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Abstract. We classify the regular hypermaps (orientable or non-orientable) whose
full automorphism group is isomorphic to the symmetry group of a Platonic solid.
There are 185 of them, of which 93 are maps. We also classify the regular hyper-
maps with automorphism group A5: there are 19 of these, all non-orientable, and 9
of them are maps. These hypermaps are constructed as combinatorial and topologi-
cal objects, many of them arising as coverings of Platonic solids and Kepler-Poinsot
polyhedra (viewed as hypermaps), or their associates. We conclude by showing that
any rotary Platonic hypermap is regular, so there are no chiral Platonic hypermaps.

1. Introduction

The convex polyhedra in R3 with the most interesting symmetry properties are the Platonic
solids: these are the tetrahedron T , the cube C, the octahedron O, the dodecahedron D, and
the icosahedron I, described in Plato’s dialogue Timaeos [25]. The rotation groups of T , of
C and O, and of D and I are isomorphic to the alternating and symmetric groups A4, S4
and A5; these are subgroups of index 2 in the isometry groups of these solids, isomorphic to
S4, S4 × C2 and A5 × C2.
Each Platonic solid P can be regarded as a map, that is, as a graph imbedded in a surface

(in this case the sphere); more generally, P can be regarded as a hypermap (a hypergraph
imbedded in a surface), and within either category P is a regular object, in Vince’s sense
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[27] that the automorphism group AutP acts transitively on the “blades” out of which P is
constructed.
Our aim in this paper is to classify the regular Platonic hypermaps, the regular hypermaps

H (orientable or non-orientable) whose automorphism group AutH is isomorphic to the
automorphism group G = AutP ∼= S4, S4 × C2 or A5 × C2 of some Platonic solid P ; for
technical reasons in dealing with A5 × C2 it is also useful for us to include the case G ∼= A5.
The number of G-hypermaps (regular hypermaps H with AutH ∼= G) for each of these
four groups G is given in Table 1, which also indicates how many of these hypermaps H
are orientable, are maps, and are orientable maps; the final column shows where we have
provided more detailed information about the individual hypermaps.

G G-hypermaps orientable maps orientable maps
S4 13 4 9 3 §4.2

S4 × C2 39 21 27 15 §7.2
A5 19 0 9 0 §5.2

A5 × C2 133 19 63 9 §6.2

Table 1. Number of G-hypermaps

In the orientable cases, we find that besides the hypermaps of genus 0 corresponding to
the Platonic solids themselves, there are examples of genera 1, 3, 4, 5, 9 and 13; in the non-
orientable cases the possible genera are 1, 4, 5, 6, 10, 14, 16, 20, 26, 30, 34 and 38.
The first step in the argument (which can, in principle, be applied to any finite group

G) is to determine the algebraic G-hypermaps H for each G; as explained in [4], the isomor-
phism classes of these correspond bijectively to the orbits of AutG on the triples r0, r1, r2
of involutions generating G, or equivalently to the normal subgroups H in the free product
∆ = C2∗C2∗C2 with ∆/H ∼= G. Next, the orders li of the products rjrk ({i, j, k} = {0, 1, 2})
in G give us the type (l0, l1, l2) of each H, and from this we can calculate its Euler charac-
teristic; H is orientable if and only if H lies in the “even subgroup” ∆+ of index 2 in ∆, and
knowing this we can then calculate the genus of H. (This rather brief outline ignores certain
questions involving boundary components, since they do not exist for our chosen groups G.)
The final stage in the process is to use this information to construct the G-hypermaps H

as combinatorial or topological objects. We shall do this using several techniques, including
the operations on hypermaps of Mach̀ı [21] and James [16], Walsh’s correspondence [28]
between hypermaps and bipartite maps, and the double coverings of hypermaps introduced
in [4]. These ideas are explained in general in §2, and are described in greater detail in [4].
In §3 we introduce the Platonic solids P as hypermaps, and describe their automorphism

groups and rotation groups; we also describe the great dodecahedron GD, a regular map
of type {5, 5} which forms the basis for several later constructions. Having described our
methods in general in §2, we apply them in §§4–7 in the cases G ∼= S4, A5, A5 × C2 and
S4 × C2 respectively. In each of these sections we first enumerate, then describe, and finally
construct the relevant hypermaps, with tables summarising their basic properties. Many of
them turn out to be (or to be closely related to) such familiar objects as the regular polyhedra
described by Coxeter in [8], or the regular maps described by Coxeter and Moser in [10] and
classified (for low genus) by Brahana [1], Sherk [23] and Garbe [12].
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Our methods of enumeration are by inspection, depending heavily on specific properties
of ∆ (generation by involutions) and G (faithful permutation representation of low degree,
direct product decomposition, etc.). However, there are situations where one needs to vary
∆, as in §9, for instance, or G, as in [18, 19] where G is a Ree group or a Suzuki group. In
such cases, direct methods may not be feasible, so in §8 we introduce a much more general
enumerative method due to P.Hall [13], which in particular provides a useful numerical check
for our direct calculations.
We conclude, in §9, by considering the rotary Platonic hypermaps. An orientable hyper-

mapH without boundary is rotary if its rotation group (orientation-preserving automorphism
group) Aut+H acts transitively on the “brins” of H. (Traditionally, such hypermaps have
often been called regular [6, 7], but we have used Wilson’s term rotary [30] to avoid confu-
sion with Vince’s concept of regularity [27] used here; similarly, our regular hypermaps are
termed ref lexible in [6, 7].) Among the orientable hypermaps without boundary, “regular”
implies “rotary”, but the converse is false; nevertheless we will show, using results from §8,
that if H is rotary with Aut+H ∼= Aut+P for some Platonic solid P , then H is regular and
AutH ∼= AutP (so H is one of the regular Platonic hypermaps classified in §§4, 6 or 7).

2. Classifying regular hypermaps

First, we briefly review the theory of regular hypermaps; see [4] or [15] for a more general
account of hypermaps, and [6] for the orientable case.
If G is any group then a regular hypermap H with AutH ∼= G is called a regular G-

hypermap. As explained in §2 of [4], H corresponds to a generating triple r0, r1, r2 of G
satisfying r2i = 1 (i = 0, 1, 2), or equivalently to an epimorphism θ : ∆→ G, Ri 7→ ri, where
∆ is the free product

∆ = 〈R0, R1, R2 | R
2
i = 1〉 ∼= C2 ∗ C2 ∗ C2;

we call the triple r = (r0, r1, r2) a ∆-basis for G. The set Ω of blades of H can be identified
with G, so that G permutes the blades by right-multiplication; the i-faces of H (i = 0, 1, 2),
that is, the hypervertices, hyperedges and hyperfaces of H, are identified with the cosets gD
(g ∈ G) of the dihedral subgroups D = 〈r1, r2〉, 〈r2, r0〉, 〈r0, r1〉 of G, with incidence given by
non-empty intersection. The edge-labelled trivalent graph G associated with H is the Cayley
graph for G with respect to the ∆-basis r.
The automorphisms ofH (or equivalently of the edge-labelled graph G) are induced by the

left-translations g 7→ x−1g where x ∈ G, so AutH ∼= AutG ∼= G. Two regular G-hypermaps
H and H′ are isomorphic if and only if their corresponding edge-labelled graphs G and G ′ are
isomorphic, that is, if and only if their ∆-bases r and r′ are equivalent under AutG. One
can therefore classify the regular G-hypermaps by finding the orbits of AutG on the ∆-bases
of G.
Mach̀ı’s group S ∼= S3 of hypermap operations [4, 21] transforms one regular G-hypermap

H to another (called an associate Hπ of H) by renaming hypervertices, hyperedges and
hyperfaces of H, that is, by applying a permutation π ∈ S3 to the edge-labels i = 0, 1, 2 of
G, or equivalently to the generators ri of G. Since H and Hπ differ only in their labelling, it
is sufficient for us to find one representative from each S-orbit on the regular G-hypermaps.
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Being regular, H is without boundary if and only if each ri 6= 1, a condition always
satisfied in our case since none of our groups G can be generated by fewer that three in-
volutions. Having empty boundary, H is orientable if and only if its hypermap subgroup
H = ker θ is contained in the even subgroup ∆+ = 〈RjRk (j 6= k)〉 of index 2 in ∆; this is
equivalent to G having a subgroup G+ of index 2 containing none of the generators ri, in
which case G+ ∼= ∆+/H ∼= Aut+H. The type of H is (l0, l1, l2), where li is the order of rjrk
and {i, j, k} = {0, 1, 2}; thus each i-face is a 2li-gon, with sides alternately labelled j and
k. There are Ni = |G|/2li i-faces; since G has |G| vertices and 3|G|/2 edges, H has Euler
characteristic χ =

∑
Ni −

1
2
|G| = 1

2
|G|(

∑
l−1i − 1). The genus of H is then g = η(2 − χ),

where η = 1
2
or 1 as H is orientable or not.

These arguments enable us to give topological descriptions of the regular G-hypermaps,
and the final task is to construct them as combinatorial objects. Here we will rely on the
techniques described in [4], constructing each H out of some Platonic solid P (with AutP ∼=
G) in such a symmetric way that each automorphism of P induces an automorphism of H;
thus AutH ≥ AutP ∼= G, and by comparing orders we can prove equality.
A particularly useful technique, described in greater detail in §§1 and 6 of [4], is to take

a regular G-map M of type {m,n}, that is, a regular G-hypermap of type (n, 2,m). If M
is not bipartite then it does not cover the hypermap B0̂ (defined in §2 of [4]) which has two
blades, transposed by R0 and fixed by R1 and R2; we can therefore form the disjoint product
[4, §3] M0̂ = M × B0̂, a regular map of type {m′, n} where m′ = lcm(m, 2). This is a
bipartite double covering ofM, unbranched if m is even, and branched at the N2 = |G|/2m
face-centres of M if m is odd, so χ(M0̂) = 2χ(M) or 2χ(M) − N2 respectively; if M is

orientable then so isM0̂ (but not conversely). Being bipartite,M0̂ is the Walsh map W (H)
[4, §6; 28] of a hypermap H = W−1(M0̂) on the same surface as M0̂: the hyperfaces of H
correspond to the faces ofM0̂, while the hypervertices and hyperedges correspond to the two
monochrome sets of vertices of M0̂, one vertex of each colour covering each vertex of M.
Thus H has type (n, n,m′′), where m′′ = 1

2
m′ = 1

2
m or m as m is even or odd. Moreover, H

is regular, with AutH ∼= AutM∼= G. Many regular G-hypermaps arise in this way.
We will apply the above process to our chosen groups G, in each case enumerating,

describing and finally constructing the regular G-hypermaps H. In the cases G = S4 and
A5 it is convenient to regard elements of G as permutations in the natural representation
of degree n = 4 or 5 on {1, . . . , n}. In particular we will represent each involution ri in r
as a disjoint set of edges (corresponding to the 2-cycles of ri) in an n-vertex graph G: this
is the permutation graph for G on {1, . . . , n}, or equivalently the Schreier coset graph for a
point-stabiliser Gα of index n in G, with respect to a ∆-basis r for G; thus G is the quotient
G/Gα of the Cayley graph G of G corresponding to r, factored out by the action of Gα on G.

