) has a central involution c3 with D̂3/〈c3〉 ∼= D3;
apart from the powers of c, the six elements bci all have order 4.
Up to automorphisms (of which there are 12), D̂3 has a unique ∆

+-basis of type (4, 4, 3),
represented by x = (b, bc, c2). Hence there is a unique rotary hypermap H4 of type (4, 4, 3)

with Aut+H4 ∼= D̂3, and as in the case of H3 this must be reflexible, with H
(01)
4
∼= H4 and

AutH4 = 〈Aut
+H4, t〉 where

t2 = 1, bt = b−1 and (bc)t = (bc)−1 = bc4

(so ct = c). Thus AutH4 has a normal subgroup

〈c, t〉 ∼= C6 × C2 ∼= C3 × V4

of index 2, complemented by
〈u := bt〉 ∼= C2,

where u acts by inverting 〈c2〉 ∼= C3 and by transposing the direct factors 〈t〉 and 〈c3t〉 of

V4 ∼= C2 × C2 (but commuting with c3). This shows that AutH4 ∼= Aut
0̂M4, and indeed by

comparing Figures 17(a) and 1(e) we see that W (H4) ∼=M4.

Figure 17. The hypermap H4

Figure 17(b), showing another view of H4, is based on Figure 12 of [4] which shows the

hypermap H(012)4 of type (3, 4, 4).
Table 3 gives the cycle-structures of the non-identity elements g ∈ Aut+H4 on the hy-

pervertices, hyperedges and hyperfaces.
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g o(g) #g hypervertices hyperedges hyperfaces

c3 2 1 13 13 22

c±2 3 2 31 31 14

bci 4 6 1121 1121 41

c±1 6 2 31 31 22

Table 3

For example, the unique involution c3 in Aut+H4 (a half-turn of Figure 17(b) about its
centre) leaves all hypervertices and hyperedges invariant, while permuting the hyperfaces in
two cycles of length 2. Notice that c, of order 6, is fixed-point-free, so it is not a rotation of
H4 about any point.
As a ∆-basis for AutH4 we can take r = (u, cu, t); the automorphism c 7→ c−1, t 7→

t, u 7→ cu of AutH4 sends this to (cu, u, t), confirming that H4 ∼= H
(01)
4 , so that H4 lies in

an S-orbit of length 3.
As in case (3), AutH4 is indecomposable, so H4 is not a disjoint product. However,

since AutH4 has 〈c3〉 as a normal subgroup, H4 is a double covering of the rotary map
H4/〈c3〉 ∼= D

	
6 shown in Figure 6, branched at its three vertices and three edges.

15. The hypermap H5

In the final case, H has type (3, 3, 4) and rotation group isomorphic to the binary tetrahedral
group

〈2, 3, 3〉 = 〈a, b, c | a2 = b3 = c3 = abc〉;

this is a central extension of the tetrahedral group (2, 3, 3) ∼= A4 by 〈abc〉 ∼= C2, and can

be identified with SL2(3), where a, b and c correspond to
(
2 1
1 1

)
,−
(
1 1
0 1

)
and −

(
1 0
1 1

)
, so that

abc = −I. It can also be regarded as a split extension of a normal subgroup 〈a, ab〉 ∼= Q8 by
〈−b〉 ∼= C3. In any ∆+-basis x = (x0, x1, x2) of type (3, 3, 4) for Aut

+H, the generators x0 and
x1 of order 3 must not be conjugate (otherwise x2, being outside the unique Sylow 2-subgroup
SL2(3)

′ ∼= Q8, could not have order 4); it follows easily that AutSL2(3) (∼= PGL2(3) ∼= S4)
has a unique orbit on such ∆+-bases, represented by x = (−b,−c,−a) = (b4, c4, a3) =

(
(
1 1
0 1

)
,
(
1 0
1 1

)
,
(
1 2
2 2

)
). In this case we therefore find a unique rotary hypermap H5 of type (3, 3, 4)

with rotation group SL2(3); as in the case of H4 it must be reflexible, with H
(01)
5
∼= H5,

and with AutH5 a split extension of Aut
+H5 by 〈t〉 where t2 = 1, bt = b−1, ct = c−1.

