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Abstract. All rings are assumed to be commutative with identity. A generalized
GCD ring (G-GCD ring) is a ring (zero-divisors admitted) in which the intersec-
tion of every two finitely generated (f.g.) faithful multiplication ideals is a f.g.
faithful multiplication ideal. Various properties of G-GCD rings are considered.
We generalize some of Jäger’s and Lüneburg’s results to f.g. faithful multiplication
ideals.
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0. Introduction

Let R be a commutative ring with identity. An ideal I in R is a multiplication ideal if
every ideal contained in I is a multiple of I. In this paper we generalize G-GCD domains,
introduced by Anderson and Anderson [5] as follows: Let S(R) be the multiplicative semi-
group of f.g. faithful multiplication ideals in R. A ring R is a G-GCD ring if S(R) is closed
under intersection. Important examples of G-GCD rings are principal ideal rings, Bezout
rings, Von Neumann regular rings, arithmetical rings, Prüfer domains and of course G-GCD
domains.
Our interest in G-GCD rings results from our attempt to extend Jäger’s results [9] to f.g.

faithful multiplication ideals and to generalize Lüneburg’s results concerning Prüfer domains
[11].
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In §2 we study the existence of gcd(A,B) and lcm(A,B) and their relationships where
A,B ∈ S(R). We prove that the existence of lcm(A,B) implies that of gcd(A,B) and
AB = gcd(A,B)lcm(A,B) [Theorem 2.1]. The converse is not true in general. Ohm type
properties are studied and we show that if lcm(A,B) exists, then lcm(A,B)k =lcm(Ak, Bk)
and gcd(A,B)k = gcd(Ak, Bk) for each positive integer k [Theorem 2.6]. However, the exis-
tence of gcd(A,B) does not imply these properties.
In §3, equivalent conditions for G-GCD rings are given [Theorem 3.1]. Following Helmer

[8], we define ΦA,B as the associative lattice of ideals of R which divide A and are relatively
prime to B. The lattice ΦA,B contains a smallest element if R is a ring with unique prime
power factorization. We show that M ∈ ΦA,B is a smallest element of ΦA,B if and only if
Φ[A:M ],B is trivial [Theorem 3.7]. All rings considered in this paper are commutative with
identity. Consult [6], [7], [10] and [13] for the basic concepts used.

1. Preliminaries

Let R be a commutative ring with identity. An ideal I in R is called a multiplication ideal if
every ideal contained in I is a multiple of I, see [7]. Let I and J be ideals in R. Following [13,
p.113], the conductor of J into I, [I : J ], is the set of all elements x ∈ R such that xJ ⊆ I.
In [10], [I : J ] is called the residual of I by J. The annihilator of I is denoted by ann(I) and
equals to [0 : I]. I is faithful if ann(I) = 0. Suppose that I is a multiplication ideal in R and
J ⊆ I. There exists an ideal K in R such that J = KI. Note that K ⊆ [J : I] and therefore

J = KI ⊆ [J : I]I ⊆ J,

so that J = [J : I]I.

The proofs of the following lemmas can be found in [12], [14] and [2].

Lemma 1.1. Let R be a ring. Then a multiplication ideal I in R is finitely generated if and
only if ann(I) = ann(J) for some finitely generated ideal J contained in I.

Lemma 1.2. Let R be a ring and J an ideal contained in a finitely generated faithful mul-
tiplication ideal I. Then

(i) J is a multiplication ideal if and only if [J : I] is a multiplication ideal.

(ii) J is finitely generated if and only if [J : I] is finitely generated.

The following lemma shows that finitely generated faithful multiplication ideals are cancel-
lation ideals.

Lemma 1.3. Let R be a ring and I ∈ S(R). Then [IJ : I] = J for every ideal J in R.
Consequently, for all ideals J and K in R, if IJ = IK, then J=K.

We remark that for a finitely generated ideal I, the following conditions are equaivalent:

(1) I is a faithful multiplication ideal.

(2) I is a locally principal ideal.

(3) I is a cancellation ideal.
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According to [13, p. 109] if R is a ring and I, J two ideals in R, we say that I divides J,
denoted by I|J, if there exists an ideal C in R such that J = IC. Hence J ⊆ I. It is clear
now that if I is a multiplication ideal in R then I|J if and only if J ⊆ I.
Let I and J be two ideals in R. An ideal G in R is called a greatest common divisor of I

and J, or gcd(I, J), if and only if :

(i) G|I and G|J,

(ii) If G′ is an ideal with G′|I and G′|J, then G′|G.