3. The Platonic solids as hypermaps

The Platonic solids P , or more precisely their 2-skeletons, are all examples of maps (and
hence hypermaps) on surfaces homeomorphic to the sphere.
The properties of the tetrahedron T , cube C, octahedronO, dodecahedron D and icosahe-

dron I are well-known [8,17,22], and are summarised in Table 2, where N0, N1 and N2 denote
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the numbers of vertices, edges and faces. A Schläfli symbol {m,n} means that the faces are
m-gons, n meeting at each vertex, so as a hypermap P has type (l0, l1, l2) = (n, 2,m), since
each edge meets two vertices and two faces.

P Schläfli N0 N1 N2 AutP Aut+P
T {3, 3} 4 6 4 S4 A4
O {3, 4} 6 12 8 S4 × C2 S4
C {4, 3} 8 12 6 S4 × C2 S4
I {3, 5} 12 30 20 A5 × C2 A5
D {5, 3} 20 30 12 A5 × C2 A5

Table 2. The five Platonic solids P as hypermaps

Figure 3.1. The five Platonic solids

The Platonic solids P are illustrated (as convex polyhedra) in Figure 3.1. In each case we
can regard P as a spherical map, and we obtain a representation of P as a (topological)
hypermap by “thickening” the vertices and edges to give 2n- and 4-sided regions on the
sphere, representing the hypervertices and hyperedges; the complementary regions, which
have 2m sides, are the hyperfaces. This is illustrated in Figure 3.2, where for convenience
the sphere has been projected stereographically onto the plane R2.

Figure 3.2. T as a map and as a hypermap

In Figure 3.2(b) the black, grey and white regions are the i-faces of T for i = 0, 1 and 2, that
is, the hypervertices, hyperedges and hyperfaces of T , while the 24 vertices are the blades
of T . Figure 3.3 shows the underlying trivalent graph G of T , where each edge joining two
i-faces is labelled i.
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Figure 3.3. The underlying graph G of T

For each regular hypermap H, the corresponding trivalent graph G is the Cayley graph for
G = AutH with respect to a ∆-basis r satisfying

r2i = (r1r2)
l0 = (r2r0)

l1 = (r0r1)
l2 = 1;

when H is a Platonic solid P these are defining relations for G, corresponding to the fact
that P is the universal map [10, Ch.8] or hypermap [7] of type (l0, l1, l2).
The automorphism group Aut T of T (as a map, hypermap or convex polyhedron) is

isomorphic to S4: the automorphisms induce all possible permutations of the four vertices,
with the rotations inducing the even permutations, so Aut+T ∼= A4. The dual pair C and O
have automorphism groups Aut C ∼= AutO ∼= S4 × C2: the first factor is the rotation group,
corresponding to the permutations of the four pairs of opposite vertices of C (or faces of O),
and the second factor is generated by the antipodal symmetry. Similarly D and its dual I
have automorphism group A5 × C2: the 20 vertices of D can be partitioned into five sets of
four, each set the vertices of an inscribed tetrahedron, and the rotation group A5 induces the
even permutations of these tetrahedra; the antipodal symmetry generates the factor C2.
Another hypermap we shall need is the great dodecahedron GD. This is Poinsot’s star-

polyhedron denoted by {5, 5
2
} in [8,Ch.VI], which contains a detailed description of this and

other star-polyhedra; GD can be identified with the regular map {5, 5|3} of type {5, 5} and
genus 4 in [10, §8.5] (see also [2, p.14; 26, pp. 19–22]). It has the 12 vertices and 30 edges of
the icosahedron I; for each vertex v of I the 5 neighbouring vertices lie on a circuit (abcde) in
I, to which we attach a pentagonal face Φv of GD. This is illustrated in Figure 3.4, where the
visible part of one of the 12 faces of GD is shaded; note that in this picture, faces intersect,
so it does not represent an imbedding of GD in R3, though it does illustrate the fact that
AutGD ∼= Aut I ∼= A5 × C2.

Figure 3.4. The great dodecahedron GD
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At v, 5 pentagons meet; a rotation on GD once around v crosses edges in the cyclic order
(va, vc, ve, vb, vd), so it corresponds to a rotation twice around v on I. (Thus GD is the map
H2(I) obtained by applying Wilson’s rotation-doubling operator H2 to I [30,20].) Using
radial projection from the centre of I, we see that GD is a 3-sheeted covering of the sphere,
with branch-points of order 1 at the 12 vertices v, where two sheets meet (the third sheet
contains Φv). The vertex-figure at v is a pentagram {

5
2
}, which explains Coxeter’s symbol

{5, 5
2
} for GD in [8]. Having 12 vertices, 30 edges and 12 faces, GD has Euler characteristic

χ = 12 − 30 + 12 = −6; being a branched covering of the sphere GD is orientable, so it
has genus g = 1 − 1

2
χ = 4. As a map, GD is isomorphic to its dual, the small stellated

dodecahedron {5
2
, 5} [8, Ch.6]. The two remaining Kepler-Poinsot star-polyhedra are the

great stellated dodecahedron {5
2
, 3} and its reciprocal, the great icosahedron {3, 5

2
}; these are

7-sheeted coverings of the sphere, and as maps they are isomorphic to D and I respectively
(see Figure 3.5, where a face is shaded in each case).

Figure 3.5. Star-polyhedra

4. Regular hypermaps with automorphism group S4

4.1. Enumeration of the hypermaps

As explained at the end of §2, it will be convenient for us to use the natural representation
of G = S4 on {1, 2, 3, 4}, first determining the possible 4-vertex permutation graphs G for G
with respect to any ∆-basis r = (ri) for G. Two ∆-bases r and r

′ give isomorphic hypermaps
H ∼= H′ if and only if they are equivalent under AutG; since AutS4 = InnS4 ∼= S4 this is
equivalent to the corresponding graphs G and G

′
differing only in their vertex-labels, so by

omitting vertex-labels we obtain the isomorphism classes of regular S4-hypermaps. Similarly,
by regarding the edges of G as 3-coloured, with the colours to be replaced with the labels
i = 0, 1, 2 in any of the 3! bijective ways, we obtain the orbits of S on these regular hypermaps.
There are two conjugacy classes of involutions in S4: the six transpositions, which are

odd, are represented by single edges in G, while the three double-transpositions, which are
even, are represented by disjoint pairs of edges. The double-transpositions lie in a Klein
4-group V4 / S4, and since |S4 : V4| > 2 it follows that in order to generate S4 at least two of
the involutions ri in r must be transpositions. Since G must be connected, it is easily seen
that, up to graph-isomorphisms and permutations of edge-colours, the only possibilities for
G are among the graphs G1, . . . ,G5 in Figure 4.1.
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Figure 4.1. Possibilities for G when G ∼= S4

In all five cases, the subgroup 〈r〉 of S4 generated by r0, r1 and r2 is transitive and contains
a transposition; in the cases G1, . . . ,G4 it also contains a 3-cycle (ab).(bc) = (acb), so it
has order divisible by 4.3.2 and is therefore equal to S4. In the case of G5, however, r0, r1
and r2 visibly generate an imprimitive proper subgroup (D4, in fact). Thus there are four
S-orbits on the regular S4-hypermaps, corresponding to G = G1, . . . ,G4. In the case of G1,
this orbit has length σ = 3: by assigning a label i = 0, 1 or 2 to the right-hand edge we get
three non-isomorphic hypermaps, since transposing the labels on the other two edges induces
an isomorphism. Similarly G2,G3 and G4 correspond to S-orbits of lengths σ = 1, 6 and 3
respectively. Thus there are, up to isomorphism, 3+1+6+3 = 13 regular S4-hypermaps H;
this agrees with P.Hall’s result ([13], see also §8) that the number d∆(S4) of normal subgroups
H /∆ with ∆/H ∼= S4 is equal to 13.

4.2. Description of the hypermaps

By using Figure 4.1 to find the orders li of the permutations rjrk ({i, j, k} = {0, 1, 2}), we see
that, up to a reordering by S, H has type (l0, l1, l2) = (3, 2, 3), (3, 3, 3), (4, 2, 3) and (4, 4, 3)
when G = G1, . . . ,G4, and so H has Euler characteristic χ =

1
2
|G|(

∑
l−1i − 1) = 2, 0,−1,−2

respectively.
The only subgroup of index 2 in S4 is A4. In the cases G1 and G2 each ri is odd, so H is

orientable, with rotation group Aut+H ∼= A4, and H has genus g = 1−
1
2
χ = 0, 1 respectively.

When G = G3 or G4 some ri is even, so H is non-orientable of genus g = 2− χ = 1 or 4.
This information is summarised in Table 3, where each row describes a representative S4-

hypermap H = Sr from the S-orbit corresponding to G = Gr (r = 1, . . . , 4). The first column
indicates the method of construction of Sr, to be described in §4.3. The second column gives
the size σ of the S-orbit containing Sr, and the third gives its type (l0, l1, l2); the types of
the associates of Sr are found by permuting the terms li. These associates all have the same
Euler characteristic χ, orientability, and genus g, given in the last three columns (+ and −
denoting orientable and non-orientable hypermaps, respectively).