By putting t =
(
2 0
0 1

)
we can identify AutH5 with GL2(3), a corresponding ∆-basis being

r = (−tc,−bt, t) = (
(
2 0
1 1

)
,
(
2 1
0 1

)
,
(
2 0
0 1

)
). The automorphism g 7→ (g−1)T (where T denotes

transpose) sends this ∆-basis to (−bt,−tc, t), confirming that H(01)5 ∼= H5, so that H5 lies in
an S-orbit of length 3.
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Figure 18. The hypermap H5

Figure 18 shows two views of H5, the first (based on Figure 13 of [4]) showing that W (H5) ∼=
M5 (see Figure 1(f)). Table 4 gives the cycle-structures of the non-identity elements g ∈
Aut+H5 on the hypervertices, hyperedges and hyperfaces.

o(g) #g hypervertices hyperedges hyperfaces

2 1 24 24 16

3 8 1232 1232 32

4 6 42 42 1222

6 8 2161 2161 32

Table 4

Since AutH5 is indecomposable, H5 is not a disjoint product. However, since 〈−I〉 is normal
in GL2(3), with GL2(3)/〈−I〉 ∼= PGL2(3) ∼= S4, H5 is a double covering of the reflexible
spherical S4-hypermap H5/〈−I〉 ∼= T (12) of type (3, 3, 2) – where T is the tetrahedron –
branched over its six hyperfaces.

The hypermaps H1, . . . ,H5, together with their associates, account for the 13 hypermaps
in Table 2, so we have now described all 43 rotary hypermaps of genus 2. Notice that they
are all reflexible.

16. Reflexible hypermaps of characteristic −1

In §8.8 of [5], Coxeter and Moser show that “No regular (i.e. reflexible) map can be drawn
on a non-orientable surface of characteristic −1”. Their argument is that the orientable
double covering of such a map would be rotary map of genus 2 with an orientation-reversing
fixed-point-free automorphism of order 2; however, inspection shows that none of their list of
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rotary maps of genus 2 has such an automorphism. We can now extend this argument from
maps to hypermaps.

Theorem. There is no reflexible hypermap of characteristic −1.

Proof. Let H be a reflexible hypermap of characteristic χ(H) = −1, corresponding to a
subgroup H ≤ ∆. If H ≤ ∆+ then H, being orientable and without boundary, would have
even characteristic. Thus H 6≤ ∆+, so H has an orientable double covering H+ ∼= H × B+,
corresponding to the subgroup H+ = H ∩∆+ ≤ ∆ (see Figure 19).

Figure 19. The subgroups H and H+ of ∆

By hypothesis, H is normal in ∆, so H+ is normal in ∆+ (in fact, normal in ∆) and hence H+

is a rotary hypermap; having characteristic 2χ(H) = −2, it has genus 2 and must therefore be
an associate of one of the mapsM0, . . . ,M5 or one of the hypermaps H1, . . . ,H5 described
earlier. Furthermore,

AutH+ ∼= ∆/H+

∼= (∆+/H+)× (H/H+)
∼= Aut+H+ × C2.

with Aut+H+ ∼= ∆+/H+ ∼= ∆/H, so that the rotation group Aut+H+ is an epimorphic
image of ∆.
If H+ is an associate ofM0, . . . ,M3 or of H1, . . . ,H5 then (by its description earlier in

this paper) Aut+H+ is not generated by involutions, so it cannot be an image of ∆: the only
non-trivial case isM3, where the involutions are a

4 and a2ic, generating a subgroup of index
2 in Aut+M3. In the casesM4 andM5, Aut

+H+ is an image of ∆, but now (by inspection)
the centre of AutH+ (of order 2) is contained in Aut+H+, so AutH+ 6∼= Aut+H+ × C2.
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