Similarly, an ideal K in R is called a least common multiple of I and J, or lcm(I, J), if and
only if:

(i) I|K and J |K,

(ii) If K ′ is an ideal with I|K ′ and J |K ′ then K|K ′.

With these definitions gcd and lcm are unique if they exist, but in examples we show that
they do not necessarily exist.
The following two lemmas play a main role in our work. The first one shows any divisor

of a f.g. faithful multiplication ideal is a f.g. faithful multiplication ideal, while the second
one shows that the least common multiple of two f.g. faithful multiplication ideals, if it does
exist, is also a f.g. faithful multiplication ideal.

Lemma 1.4. Let R be a ring and I ∈ S(R). If G is an ideal in R and G|I, then G ∈ S(R).

Proof. As G|I, we have I ⊆ G, and hence ann(G) ⊆ ann(I)= 0, i.e. ann(G) = 0. To show that
G is multiplication, suppose H ⊆ G. Since G|I, there exists an ideal K in R with I = KG.
It follows that HK ⊆ KG, and hence HK ⊆ I. But I is multiplication. Thus there exists an
ideal F in R such that HK = IF, and hence HKG = IFG. This implies that HI = FGI.
From Lemma 1.3, we get H = FG. Finally, since I ⊆ G and ann(G) = 0 =ann(I), we infer
from Lemma 1.1, G is f.g.

Lemma 1.5. Let R be a ring and I, J ∈ S(R). If K = lcm(I, J) exists, then K ∈ S(R).

Proof. IJ is a multiplication ideal [4, Theorem 2, Corollary 1] and also ann(IJ) = 0. Since
IJ is a common multiple of I and J, we have K|IJ, and by Lemma 1.4, K ∈ S(R).

We mention three further lemmas which will be used later. Their proofs are clear.

Lemma 1.6. Let R be a ring and A,B ideals in R such that gcd(A,B) exists. Let C,D ∈
S(R) such that gcd(C,D) exists. If A ⊆ C and B ⊆ D, then

gcd(A,B) ⊆ gcd(C,D).

If, moreover, lcm(A,B) and lcm(C,D) exist, then

lcm(A,B) ⊆ lcm(C,D).

The following lemmas generalize Gauss’s Lemma to f.g. faithful multiplication ideals in a
ring R.
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Lemma 1.7. Let R be a ring and Ai(1 ≤ i ≤ n) a finite collection of ideals in S(R) such
that gcd(A1, A2, . . . , An) and gcd(A1, A2, . . . , An−1) exist. If G = gcd(A1, A2, . . . , An−1), then
gcd(A1, A2, . . . , An) = gcd(G,An).

Lemma 1.8. Let R be a ring and Ai(1 ≤ i ≤ n) a finite collection of ideals in S(R) such
that lcm(A1, A2, . . . , An) and lcm(A1, A2, . . . , An−1) exist. If K = lcm(A1, A2, . . . An−1), then

lcm(A1, A2, . . . , An) = lcm(K,An).

2. gcd and lcm of multiplication ideals

In this section we generalize to ideals some results in a paper by Jäger [9] concerning the
greatest common divisor and least common multiple of two elements in an integral domain.
Compare the following theorem with [9, Theorem 4].

Theorem 2.1. Let R be a ring and A,B ∈ S(R). If lcm(A,B) exists, then so too does
gcd(A,B) and in particular

AB = gcd(A,B)lcm(A,B).

Proof. Let K = lcm(A,B). Then K|AB, and hence there exists an ideal G in R with
AB = KG. Since K ∈ S(R) (Lemma 1.5), we infer from Lemma 1.3

[AB : K] = [KG : K] = G.

We shall prove that G = gcd(A,B). As A|K, there exists an ideal C in R such that K = AC.
It follows that

AB = KG = ACG,

and by Lemma 1.3, B = CG. Hence G|B. Similarly, G|A. Assume that G′ is an ideal in R
such that G′|A, G′|B. Hence there exist ideals D1 and D2 in R such that A = D1G′ and
B = D2G

′. Therefore AB = D1D2G
′2. We have from Lemma 1.4 that G′ ∈ S(R) and hence

from Lemma 1.3 we get

[AB : G′] = [D1D2G
′2 : G′] = D1D2G

′.