H σ N0 N1 N2 χ orient. g
S1 = T 3 3 2 3 2 + 0

S2 = W
−1(T 0̂) 1 3 3 3 0 + 1

S3 = PO 6 4 2 3 1 − 1

S4 = W
−1(PO0̂) 3 4 4 3 −2 − 4

Table 3. The 13 regular hypermaps H with AutH ∼= S4
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4.3. Construction of the hypermaps

The first row in Table 3, corresponding to G1, gives an S-orbit of three orientable hypermaps
H of genus 0. The chosen representative S1 is the tetrahedron T , which is a map of type
{3, 3} and thus a hypermap of type (3, 2, 3); Figure 3.2 shows T drawn as a map and as
a hypermap. Now T is self-dual (that is, T ∼= T (02)), so this orbit of S has length σ = 3
rather than 6; the other two associates of T are T (01) and T (12), spherical hypermaps of
types (2, 3, 3) and (3, 3, 2) obtained from T by transposing hyperedges with hypervertices
and hyperfaces respectively. For example, Figure 4.2 shows two drawings of T (12), with
hypervertices, hyperedges and hyperfaces black, grey and white; it also shows the Walsh map
W (T (12)), with black and white vertices corresponding to the hypervertices and hyperedges
of T (12).

Figure 4.2. The hypermap T (12) and its Walsh map

The second S-orbit, corresponding to G2, consists of a single S-invariant orientable hypermap
H = S2 of type (3, 3, 3) and genus 1; it has four hypervertices, four hyperedges and four
hyperfaces. We can construct S2 from T using the method outlined in §2 (see also [4]).
Being a non-bipartite regular map of type {3, 3}, T has a bipartite double cover T 0̂ = T ×B0̂

which is the Walsh map W (S2) of some regular hypermap S2 = W−1(T 0̂) of type (3, 3, 3),
with AutS2 ∼= Aut T ∼= S4. The underlying surface of S2 is a torus (Figure 4.3); as a double
covering of the sphere, it is branched at the four face-centres of T . The construction of S2
is described in detail in [4, §1], where it is denoted by T ′; one can also obtain S2 by putting
b = 2, c = 0 in Theorem 12 of [7].

Figure 4.3. The hypermap S2 on a torus

The third S-orbit, corresponding to G3, consists of six non-orientable hypermaps, including
the projective octahedron S3 = PO, which we will now construct. The octahedron O is
a regular spherical hypermap of type (4, 2, 3) with AutO ∼= S4 × C2; these two factors
represent the rotation group and the subgroup generated by the antipodal automorphism.
By identifying antipodal points of O one obtains a regular hypermap PO = O/C2 of type
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(4, 2, 3) on the projective plane, with AutPO ∼= S4; this is the map {3, 4}/2 = {3, 4}3 of [10,
§8.6], shown in Figure 4.4 where opposite boundary points are identified.

Figure 4.4. The hypermaps PO and PC

There are three hypervertices, six hyperedges, and four hyperfaces. Among the associates of
PO is its dual (PO)(02) = P (O(02)) = PC, the projective cube, also shown in Figure 4.4. This
is the regular map {4, 3}/2 = {4, 3}3 of [10, §8.6], sometimes called the Purse of Fortunatus
[9]; it is an interesting experiment to take three square handkerchiefs and try sewing them
together to form PC !
The last S-orbit, corresponding to G4, contains three non-orientable hypermaps of char-

acteristic −2; the chosen representative S4 = W−1(PO0̂), of type (4, 4, 3), is formed from
S3 = PO in the same way as S2 = W−1(T 0̂) is formed from S1 = T : it is the hypermap
whose Walsh map W (S4) is the bipartite double covering PO0̂ of the non-bipartite map PO
(see Figure 4.5).

Figure 4.5. PO covered by PO0̂ = W (S4)

This is a double covering of the projective plane, branched at the four face-centres of PO.
Thus each of the four triangular faces of PO lifts to a hexagonal face of PO0̂, representing a
hyperface of S4; each of the three vertices 1, 2, 3 of PO lifts to a pair 1+, 1− etc. of vertices
of PO0̂, coloured black and white and representing a hypervertex and a hyperedge of S4
respectively. Each edge a, . . . , f of PO lifts to a pair a+, a− etc. of edges of PO0̂. The covering
PO0̂ → PO is shown in Figure 4.5, where pairs of boundary edges with the same label are
identified, as indicated by their incident vertices; thus horizontal and vertical boundary edges
of PO0̂ (labelled c+, d+, e+, f+) are identified orientably, as in the construction of a torus from
a square, while diagonal boundary edges (labelled a+, a−, b+, b−) are identified non-orientably,
so the underlying surface is a torus with two cross-caps. The resulting hypermap S4 is shown
in Figure 4.6, where the identification of sides of the 12-gon is indicated by the surface-symbol
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(abcdeb−1afe−1dc−1f−1): thus the pair of sides labelled a, a are joined non-orientably, while
b, b−1 indicates an orientable join, etc.

Figure 4.6. The hypermap S4

This completes the construction of the 13 regular S4-hypermaps; note that four of them are
orientable, and three are maps (namely T , PO and PC).

5. Regular hypermaps with automorphism group A5

5.1. Enumeration of the hypermaps

We will represent elements of G = A5 as even permutations of {1, . . . , 5}, so G is now a 5-
vertex graph. Since AutA5 ∼= S5, isomorphism classes of regular A5-hypermapsH correspond
to unlabelled permutation graphs G, as in §4 for S4.
The 15 involutions in A5 are all conjugate; being double-transpositions, they are repre-

sented as disjoint pairs of edges in G. It is not hard to see that (up to graph-isomorphisms
and permutations of the edge-colours) the only connected permutation graphs G for three
double-transpositions ri ∈ A5 are those shown in Figure 5.1.

Figure 5.1. Possibilities for G when G ∼= A5

Being transitive, the subgroup 〈r〉 of A5 generated by r0, r1 and r2 has order divisible by 5.
In the cases G1, . . . ,G5 one can inspect G to find an element of order 3 in 〈r〉, so 〈r〉 has order
divisible by 15 and must therefore be A5. In the final case, however, the second drawing
of G7 shows that there is a cyclic ordering of the vertices inverted by each ri, so 〈r〉 ∼= D5.
Thus there are six S-orbits of regular A5-hypermaps H, corresponding to G = G1, . . . ,G6.
By considering which permutations of edge-labels induce graph-isomorphisms, we see that
these S-orbits have lengths 6, 3, 3, 3, 3 and 1 respectively, so there are, up to isomorphism, 19
regular A5-hypermaps H (in accordance with P.Hall’s result [13] that d∆(A5) = 19, see §8).
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5.2. Description of the hypermaps

Since A5 has no subgroup of index 2, all 19 hypermaps H are non-orientable. By inspecting
each G = G1, . . . ,G6 one can compute the type and hence the Euler characteristic χ and
genus g of each H, as in §4.2. This information is given in Table 4, where, as in Table 3
for G = S4, each row describes a representative H = Ar chosen from the S-orbit of length
σ corresponding to Gr (r = 1, . . . , 6). Notice that G4 and G5 both yield hypermaps of type
(5, 5, 3); they are not isomorphic since r0r1r0r2 has order 2 and 3 respectively (alternatively,
the elements r1r2 and r2r0 of order 5 are conjugate and not conjugate respectively).

H σ N0 N1 N2 χ orient. g
A1 = PD 6 3 2 5 1 − 1
A2 = PGD 3 5 2 5 −3 − 5

A3 = W
−1(PD0̂) 3 3 3 5 −4 − 6

A4 = W
−1(PI 0̂) 3 5 5 3 −8 − 10

A5 = PA
+
5 3 5 5 3 −8 − 10

A6 = W
−1(PGD0̂) 1 5 5 5 −12 − 14

Table 4. The 19 regular hypermaps H with AutH ∼= A5

5.3. Construction of the hypermaps

The first S-orbit, corresponding to G1, is represented by the projective dodecahedron A1 =
PD = D/C2; this is the regular map {5, 3}/2 on the projective plane formed by identifying
antipodal points of the dodecahedron D, and is also the map {5, 3}5 of [10, §8.6]. This S-orbit

also contains its dual, the projective icosahedron A(02)1 = PI = I/C2 = {3, 5}5. Both maps
are shown in Figure 5.2, where opposite boundary points are identified to form the projective
plane.

Figure 5.2. The hypermaps PD and PI

Similarly, the great dodecahedon GD, an orientable regular map of type {5, 5} and genus 4
shown in Figure 3.4, yields a non-orientable regular map A2 of type {5, 5} and genus 5; this
is the projective great dodecahedron PGD = GD/C2, isomorphic to {5, 5}3 in [10, §8.6], lying
in the S-orbit of length σ = 3 corresponding to G2. This map is shown in Figure 5.3, where
boundary edges are identified in pairs as indicated by the labelling of the vertices. Just as
PD and PI are related by duality, PGD and PI are related by Wilson’s Petrie operation
[29; 10, §8.6; 20], which transposes faces and Petrie polygons of maps while preserving the
1-skeleton.
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Figure 5.3. The hypermap A2 = PGD

The projective dodecahedron PD is a non-bipartite map of type {5, 3}, so its bipartite double
cover PD0̂ = PD×B0̂ is the Walsh map of a hypermap A3 = W−1(PD0̂) of type (3, 3, 5); like
PD, A3 is regular, with AutA3 ∼= AutPD ∼= A5. Its underlying surface is a non-orientable
double covering of the projective plane, branched at the six face-centres of PD, so it has
characteristic 2.1− 6 = −4 and genus 6. The Walsh map W (A3) = PD0̂ is shown in Figure
5.4, with black and white vertices representing the hypervertices and hyperedges of A3; part
of the surface symbol (ab . . . cb . . . cd . . . ad . . .) is shown, indicating the identifications needed
to form the shaded face; rotation about the centre gives four more faces, similarly formed,
and the central face completes the six faces of PD0̂, corresponding to the six hyperfaces of
A3.

Figure 5.4. The map W (A3) = PD0̂

Rotation of Figure 5.4 through π about its centre induces an automorphism of order 2 of
PD0̂, interchanging the sets of black and white vertices; this shows that A3 ∼= A

(01)
3 , so the

S-orbit containing A3 has length σ = 3. The quotient of PD0̂ by this automorphism is the
map PD shown in Figure 5.2.
Similarly, the non-bipartite maps PI and PGD of types {3, 5} and {5, 5} give rise to

non-orientable regular A5 hypermaps A4 = W−1(PI 0̂) and A6 = W−1(PGD
0̂) of types

(5, 5, 3) and (5, 5, 5), corresponding to G4 and G6. The underlying surface of A4 is a double
covering of the projective plane, branched at the 10 face-centres of PI, so it has characteristic
2.1−10 = −8 and genus 10. Figure 5.5 showsW (A4) = PI 0̂ as a bipartite double covering of
PI: the vertex-labelling and colouring indicate the identifications of boundary edges. Since
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A4 ∼= A
(01)
4 we have σ = 3 for this S-orbit.

Figure 5.5. The double covering W (A4) = PI 0̂ → PI

In the case of A6, the surface is a double covering of PGD (which has characteristic −3),
branched at the 6 face-centres, so it has characteristic 2.(−3)−6 = −12 and genus 14. Figure

5.6 shows W (A6) = PGD
0̂ as a branched double covering of the map PGD in Figure 5.3.

Being the unique regular A5-hypermap of type (5, 5, 5), A6 is S-invariant, that is, its S-orbit
has length σ = 1.

Figure 5.6. The map W (A6) = PGD
0̂

Like G4, G5 corresponds to an S-orbit of length 3 containing a non-orientable hypermap of
type (5, 5, 3) and genus 10, namely A5. However, A5 6∼= A4: when G = G4 the elements r1r2
and r2r0 (which rotate all blades around hypervertices and hyperedges) are conjugate in A5,
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since by inspection r2r0 = (r1r2)
r0r1 ; when G = G5, on the other hand, each of r1r2 and r2r0

is conjugate in A5 to the square of the other, so they are conjugate in S5 but not in A5. To
see that W−1(PI 0̂) is isomorphic to A4 and not A5, note that in Figure 5.5 the rotations
around the black and white vertices of PI 0̂ are both lifted from the same rotations around
the vertices of PI, so r1r2 and r2r0 are conjugate. An alternative way of distinguishing A4
from A5 (and of showing that W−1(PI 0̂) ∼= A4) is to note that r0r1r0r2 has order 2 and 3
respectively in these two maps.

We will construct A5 from the Walsh map of its orientable double cover A
+
5 . First we

construct a bipartite orientable mapM5, then we take A
+
5 to be the corresponding hypermap

W−1(M5), a regular orientable hypermap with AutA
+
5
∼= A5 × C2, and finally we take A5

to be the antipodal quotient PA+5 = A
+
5 /C2, a non-orientable regular A5-hypermap. (It is

straightforward to check that W−1(M5) is the orientable double cover of A5, so the notation
A+5 is justified.) We take the 1-skeleton ofM5 to be that of I 0̂, or equivalently of the small
stellated triacontahedron shown in Figure 6.3: each vertex v of I corresponds to a pair v+
and v− of black and white vertices ofM5, and each edge vw of I corresponds to two edges
v+w− and v−w+ ofM5. This gives us a connected bipartite 5-valent graph with 24 vertices
and 60 edges. For each face (uvw) of I we take a six-sided face (u−z+v−x+w−y+), as shown
in Figure 5.7, where x, y and z are the other vertices of I adjacent to v and w, to w and u,
and to u and v respectively.

Figure 5.7. A face ofM5

We now have an orientable bipartite mapM5 with 20 hexagonal faces. Figure 5.7 shows that
each face of I is covered by four faces of M5, so the surface of M5 is a 4-sheeted covering
of the sphere, with branch-points of order 2 at the 12 white vertices v−: Figure 5.8 shows
that if an orientation of I induces the cyclic order ρ = (abcde) of neighbouring vertices of v
in I, then around v+ the order is (a−b−c−d−e−), giving a single unbranched sheet, whereas
around v− the order is (a+d+b+e+c+), so three sheets are joined to give a branch-point of
order 2, as in Figure 5.9.

Being bipartite, M5 is the Walsh map of an orientable hypermap A
+
5 = W

−1(M5) of type
(5, 5, 3) and characteristic −16: the 12 hypervertices, 12 hyperedges and 20 hyperfaces of A+5
correspond to the black vertices, white vertices and faces of M5. By the symmetry of the
method of construction, AutA+5 contains Aut I ∼= A5 × C2, of order 120; since A

+
5 has 120

blades (two for each edge ofM5), A
+
5 must be regular, with AutA

+
5
∼= A5×C2. The antipodal

factor C2 induces an orientation-reversing fixed-point-free automorphism of A
+
5 , and the
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Figure 5.8. Rotations around vertices of I andM5

Figure 5.9. Branching ofM5 over I

quotient is a non-orientable regular A5-hypermap A5 = A
+
5 /C2 = W

−1(M5/C2) of type
(5, 5, 3) and characteristic −8. Equivalently, one can constructM5/C2 directly from the 1-

skeleton of PI 0̂ by adding 6-sided faces as in Figure 5.7, and then define A5 = W−1(M5/C2),
as shown in Figure 5.10. (An alternative construction for A+5 – and hence for A5 – is to take

Figure 5.10. The construction of W (A5) from PI

the graph Γ consisting of the 20 vertices and 60 face-diagonals of the dodecahedron D; each
of the 12 faces Φ of D carries a pentagram in Γ, to which we attach a disc representing a
hyperedge Φ− of A

+
5 (see Figure 5.11(a)); the vertices of D adjacent in D to those in Φ form

a pentagon in Γ, to which we attach a disc representing a hypervertex Φ+ of A
+
5 (see Figure

5.11(b)). This gives us a 2-face-coloured map – the dual ofM5 – from which we obtain A
+
5
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by expanding each of the 20 vertices to a small disc representing a hyperface, incident with
three hypervertices and three hyperedges.)

Figure 5.11. Φ− and Φ+

Using either of these two models, it is now easily seen that A5 corresponds to G5 rather than
G4. For example, in A

+
5 the permutations r1r2 and r2r0 of order 5 around hypervertices and

hyperedges correspond to rotations ρ and ρ2 by angles 2π/5 and 4π/5 about vertices of I
(see Figures 5.8 and 5.11), so they are not conjugate in A5 × C2; when we factor out C2, A5
also has this property. Alternatively, one can consider the action on the blades of the element
g = r0r1r0r2, shown in Figure 5.12, where we regard a blade as an incident edge-face pair in
the Walsh map.

Figure 5.12. The action of g = r0r1r0r2 on a blade β

We see from Figure 5.5 that g has order 2 on A4, whereas Figure 5.10 shows that g has order
3 on A5, confirming that A5 corresponds to G5.

Having constructed A1, . . . ,A6, we have now accounted for all 19 regular A5-hypermaps
in Table 4. Among these, there are three maps: the projective dodecahedron PD = A1, the
projective icosahedron PI = A(02)1 , and the projective great dodecahedron PGD = A2.

6. Regular hypermaps with automorphism group A5 × C2

6.1. Enumeration of the hypermaps

In this case the hypermap subgroups are the normal subgroups H ≤ ∆ with ∆/H ∼= G =
A5×C2; these are the intersections H = A∩B of normal subgroups A,B of ∆ with ∆/A ∼= A5
and ∆/B ∼= C2, so the hypermaps H we require are the disjoint products H = A × B of
regular hypermaps A and B with automorphism groups A5 and C2. Since G decomposes as
A5 × C2 in a unique way, each H determines A and B uniquely, so each H corresponds to
a unique pair A,B. By §5 there are 19 possible hypermaps A, and by §4 of [4] there are 7
possibilities for B, so we obtain 19.7 = 133 hypermaps H.
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6.2. Description of the hypermaps

The 2-blade hypermaps B are (where {i, j, k} = {0, 1, 2}):

B+, in which Ri, Rj and Rk transpose the two blades;
Bi, in which Ri fixes the two blades while Rj, Rk transpose them;

Bî, in which Ri transposes the two blades while Rj, Rk fix them.

The 19 regular A5-hypermaps A in §5 are all non-orientable and without boundary, so it
follows from [4, §5] that their double coverings H = A× B are without boundary, and that
of these A+ = A× B+ is orientable, with rotation group Aut+A+ ∼= A5, while Ai = A× Bi

and Aî = A × Bî are non-orientable. This gives us 19 orientable hypermaps H = A+, and
114 non-orientable hypermaps H = Ai and Aî (i = 0, 1, 2).
If A has type (l,m, n) then so has A+: it is, in fact, the orientable double cover of A, so

that A is the antipodal quotient PA+ = A+/C2. Since B0 and B0̂ have type (1, 2, 2), A0 and
A0̂ have type (l,m′n′), where m′ = lcm(m, 2) and n′ = lcm(n, 2); similarly, A1 and A1̂ have
type (l′,m, n′), while A2 and A2̂ have type (l′,m′, n).
Being an unbranched double covering of A, A+ has characteristic 2χ(A) and hence has

genus 1 − χ(A). The coverings H = A0 and A0̂ have branch-points of order 1 on the 30/m
hyperedges of A if m is odd, and on the 30/n hyperfaces if n is odd, with similar conditions
on l and n for A1 and A1̂, and on l and m for A2 and A2̂. In each of these six cases we
can therefore compute χ(H) = 2χ(A) − β where β is the total order of branching; being
non-orientable, H has genus 2− χ(H).