It follows that
[AB : G′] = D1B = D2A,

and hence [AB : G′] is a common multiple of A and B. Therefore K|[AB : G′], and hence
there exists an ideal M in R such that

[AB : G′] = KM.

But AB ⊆ G′ and G′ is a multiplication ideal. Thus [AB : G′]G′ = AB, and hence AB =
KMG′. It follows that KG = KMG′ and from Lemma 1.3 we have G =MG′, i.e. G′|G, and
the proof is complete.

The next result should be compared with [9, Theorem 2].
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Theorem 2.2. Let R be a ring and A,B,C ∈ S(R). Then

(i) lcm(A,B) exists if and only if lcm(CA,CB) exists, in which case

lcm(CA,CB) = Clcm(A,B).

(ii) If gcd(CA,CB) exists, then so too does gcd(A,B), and

gcd(CA,CB) = C gcd(A,B).

Proof. (i) Suppose that lcm(A,B) = K exists. Then A|K and B|K and hence CA|CK,
CB|CK. Let V be an ideal in R such that CA|V, CB|V. There exist ideals D1 and D2 in R
such that

V = CAD1 = CBD2.

It follows from Lemma 1.3 that

[V : C] = AD1 = BD2,

and hence [V : C] is a common multiple of A and B. Thus K|[V : C] and hence
CK|[V : C]C. Since CA|V , we have V ⊆ C and [V : C]C = V. This implies that CK|V and
CK = lcm(CA,CB).
Conversely, suppose that lcm(CA,CB) = L exists. Then CA|L, CB|L and hence there

exist ideals D1 and D2 in R such that

L = CAD1 = CBD2.

By Lemma 1.3,
[L : C] = AD1 = BD2,

and hence [L : C] is a common multiple of A and B. Assume that L′ is an ideal in R such
that A|L′, B|L′. Then CA|CL′, CB|CL′ and therefore L|CL′. There exists an ideal I in R
such that CL′ = IL and from Lemma 1.3 we infer that L′ = [IL : C]. We observe that

[IL : C] = I[L : C].

In fact, let x ∈ [IL : C]. Then xC ⊆ IL, and hence xCAD1 ⊆ ILAD1. But L = CAD1 and
L ∈ S(R). Thus, by Lemma 1.3, x ∈ IAD1 = I[L : C]. The other inclusion is obvious. It
follows that

[L : C] = lcm(A,B).

Since C is a multiplication ideal and L ⊆ C, L = [L : C]C and we have shown that

lcm(CA,CB) = Clcm(A,B).

(ii) Let G = gcd(CA,CB). Then CA,CB ⊆ G and from Lemma 1.3, A,B ⊆ [G : C]. Since
C|CA and C|CB, we get C|G and henceG ⊆ C. ButG ∈ S(R) (Lemma 1.4). Therefore, from
Lemma 1.2, we infer that [G : C] ∈ S(R) and hence [G : C] is a common divisor of A and B.
Suppose that D is an ideal in R such that D|A, D|B. Then CD|CA, CD|CB and therefore
CD|G. It follows that G ⊆ CD and from Lemma 1.3, we have [G : C] ⊆ [CD : C] = D.
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Finally, since D is a multiplication ideal (Lemma 1.4), we get D|[G : C], and we conclude
that [G : C] = gcd(A,B). Moreover

gcd(CA,CB) = G = [G : C]C = C gcd(A,B),

and this finishes the proof of the theorem.

The converses of Theorems 2.1 and 2.2 (ii) are not true. let R = k[X2, X3], k a field.
Then gcd(X2R,X3R) = R but lcm(X2R,X3R) does not exist. Also it is easily seen that
gcd(X5R,X6R) does not exist.

Compare the following generalization of Euclid’s Lemma with [9, Theorem 7].

Proposition 2.3. Let R be a ring and A,B,C ∈ S(R) such that gcd(BA,BC) exists and
gcd(A,C) = R. Then

gcd(A,BC) = gcd(A,B).

Proof. As gcd(BA,BC) exists, we infer from Theorem 2.2 that

gcd(BA,BC) = B gcd(A,C) = B.

It follows from Lemma 1.7 that

gcd(A,B) = gcd(A, gcd(BA,BC))

= gcd(gcd(A,BA), BC)

= gcd(A,BC).

We now prove that with an additional condition, the converse of Theorem 2.1 is true. Com-
pare with [9, Theorem 5]. First we prove a lemma.