A+r A0r ,A
0̂
r A1r ,A

1̂
r A2r ,A

2̂
r

σ N0 N1 N2 +/- g σ N0 N1 N2 +/- g σ N0 N1 N2 +/- g σ N0 N1 N2 +/- g

A1 6 3 2 5 + 0 6 3 2 10 − 6 6 6 2 10 − 16 6 6 2 5 − 10

A2 3 5 2 5 + 4 6 5 2 10 − 14 3 10 2 10 − 20 6 10 2 5 − 14

A3 3 3 3 5 + 5 6 3 6 10 − 26 6 6 3 10 − 26 3 6 6 5 − 30

A4 3 5 5 3 + 9 6 5 10 6 − 34 6 10 5 6 − 34 3 10 10 3 − 30

A5 3 5 5 3 + 9 6 5 10 6 − 34 6 10 5 6 − 34 3 10 10 3 − 30

A6 1 5 5 5 + 13 3 5 10 10 − 38 3 10 5 10 − 38 3 10 10 5 − 38

Table 5. The 133 regular hypermaps H with AutH ∼= A5 × C2

This information is summarised in Table 5, where the six rows correspond to the six S-orbits
(of length σ) on the regular A5-hypermaps A, each orbit being represented by Ar as in §5,
while the columns correspond to the 2-blade hypermaps B+, B0 and B0̂, B1 and B1̂, and B2

and B2̂. Thus each entry in the column headed A+r corresponds to a single S-orbit, while the
entries in the remaining three columns correspond to pairs of S-orbits.
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6.3. Construction of the hypermaps

Row 1. The first row of Table 5 gives the 42 double coverings of A1 = PD and their
associates. The first entry represents the orientable double cover (PD)+ = D of type (3, 2, 5),
together with its five associates, including the icosahedron I = D(02) of type (5, 2, 3).
The second entry represents a pair of hypermaps PD0 and PD0̂, both non-orientable,

of type (3, 2, 10) and characteristic −4, together with their 10 associates. Both PD0 and
PD0̂ arise as double coverings of PD with branch-points at the six face-centres, but they are
not isomorphic since they have different patterns of cuts between these branch-points. For
example the map PD0̂, projecting onto B0̂, is bipartite, whereas PD0 is not. Alternatively,
the permutation g = r0r1r2, having orders 5, 1 and 2 in PD,B0 and B0̂, has orders 5 and 10
in PD0 and PD0̂ respectively, so PD0 6∼= PD0̂. In fact, this shows that the Petrie polygons
of the maps PD0 and PD0̂ have lengths 5 and 10, since g is the basic “zig” (or “zag”) from
which such paths are formed; see Figure 6.1 for a typical Petrie polygon in PD.

Figure 6.1. A Petrie polygon in PD

(This also shows that PD0 can be formed by applying Wilson’s Petrie operation [29] to
D, transposing faces and Petrie polygons while retaining the 1-skeleton: since D is a non-
bipartite map of type {5, 3}, with Petrie polygons of length 10, such an operation must
produce a non-bipartite regular (A5×C2)-map of type {10, 3}, with Petrie polygons of length
5; by inspection of Table 5 and by the preceding remarks, it must be PD0. It follows that
PD0 is covered by the map {10, 3}5 in Table 8 of [10], and since they both have 120 blades
we have PD0 ∼= {10, 3}5.)
Similarly the third and fourth entries in the first row each represent two S-orbits, con-

taining 12 non-isomorphic hypermaps; they are all non-orientable, those in the third entry
having characteristic −14, branched over the 10 vertices and 6 face-centres of PD, while
those in the fourth entry have characteristic −8 and are branched over the vertices of PD.

Row 2. The second row of Table 5 consists of double coverings of A2 = PGD and their
associates, the only significant difference from the first row being that PGD is self-dual (that
is, PGD(02) ∼= PGD), so there are isomorphisms which reduce the number of hypermaps in
this row from 42 to 21.
The first entry represents the great dodecahedron A+2 = (PGD)

+ = GD, described in §3
and illustrated in Figure 3.4, together with its two other associates, giving three orientable
hypermaps of genus 4.
As in the case of A1, the second entry represents two S-orbits containing 12 non-

isomorphic hypermaps; these have characteristic −12 and are branched over the six face-
centres of PGD. They include A0̂2 and A

0
2, bipartite and non-bipartite maps of type {10, 5};
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A02, which is obtained by applying Wilson’s Petrie operation to I, is isomorphic to the map
{10, 5}3 in Table 8 of [10].

Since PGD,B1 and B1̂ are all self-dual, so are PGD1 and PGD1̂; thus the third entry
represents two S-orbits of length 3, giving 6 non-isomorphic non-orientable hypermaps of
characteristic −18, branched at the 6 vertices and 6 face-centres of PGD. The 12 hypermaps
represented by the fourth entry are not new: PGD is self-dual, while B2 and B2̂ are the duals
of B0 and B0̂, so these hypermaps are isomorphic to those given by the second entry. Thus
the second row yields 3 + 2.6 + 2.3 = 21 hypermaps.

Rows 3–6. Similarly, the remaining rows of Table 5 give double coverings of the hypermaps

A3 = W−1(PD0̂), A4 = W−1(PI 0̂), A5 = PA
+
5 and A6 = W

−1(PGD0̂) constructed in §5.3.
In the cases A3,A4 and A5 we have Ar ∼= A(01)r , so the first entry of each of rows 3, 4
and 5 represents a single S-orbit of length 3 containing the orientable hypermap A+r =
W−1(D0̂),W−1(I 0̂) and W−1(M5). The second entry represents two S-orbits of length 6,
consisting of non-orientable hypermaps branched over the hyperedges and hyperfaces of Ar.
Since B1 = (B0)(01) and B1̂ = (B0̂)(01), the third entry of these three rows represents the
same hypermaps as the second entry; since B2 = (B2)(01) and B2̂ = (B2̂)(01), the fourth entry
represents two S-orbits of three non-orientable hypermaps, branched over the hypervertices
and hyperfaces of Ar.
Now A6 = W−1(PGD

0̂) is S-invariant, so the first entry in the final row represents a

single S-invariant orientable hypermap A+6 = W
−1(GD0̂). The second entry represents two

S-orbits of length 3: these are non-orientable hypermaps of characteristic −36, branched
over the 6 hyperedges and 6 hyperfaces of A6. By the S-invariance of A6, these 6 hypermaps
reappear in the third and fourth entries, so this row yields only 1 + 2.3 = 7 hypermaps.
This gives a total of 133 hypermaps, of which 19 (namelyA+1 , . . . ,A

+
6 and their associates)

are orientable. Among these 133 hypermaps there are 21 maps, of which 3 (namely D, I
and GD) are orientable. These maps, which are all obtained by applying the seven double
coverings in [4] to PD, PI and PGD, are listed and described in Table 6.

A+1 A0̂1 A01 A1̂1 A11 A2̂1 A21 A+2 A0̂2 A02 A1̂2 A12

σ 2 2 2 2 2 2 2 1 2 2 1 1

maps D PD0̂ PD0 PD1̂ PD1 PD2̂ PD2 PGD0̂ PGD0

in the (3 2 5) (3 2 10) (3 2 10) (6 2 10) (6 2 10) (6 2 5) (6 2 5) (5 2 10) (5 2 10)

same GD PGD1̂ PGD1

S-orbit I PI2̂ PI2 PI1̂ PI1 PI0̂ PI0 (5 2 5) PGD2̂ PGD2 (10 2 10) (10 2 10)
(5 2 3) (10 2 3) (10 2 3) (10 2 6) (10 2 6) (5 2 6) (5 2 6) (10 2 5) (10 2 5)

χ 2 −4 −4 −14 −14 −8 −8 −6 −12 −12 −18 −18

orient. + − − − − − − − − − − −

g 0 6 6 16 16 10 10 4 14 14 20 20

Table 6. The 21 regular mapsM with AutM∼= A5 × C2
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6.4. Two triacontahedra

In the next section we will describe how the Walsh maps of suitable associates of A+1 , . . . ,A
+
6

may be obtained from just two polyhedra, namely the rhombic triacontahedron RT [8, §2.7]
and the small stellated triacontahedron ST [8, §6.4], so that in a sense, RT and ST generate
all 19 of the orientable hypermaps in the previous section. For us, the most important
properties of these triacontahedra are that they are bipartite maps, with 12+20 and 12+12
vertices respectively, and that they have automorphism groups containing A5 × C2. This
section is devoted to their construction and description.
To construct the rhombic triacontahedron RT we take a dual pair D and I (as convex

polyhedra), with their relative sizes and positions in R3 chosen so that corresponding edges
of D and I bisect each other at right-angles. Then RT is the convex hull of D ∪ I in R3,
having 30 rhombic faces (with these pairs of edges as diagonals) and 60 edges, both sets
permuted transitively by

AutRT = Aut I = AutD ∼= A5 × C2.

This group has two orbits on the vertices of RT , namely the 12 5-valent vertices of I and the
20 3-valent vertices of D, coloured black and white in Figure 6.2. As a map, RT is spherical
and bipartite, but not regular.

Figure 6.2. The rhombic triacontahedron RT

We construct the small stellated triacontahedron ST from concentric copies I− and I+ =
λI− (λ > 1) of I, the vertices v− of I− and v+ = λv− of I+ coloured white and black respec-
tively. Each edge vw of I separates two triangular faces uvw and xvw, and we may choose λ
so that the corresponding edge v−w− of I− and the line-segment u+x+ meet, bisecting each
other at right-angles; then u+, v−, x+ and w− are coplanar, and are the vertices of a rhombus
u+v−x+w−, one of the 30 such rhombic faces of ST (one for each edge of I−). This is a
non-convex polyhedron, with the 24 vertices of I+ and I− (the latter are hidden inside ST ;
in Figure 6.3, several faces are made transparent to reveal three of them).

There are 60 edges, a pair v+w− and v−w+ corresponding to each edge vw of I; in particular
ST is bipartite, its 1-skeleton being isomorphic to that of I 0̂. As a map, ST has type {4, 5}
and characteristic 24− 60 + 30 = −6; being orientable, it has genus 4. By radial projection
it is a 3-sheeted covering of the sphere, with branch-points of order 1 at the 12 vertices v−
of I− (where the vertex-figure is a pentagram {5/2}, resembling that for a vertex of GD).
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Figure 6.3. The small stellated triacontahedron ST , with one
face shaded and three inner vertices revealed

The Euclidean isometry group of ST is equal to

Aut I− = Aut I+ ∼= A5 × C2,

acting transitively on its white vertices, black vertices, edges and faces. However, as a map
ST has the larger automorphism group

AutST ∼= S5 × C2,

and is therefore regular: it is, in fact, the map {4, 5}6, the dual of the regular map {5, 4}6
in [10, Table 8] and [12, Tabelle II]. To see this, one checks that a cyclic permutation
(u+v−x+w−) of vertices around one face extends to an automorphism of order 4 interchang-
ing black and white vertices; thus Aut+ST has order 120, contains the Euclidean rotation
group isomorphic to A5, and has an element of order 4, so it must be isomorphic to S5,
with the antipodal symmetry generating the factor C2. (Note that the “obvious” involution,
transposing pairs v+, v−, is not an automorphism.)

6.5. Alternative constructions

We will now use the triacontahedra RT and ST to construct Walsh maps for representatives
of each of the 6 S-orbits of regular orientable (A5 × C2)-hypermaps (and hence, indirectly,
to obtain all 152 of the hypermaps in Tables 4 and 5).
Firstly ST , being bipartite, is the Walsh map W (H) for a hypermap H; by inspection of

ST , H is orientable, of genus 4 and type (5, 5, 2), with 12 hypervertices, 12 hyperedges and 30
hyperfaces corresponding to the black vertices, white vertices and faces of ST . The isometry
group of ST acts as a group of automorphisms of H, permuting the blades transitively, so H
is regular with AutH ∼= A5×C2. We have classified all such hypermaps H, and by inspection
of Table 5 in §6.2 we see that H must be the associate (A+2 )

(12) = GD(12) of the orientable
hypermap A+2 = GD in the second row.
If we retain the 1-skeleton of ST , but replace its rhombic faces with 20 hexagons

(u+v−w+u−v+w−), one covering each face (uvw) of I as in Figure 6.4, we obtain I 0̂.
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As we saw in §6.3, this is the Walsh map W (A+4 ) for the regular orientable hypermap
A+4 of type (5, 5, 3), a double covering of the sphere with branch-points of order 1 at the 20
face-centres of I.

Figure 6.4. A face of I 0̂ covering a face of I

As explained in §5.3, the map M5 = W (A
+
5 ) can be constructed from the 1-skeleton of I

0̂

(or equivalently of ST ) by attaching 20 hexagonal faces as in Figure 5.7; in this case we have
a 4-sheeted covering of the sphere, with branch-points of order 2 at the 12 white vertices.
Similarly, if we replace the faces of ST with 12 decagons, each covering 10 faces of I as in
Figure 6.5, we obtain W (A+6 ) as a 6-sheeted covering of the sphere with branch-points of
order 3 at the 12 white vertices.

Figure 6.5. A face of W (A+6 ) covering 10 faces of I

Representatives of the remaining S-orbits (and of at least one of those considered above) can
similarly be obtained from the rhombic triacontahedron RT . For example, RT is the Walsh
map W (I(12)) of the hypermap I(12) of type (5, 3, 2), an associate of I and of D = A+1 . If we
retain the 1-skeleton of RT and replace its faces with 20 hexagons, corresponding to triples
of faces RT around a common white vertex as in Figure 6.6, we obtain W ((A+3 )

(02)), where
(A+3 )

(02), of type (5, 3, 3), is the dual of A+3 ; this is a 2-sheeted covering of the sphere with
branch-points of order 1 at the 12 black vertices of RT .

Figure 6.6. A face of W ((A+3 )
(02)) covering 3 faces of RT

If, instead, we replace the faces of RT with 12 decagons, corresponding to quintuples of faces
of RT around a common black vertex as in Figure 6.7, we obtain W ((A+4 )

(12)) as a double
covering of the sphere with branch-points of order 1 at the 20 white vertices of RT ; here
(A+4 )

(12) has type (5, 3, 5).
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Figure 6.7. A face of W ((A+4 )
(12)) covering 5 faces of RT

This S-orbit, arising from both ST and RT , thus provides a link between these two triacon-
tahedra.
We have now accounted for all six S-orbits of regular orientable (A5 × C2)-hypermaps.

By taking antipodal quotients, and applying the above face-transformations to the non-
orientable maps PST = ST /C2 and PRT = RT /C2, we likewise obtain the Walsh maps
for representatives of the S-orbits of regular A5-hypermaps in §5. Since the remaining (non-
orientable) regular (A5×C2)-hypermaps can all be obtained from the regular A5-hypermaps
by taking double coverings, we have shown how all the 19+ 133 = 152 regular hypermaps in
§§5–6 can be derived from ST and RT .

7. Regular hypermaps with automorphism group S4 × C2

7.1. Enumeration of the hypermaps

The arguments for G = S4 × C2 are similar to those in §§6.1–6.3 for A5 × C2, but with two
extra complications:

1) Unlike A5, S4 has a subgroup of index 2, namely A4, so there exist orientable, as well as
non-orientable regular S4-hypermaps S. A further consequence is that each S covers one of
the seven 2-blade hypermaps B (namely S/A4), so we can form only six, rather than seven
disjoint products H = S × B from S.

2) A second complication arises from the fact that the direct decomposition of G as S4×C2 is
not unique: although the factor C2, being the centre of G, is unique, there are two subgroups
S ′, S ′′ ∼= S4, of index 2 in G, with G = S ′×C2 = S ′′×C2. (One can take G to be the isometry
group of a cube, with S ′ = S4×{1} its rotation group and S ′′ = (A4×{1})∪((S4\A4)×{−1})
the subgroup leaving invariant the two inscribed tetrahedra, shown in Figure 7.1.)

Figure 7.1. Two tetrahedra inscribed in a cube, forming a stella octangula
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It follows that for each regular S4-hypermap S, the six 2-blade hypermaps B disjoint from S
are grouped into pairs B′,B′′ satisfying S ×B′ ∼= S ×B′′. Since there are 13 such hypermaps
S (see §4.1), we therefore obtain 13.1

2
.6 = 39 non-isomorphic regular hypermaps H = S × B

with AutH ∼= S4 × C2. The pairing is determined by the rule that, if S denotes the unique
2-blade hypermap S/A4 covered by S, then S ×B′ ∼= S ×B′′ if and only if S ×B′ ∼= S ×B′′;
all such isomorphisms between products of pairs of 2-blade hypermaps can be read off from
Figure 8 of [4].

7.2. Description of the hypermaps

The hypermaps S = S1 and S2 in §4 (namely T and W−1(T 0̂)) are both orientable, that is,
r0, r1, r2 ∈ S4 \A4, so S = B+; thus there is no double covering H = S+ = S ×B+, and since
B+ × Bi ∼= B+ × Bî for each i the pairing of the other six double coverings of S is given by

S i = S × Bi ∼= S × Bî = S î (i = 0, 1, 2).

In the cases S = S3 and S4, we have r0, r1 ∈ S4 \ A4 and r2 ∈ A4, so S = B2; hence
S2 = S × B2 does not exist, and by [4, Fig. 8] the pairing is

S0 ∼= S1, S 0̂ ∼= S 1̂, S+ ∼= S 2̂.

Since S1, . . . ,S4 are without boundary, so are all 39 of the hypermaps H = S × B. Since S1
and S2, lying in S-orbits of lengths 3 and 1, are both orientable, so are the (1+3).3 = 12 non-
isomorphic hypermaps H arising from these orbits; the rotation group Aut+H, corresponding
to the subgroup of G = S4×C2 generated by r0r1, r1r2 and r2r0, is isomorphic to A4×C2 in
each case. The remaining 9 hypermaps S (in S-orbits of lengths 6 and 3 containing S3 and
S4) are non-orientable; each gives rise to a single orientable covering H = S+, with rotation
group Aut+H ∼= S4, while the other two non-isomorphic coverings H of S are non-orientable
(since one can check that each of the three subgroups S ′, S ′′ or A4 × C2 of index 2 in G
contains at least one of the three generators ri of G).

S+r S0r , S
0̂
r S1r , S

1̂
r S2r S 2̂r

N0N1N2 +/- g N0N1N2 +/- g N0N1N2 +/- g N0N1N2 +/- g N0N1N2 +/- g

S1 3 2 6 + 1 6 2 6 + 3 6 2 3 + 1 6 2 3 + 1

S2 3 6 6 + 5 6 3 6 + 5 6 6 3 + 5 6 6 3 + 5

S3 4 2 3 + 0 4 2 6 - 4 4 2 6 - 4 4 2 3 + 0

S4 4 4 3 + 3 4 4 6 - 10 4 4 6 - 10 4 4 3 + 3

Table 7. The 39 regular hypermaps H with AutH ∼= S4 × C2
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As in §6.2 one can compute the type and characteristic of each H from that of S. This
information is given in Table 7, each entry describing a representative H = Sr × B of an
S-orbit of length σ. For space saving, some columns were grouped together; for example, the
column headed by “S0r , S

0̂
r” represents two columns S

0
r and S

0̂
r , so that the second entry of

each row refers to S0r and the third entry refers to S
0̂
r .

7.3. Construction of the hypermaps

Row 1. The first row of Table 7 gives the double coverings H of the tetrahedron S1 = T .
Those three which are maps have been determined by Vince [27, §7, Fig. 5]; they are his
G′1, G

′
2 and G

′
3 of types {3, 6}, {6, 3}, {6, 6} and genera 1, 1, 3 (not 0, 0, 3, an obvious misprint).

Being orientable, T yields no double covering H = T +, so the first entry in this row is
blank.
The hypermap S01 = T

0 in the second entry is the torus map {3 + 3, 3} = {6, 3}2,0 =
{6, 3}4 in the notation of [10, Ch. 8]; it is a double covering of T branched over its four
face-centres, as shown in Figure 7.2 (see also [27, Fig. 5(d)]), with the edge-identifications
given by the vertex-labelling.