Lemma 2.4. Let R be a ring and A,B ∈ S(R). If G = gcd(A,B) then

gcd([A : G], [B : G]) = R.

Proof. As A,B ⊆ G and G is a multiplication ideal, we have A = [A : G]G, B = [B : G]G,
and hence by Theorem 2.2 (ii),

G = gcd([A : G]G, [B : G]G) = G gcd([A : G], [B : G]).

From Lemma 1.3, we conclude

gcd([A : G], [B : G]) = R.

Theorem 2.5. For any ring R, gcd(A,B) exists for all A,B ∈ S(R) if and only if lcm(A,B)
exists for all A,B ∈ S(R).
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Proof. Let A,B ∈ S(R). By Theorem 2.2 (i) we may assume

gcd(A,B) = R.

(In fact, if gcd(A,B) = D, then A = [A : D]D, B = [B : D]D and lcm(A,B) exists if and
only if lcm([A : D], [B : D]) exists, and gcd([A : D], [B : D]) = R by Lemma 2.4). We show
that lcm(A,B) = AB. Clearly AB is a common multiple of A and B. If V is any common
multiple of A and B, say V = AM = BN, then A|BN so by Proposition 2.3,

A = gcd(A,BN) = gcd(A,N),

and hence A|N, so that AB|V (recall that BN = V ). The converse follows from Theorem
2.1.

Let R be a ring and A,B ∈ S(R). Then it is easily verified that lcm(A,B) exists in S(R) if
and only if A ∩B ∈ S(R) and in this case lcm(A,B) = A ∩B. If lcm(A,B) exists, it follows
from Theorem 2.1 that gcd(A,B) exists and is [AB : (A ∩ B)]. If A,B and A + B ∈ S(R),
then A ∩B ∈ S(R), hence

gcd(A,B) = [AB : (A ∩B)] = [AB : A] + [AB : B] = B + A.

As lcm(X2R,X3R) in R = k[X2, X3] does not exist, we conclude that X2R ∩ X3R is
not a multiplication ideal. Also, it is shown in [15] that 2Z[

√
5] ∩ (−1 +

√
5)Z[
√
5] is not a

multiplication ideal in Z[
√
5], so lcm(2Z[

√
5], (−1 +

√
5)Z[
√
5] does not exist.

It is also useful to remark that if R is a ring and A,B ∈ S(R) have a lcm, then

lcm(A,B) = A ∩B = [A : B]B,

and hence
[lcm(A,B) : B] = [A : B].

But Theorem 2.1 says that gcd(A,B) exists and

AB = gcd(A,B)lcm(A,B).

It follows that
[A : gcd(A,B)] = [A : B] = [lcm(A,B) : B],

and hence by Lemma 2.4, gcd([A : B], [B : A]) = R.

Compare the following theorem with [1, Propositions 2.1 and 3.1].

Theorem 2.6. Let R be a ring and A,B ∈ S(R) such that lcm(A,B) exists. Then the
following statements are true:

(i) lcm(A,B)k = lcm(Ak, Bk) for each positive integer k.

(ii) gcd(A,B)k = gcd(Ak, Bk) for each positive integer k.

(iii) [A : B]k = [Ak : Bk] for each positive integer k.
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Proof. We shall prove (i) by induction on k. The result is trivial for k = 1. Assume that
k ≥ 1 and that

lcm(A,B)k = lcm(Ak, Bk).

Notice that it follows from Theorem 2.2 (i) and Lemma 1.8 that if C,D ∈ S(R) such that
lcm(C,D) exists, then

lcm(A,B)lcm(C,D) = lcm(AC,AD,BC,BD).

Hence
lcm(Ak, Bk) = lcm(A,B)k = lcm(Ak, Ak−1B, . . . , Bk).

It follows that
lcm(Ak, Bk) ⊆ Ak−1B,ABk−1.

Now, by Theorem 2.2 and Lemma 1.8,

lcm(A,B)k+1 = lcm(A,B)klcm(A,B)

= lcm(Ak, Bk)lcm(A,B)

= lcm(lcm(Ak+1, Bk+1), AkB,ABk)).

It is enough to show that
lcm(Ak+1, Bk+1) ⊆ AkB,ABk.