Figure 7.2. S01 = T
0 as a covering of T

The rotation group Aut+T 0 of T 0 is A4 × C2. This map, denoted by G′2 in [27], has five
other associates, including its dual, which is Vince’s map G′1 of type {3, 6} and Coxeter and
Moser’s {3, 3 + 3} = {3, 6}2,0 = {3, 6}4. Since T is orientable, T 0 is isomorphic to S 0̂1 = T

0̂

in the third entry, and hence to the map W constructed and illustrated in [4, §1].

Figure 7.3. The map T 1 ∼= T 1̂

The fourth and fifth entries represent the same self-dual orientable map T 1 ∼= T 1̂ of type
{6, 6} and genus 3, branched over the vertices and face-centres of T . This is Vince’s map G′3
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[27, §7, Fig. 5(e)], and Sherk’s {2 · 3, 2 · 3} [23, Table V, Fig.14]. It is illustrated in Figure
7.3, where boundary edges with the same vertex-labels and the same colours are identified,
so each edge of T is covered by two edges of T 1. The rotation group is A4 × C2, and there
are two other associates.
Since T is self-dual, the hypermap T 2 ∼= T 2̂ in the sixth and seventh entries is just the

dual of T 0 ∼= T 0̂ in the second and third entries. Thus we find no further S-orbits of double
coverings of T , so this row yields a total of 6 + 3 = 9 hypermaps.

Row 2. The second row of Table 7 gives the coverings H of the torus hypermap S2 =
W−1(T 0̂) of type (3, 3, 3) shown in Figure 4.3. As with S1 = T , the orientability of S2
implies that there is no entry for S+2 , and that S

i
2
∼= S î2 for i = 0, 1 and 2. The orientable

hypermap S02 ∼= S
0̂
2 of type (3, 6, 6) has genus 5, being branched over the four hyperedges

and four hyperfaces of S2. It has two other associates, and since S2 is S-invariant these
three hypermaps reappear in the remaining entries in this row; they all have rotation group
A4 × C2.

Figure 7.4. W (S22 ) = {6, 6}2,0 as a double covering of the
dual maps T 0 = {6, 3}2,0 and T 2 = {3, 6}2,0.
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Among these, the dual hypermap S22 = (S
0
2 )
(02), of type (6, 6, 3), has Walsh map W (S22 )

isomorphic to Sherk’s regular map {6, 6}2,0 of genus 5 [24; 12, Tabelle III]. This is illustrated

in Figure 7.4 as a double covering of the pair of dual maps T 0 = T 0̂ = {6, 3}2,0 and T 2 =

T 2̂ = {3, 6}2,0; there are eight hexagonal faces, six around the vertex 1+, and two formed
from the small triangles; only a few edge-identifications are shown, since the rest can be
deduced by symmetry. Since T 0 and T 2 are double coverings of T , W (S22 ) is a 4-sheeted
covering T ×B0×B2 of T , with two branch-points of order 1 over each vertex and face-centre
of T .

Row 3. The third row gives the double coverings of the projective octahedron S3 = PO, a
non-orientable map of type {3, 4} and characteristic 1 (Figure 4.4). The first entry represents
its orientable double cover, the octahedron O = (PO)+ = {3, 4}, one of an S-orbit of six
spherical hypermaps including its dual, the cube C = O(02) = {4, 3}; both of these maps are
illustrated in Figure 3.1.
The second and third entries in this row are a pair of non-orientable maps PO0 and PO0̂

of type {6, 4} and characteristic −2, shown in Figure 7.5 (where the edge-identifications can
be deduced, by symmetry about the vertex 1+, from those indicated); all twelve hypermaps
in their two S-orbits are branched over the four face-centres of PO.

Figure 7.5. PO0 and PO0̂ as coverings of PO

To see that PO0 6∼= PO0̂, note that PO0 is bipartite, whereas PO0̂ is not (since its 1-skeleton
contains circuits of odd length). Alternatively, one can demonstrate this non-isomorphism

by noting that the element g = r0r1r2, which has orders 3, 1 and 2 in PO,B0 and B0̂, has
orders 3 and 6 in PO0 and PO0̂, so the Petrie polygons of these maps have lengths 3 and 6
respectively (see Figure 7.6).
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Figure 7.6. Petrie polygons in PO, PO0̂ and O

It follows that PO0 is the map {6, 4}3 obtained by applying Wilson’s Petrie operation [29],
transposing faces and Petrie polygons, toO = {3, 4}6 (see [10, §8.6 and Table 8], and compare
with the isomorphism PD0 ∼= {10, 3}5 discussed in §6.3).
These three regular (S4 × C2)-hypermaps O, PO0 and PO0̂ are all quotients of the ori-

entable map O0 ∼= O0̂ of type {6, 4} and genus 3 shown in Figure 7.7.

Figure 7.7. The map O0 ∼= O0̂ as a covering of O

This map (Sherk’s {2 · 3, 4} in Table V of [23], the dual of his Figure 18) is bipartite and
regular, with automorphism group

AutO0̂ ∼= AutO × AutB0̂ ∼= S4 × C2 × C2.

There are three central involutions in this group; in terms of the labelling in Figure 7.7 they
are given by

a : n± 7→ (7− n)±,

b : n± 7→ n∓,

c : n± 7→ (7− n)∓.

Thus a (which reverses orientation and preserves vertex-colours) is induced by the antipodal
automorphism n 7→ 7 − n of O, while b (which preserves orientation and transposes vertex-
colours) is the covering-transformation of O0̂ = O × B0̂ → O induced by the non-trivial
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automorphism of B0̂, and finally c = ab = ba. By inspection of Figures 7.7 and 7.5 it is easily
seen that

O0̂/〈a〉 ∼= PO0̂, O0̂/〈b〉 ∼= O, O0̂/〈c〉 ∼= PO0, O0̂/〈a, b〉 ∼= PO.

The double coverings between these maps (induced by inclusions between subgroups of
〈a, b〉 ∼= C2 × C2) are shown in Figure 7.8.

O ∼= O0̂

zzuuu
uuu

uuu
u

�� $$IIIIIIIII

PO0

%%JJJJJJJJJJ O

��

PO0̂

yyttttttttt

PO

Figure 7.8. Some coverings of PO

As explained in §7.2 we have PO1 ∼= PO0 and PO1̂ ∼= PO0̂, so the associates of PO0 and of
PO0̂ also correspond to the fourth and fifth entries of this row, respectively. Since PO covers
B2 there is no entry for PO2, and since PO2̂ ∼= PO+ ∼= O the hypermaps corresponding to
the final entry are the same as those for the first, so this row contributes 6 + 6 + 6 = 18
hypermaps.

Row 4. The final row of Table 7 gives the double coverings of the non-orientable hypermap
S4 = W−1(PO0̂) of type (4, 4, 3) and characteristic −2 shown in Figure 4.6 (see Figures
4.5 and 7.5 for W (S4) = PO0̂). The first entry is the orientable double covering S

+
4 =

W−1(O0̂) = W−1(O0), of type (4, 4, 3) and genus 3; its Walsh map O0̂ = O0 is the double
covering {2 · 3, 4} of O shown in Figure 7.7. This S-orbit (of length σ = 3 since the element
b ∈ AutO0̂ induces S+4 ∼= (S

+
4 )
(01)) also corresponds to S 2̂4 (∼= S

+
4 ). The second and third

entries yield two distinct S-orbits of length 3, each containing a non-orientable hypermap S04
or S 0̂4 of type (4, 4, 6) and characteristic −8, branched over the four face-centres of S4. As in
the third row, these two S-orbits reappear in the fourth and fifth entries, while there is no
entry for S24 . This row therefore yields 3 + 3 + 3 = 9 hypermaps.

This gives a total of 39 hypermaps, of which 21 are orientable. Among these are 9 mapsM,
listed in Table 8; five of these are orientable, and for these the rotation group Aut+M is
indicated. As usual, χ and g denote the characteristic and genus ofM.
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S01 S11 S+3 S03 S 0̂3

σ 2 1 2 2 2

S-orbit T × B0 T × B2 T × B1 O C PO × B0 PC × B2 PO × B0̂ PC × B2̂

(3 2 6) (6 2 3) (6 2 6) (4 2 3) (3 2 4) (4 2 6) (6 2 4) (4 2 6) (6 2 4)

χ 0 −4 2 −2 −2

orient. + + + − −

g 1 3 0 4 4

Aut+M A4 × C2 A4 × C2 S4 S4 × C2 S4 × C2

Table 8. The 9 regular mapsM with AutM∼= S4 × C2

8. Hall’s method of enumeration

In §§4–7 we needed to enumerate the normal subgroups H /∆ with a given quotient group
∆/H ∼= G, or equivalently to count the orbits of AutG on generating triples r = (r0, r1, r2)
of G satisfying r2i = 1. When G is the automorphism group AutP of a Platonic solid P , the
comparitively simple structure of G and of AutG allows us to do this directly, by inspection,
but for more complicated groups G this approach may not be feasible. Instead, one can use
a technique due to P. Hall [13], which we will now describe. This has the advantage that ∆
may be replaced with any finitely-generated group (see, for example, §9, where ∆+, a free
group of rank 2, is used); the method also provides a useful numerical check in the cases
where one argues by inspection.
Let Γ be any finitely-generated group, with generators X1, . . . , Xk and defining relations

Ri(Xj) = 1 (i ∈ I), and let G be any finite group. Our aim is to calculate

dΓ(G) = |NΓ(G)|,
where

NΓ(G) = {N / Γ | Γ/N ∼= G}

(this is finite, by the assumptions on Γ and G). When Γ is understood, we will abbreviate
these to d(G) and N (G).
Each epimorphism ε : Γ → G gives rise to an element N = ker(ε) of NΓ(G), and every

element of NΓ(G) arises in this way. Two epimorphisms ε1, ε2 : Γ→ G have the same kernel
if and only if ε2 = ε1 ◦ α for some α ∈ AutG (Figure 8.1), so dΓ(G) is the number of orbits
of AutG, acting by composition, on the set Epi (Γ, G) of epimorphisms Γ→ G.

Γ
ε1

����
��

��
�

ε2

��?
??

??
??

G
α // G

Figure 8.1. ε2 = ε1 ◦ α
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Now we can identify Epi (Γ, G) with the set BΓ(G) of all Γ-bases of G: these are the k-tuples
x = (x1, . . . , xk) in G such that

(i) x1, . . . , xk generate G, and

(ii) Ri(xj) = 1 for all i ∈ I.

(Given ε, we define xj = Xjε, and given x, we define ε byXj 7→ xj.) Under this identification,
AutG acts naturally on Γ-bases, so dΓ(G) is just the number of orbits of AutG on BΓ(G).
By (i), only the identity automorphism can fix any Γ-basis, so all orbits have length |AutG|,
and hence

dΓ(G) =
|BΓ(G)|

|AutG|
=
Epi (Γ, G)|

|AutG|
. (8.1)

For many groups G, |AutG| is known (or is easily determined), and the main difficulty is
to count epimorphisms or Γ-bases. Hall’s method exploits the fact that it is generally easier
to count homomorphisms Γ→ G, or equivalently k-tuples x satisfying (ii) but not necessarily
(i).
Let Hom (Γ, G) denote the set of all homomorphisms δ : Γ→ G, and define

φ(G) = φΓ(G) = |Epi (Γ, G)|,

σ(G) = σΓ(G) = |Hom (Γ, G)|.

Each δ ∈ Hom (Γ, G) maps Γ onto a unique subgroup H ≤ G, and conversely each epimor-
phism ε : Γ→ H can be regarded as a homomorphism Γ→ G, so

σ(G) =
∑

H≤G

φ(H). (8.2)

We need to invert this equation, expressing φ(G) = |Epi (Γ, G)| in terms of σ(G). Hall does
this by an analogue of the Möbius Inversion Formula [14], which replaces an equation

f(n) =
∑

d|n

g(d)

with
g(n) =

∑

d|n

µ(
n

d
)f(d),

where the Möbius function µ : N→ Z is defined by

∑

d|n

µ(d) =
{
1 if n = 1,
0 if n > 1.

Let S be the set of all subgroups H ≤ G, and define the Möbius function µ = µG : S → Z
recursively by

∑

H≥K

µ(H) =
{
1 if K = G,
0 if K < G.

(8.3)

Then (8.2) and (8.3) imply that
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∑

H≤G

µ(H)σ(H) =
∑

H≤G

µ(H)(
∑

K≤H

φ(K))

=
∑

K≤G

(φ(K)
∑

H≥K

µ(H))

= φ(G). (8.4)

Substituting in (8.1), we obtain

dΓ(G) =
1

|AutG|

∑

H≤G

µG(H)σΓ(H). (8.5)

If enough is known about the subgroup lattice S, the values of µG(H) can be calculated.
This can be a tedious process, though two straightforward observations ease the task:

(a) if H1, H2 ∈ S are equivalent under AutG, then σG(H1) = σG(H2);

(b) σG(H) = 0 unless H is an intersection of maximal subgroups of G [13, Theorem 2.3].

Hall computes µG(H) for several classes of groups G, including the finite rotation groups
and the simple groups PSL2(p), p prime; Downs [11] has extended this to PSL2(q) for all
prime-powers q.
As a simple example, take G = A4. The subgroup lattice S is shown in Figure 8.2: apart

from A4 and the trivial subgroup 1, S contains a normal V4 (∼= C2 × C2), four non-normal
subgroups isomorphic to C3, and three non-normal subgroups isomorphic to C2.

Figure 8.2. The subgroups of A4

Applying (8.3) we find that µ(A4) = 1, µ(V4) = µ(C3) = −1, µ(C2) = 0 and µ(1) = 4, so
(8.4) takes the form

φ(A4) = σ(A4)− σ(V4)− 4σ(C3) + 4σ(1). (8.6)

Similarly, Hall obtains

φ(S4) = σ(S4)− σ(A4)− 3σ(D4)− 4σ(S3) + 3σ(V4) + 4σ(C3) + 12σ(C2)− 12σ(1)

and

φ(A5) = σ(A5)− 5σ(A4)− 6σ(D5)− 10σ(S3) + 20σ(C3) + 60σ(C2)− 60σ(1),
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where Dn denotes a dihedral group of order 2n.
Once computed, the values of µG(H) can be used in (8.4) and (8.5) for any finitely-

generated group Γ. The values of σΓ(H) are most easily calculated when the defining relations
Ri(Xj) = 1 of Γ take a simple form: thus if Γ is a free group Fk of rank k we have σΓ(H) =
|H|k, while if Γ = ∆ ∼= C2 ∗C2 ∗C2 we have σΓ(H) = n2(H)3, where n2(H) is the number of
solutions of h2 = 1 in H.
For example, if G = A4 (so that |AutG| = |S4| = 24) then (8.5) and (8.6) give

d∆(A4) =
1

24
(43 − 43 − 4.13 + 4.13) = 0

(which is obvious, since A4 cannot be generated by involutions), and

dF2(A4) =
1

24
(122 − 42 − 4.32 + 4.12) = 4.

These functions d∆ and dF2 are Hall’s c2,2,2 and d2; thus his results also give d∆(S4) = 13 and
d∆(A5) = 19, confirming our direct enumerations of regular S4- and A5-hypermaps in §4 and
§5. Similarly dF2(S4) = 9 and dF2(A5) = 19, results which we will need in §9.
One can refine Hall’s method to count not only the total number of regular G-hypermaps

for a given group G, but also the number of such hypermaps of any given type. For if we
replace ∆ with the extended triangle group Γ = ∆(l,m, n), obtained by adding the relations
(R1R2)

l = (R2R0)
m = (R0R1)

n = 1 to ∆, we find that dΓ(G) now gives the number of regular
G-hypermaps of type (l′,m′, n′) where l′,m′ and n′ divide l,m and n; by doing this for all
l,m and n which arise as orders of elements of G, we obtain the required result. (Of course,
for comparitively “straightforward” groups G, direct methods are more efficient, as in §§4–7.)

9. Rotary Platonic hypermaps

Let H be any orientable hypermap without boundary, so its hypermap subgroup H is con-
tained in the even subgroup ∆+ of ∆, and its rotation group (more precisely, its orientation-
preserving automorphism group) Aut+H is isomorphic to N∆+(H)/H. We call H rotary if
Aut+H acts transitively on the set of “brins” of H (the cycles of r2 on the set Ω of blades);
equivalently, H is normal in ∆+, so Aut+H ∼= ∆+/H. (Our terminology follows Vince and
Wilson, rather than Coxeter and Moser who use the terms “reflexible” and “regular” where
we have used “regular” and “rotary”.) If H is regular then it is rotary (since normality of
H in ∆ implies normality in ∆+), but not conversely. If H is rotary but not regular it is
called chiral; such hypermaps occur in mirror-image pairs, with mutually reversed orienta-
tions, corresponding to pairs of normal subgroups H of ∆+ which are conjugate in ∆. For
example, the torus map {4, 4}b,c of [10, §8.3] is regular if bc(b − c) = 0, but is chiral (with
mirror-image {4, 4}c,b) if bc(b− c) 6= 0 (see Figure 9.1).
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Figure 9.1. The chiral maps {4, 4}2,1 and {4, 4}1,2

Now suppose that H is any rotary hypermap with rotation group Aut+H ∼= Aut+P for some
Platonic solid P . Then there are three possibilities:

i) H is regular, with AutH ∼= AutP ;

ii) H is regular, with AutH 6∼= AutP ;

iii) H is not regular, that is, H is chiral.

We have already determined the hypermaps H satisfying i), and our aim is now to show that
cases ii) and iii) do not occur.

Theorem. If H is a rotary hypermap, with Aut+H ∼= Aut+P for some Platonic solid P,
then H is regular with AutH ∼= AutP.

To prove this, we note that for any group G, the rotary hypermaps H with Aut+H ∼= G are
in bijective correspondence with the normal subgroups H of ∆+ with ∆+/H ∼= G; since ∆+

is a free group of rank 2 (with basis R0R1, R1R2) they correspond to the orbits of AutG on
generating pairs for G.
First let P be the tetrahedron T , so that G = Aut+T can be identified with A4, and

AutG with S4 acting by conjugation on G. By inspection, or by Hall’s method (as in §8)
one easily finds that dF2(G) = 4, so that AutG has four orbits on generating pairs for
G: the two generators can have orders 2 and 3, or 3 and 2, or 3 and 3, and in this last
case they may or may not be conjugate in G. Thus there are, up to orientation-preserving
isomorphism, four rotary hypermaps H with Aut+H ∼= A4. We saw in §4 that among the 13
regular S4-hypermaps, four are orientable, with rotation group A4. Clearly these are rotary,
so they must be the four rotary hypermaps H we have just enumerated. (In fact, the four
orbits on generating pairs correspond to the hypermaps T (12), T (01), T and S2 = W−1(T 0̂)
respectively.) Thus each of the four rotary hypermaps H with Aut+H ∼= Aut+T is regular,
with AutH ∼= S4 ∼= Aut T .
A similar method can be used in the remaining cases. When P = O (or equivalently C),

we put G = Aut+O ∼= S4, so that AutG ∼= S4, acting on itself by conjugation. Either by
inspection or by Hall’s method we find that S4 has 9 conjugacy classes of generating pairs,
so there are 9 rotary hypermaps H with Aut+H ∼= Aut+O. Now in §7 we found 39 regular
(S4 × C2)-hypermaps H, 21 of them orientable; among these, 9 have Aut

+H ∼= S4, namely
the six associates of S+3 = O and the three associates of S

+
4 = W

−1(O0). These must be the
9 rotary hypermaps previously enumerated, so again the result is verified.
Likewise, when P = D or I we put G ∼= A5, so AutG ∼= S5, again acting by conjugation.

By [13], dF2(G) = 19 so there are 19 rotary hypermaps H with Aut
+H ∼= G, and these must
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be the 19 regular orientable (A5 × C2)-hypermaps listed in Table 5 (§6.2). This completes
the proof.
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[12] Garbe, D.: Über die regulären Zerlegungen geschlossener orientierbarer Flächen. J. Reine
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