From Theorem 2.1, Lemma 1.6, Theorem 2.2 (i) and Lemma 1.8, we have

AkB = Ak−1AB

= Ak−1lcm(A,B) gcd(A,B)

= Ak−1lcm(A gcd(A,B), B gcd(A,B))

⊇ Ak−1lcm(A2, B gcd(A,B))

= lcm(Ak+1, Ak−1B gcd(A,B))

⊇ lcm(Ak+1, lcm(Ak, Bk) gcd(A,B))

= lcm(Ak+1, lcm(Ak gcd(A,B), Bk gcd(A,B))

⊇ lcm(Ak+1, lcm(Ak+1, Bk+1))

= lcm(Ak+1, Bk+1).

Similarly
ABk ⊇ lcm(Ak+1, Bk+1),

and this finishes the proof of (i). For (ii), we have

AB = lcm(A,B) gcd(A,B),

and hence

AkBk = lcm(A,B)k gcd(A,B)k

= lcm(Ak, Bk) gcd(A,B)k.
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Since lcm(Ak, Bk) = lcm(A,B)k ∈ S(R), it follows from Lemma 1.3 that

[AkBk : lcm(Ak, Bk)] = gcd(A,B)k.

Finally, from Theorem 2.1, we have

[AkBk : lcm(Ak, Bk)] = gcd(Ak, Bk).

Part (ii) of the theorem is thus concluded. For (iii), we have

[A : B]kBk = lcm(A,B)k = lcm(Ak, Bk) = [Ak : Bk]Bk.

But Bk ∈ S(R), hence by Lemma 1.3 we get the result, and the proof is complete.

It is useful to mention that even if A,B ∈ S(R) such that gcd(A,B) exists, the conclu-
sion of Theorem 2.6 (ii) is not always true. For example, again let R = k[X2, X3]. Then
gcd(X2R,X3R) = R, and hence gcd(X2R,X3R)2 = R. But

gcd(X4R,X6R) = X4R 6= R.

3. Generalized GCD rings

Anderson [3] and [5] introduced and investigated a class of domains called generalized greatest
common divisor (G-GCD) domains for which the set of invertible ideals is closed under
intersection. These include Prüfer domains, π-domains and of course principal ideal domains.
We generalize this as follows: A ring R (zero-divisors admitted) is called a generalized GCD
ring (G-GCD ring) if the intersection of every two f.g. faithful multiplication ideals in R is
also a f.g. faithful multiplication ideal. Important examples of G-GCD rings include principal
ideal rings, Bezout rings, von Neumann regular rings, arithmetical rings, Prüfer domains and
of course G-GCD domains. Z[

√
5] and k[X2, X3] are example of rings which are not G-GCD

rings.
The following theorem is now straightforward.

Theorem 3.1. Let R be a ring and S(R) the multiplicative semigroup of f.g. faithful multi-
plication ideals. Then the following statements are equivalent:

(i) R is a G-GCD ring.

(ii) For all A,B ∈ S(R), lcm(A,B) exists in S(R).

(iii) For all A,B ∈ S(R), gcd(A,B) exists in S(R).

(iv) For all A,B ∈ S(R), [A : B] ∈ S(R).

Theorem 3.1 has two corollaries which we wish to mention. The first generalizes two prop-
erties that characterize Prüfer domains. The second is a version of the Chinese Remainder
Theorem.

Corollary 3.2. Let R be a G-GCD ring. For all A,B,C ∈ S(R),

(i) [gcd(A,B) : C] = gcd([A : C], [B : C]).
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(ii) [C : lcm(A,B)] = gcd([C : A], [C : B]).

Proof. (i) Let G = gcd(A,B). By Theorem 3.1, gcd([A : C], [B : C]) exists and [G : C] ∈
S(R). Also it is obvious that

gcd([A : C], [B : C]) ⊆ [G : C].

Using Lemmas 1.6 and 2.4 and Theorem 2.2, we get

[G : C] = [G : C] gcd([A : G], [B : G])

= gcd([A : G][G : C], [B : G][G : C])

⊆ gcd([A : C], [B : C]).

For (ii), let K = lcm(A,B). Again by Theorem 3.1, gcd([C : A], [C : B]) exists and [C : K] ∈
S(R). Clearly,

gcd([C : A], [C : B]) ⊆ [C : K].

On the other hand, we have

R = gcd([A : G], [B : G]) = gcd([K : A], [K : B])

and hence by Lemma 1.6 and Theorem 2.2 we infer that

[C : K] = [C : K] gcd([K : A], [K : B])

= gcd([C : K][K : A], [C : K][K : B])

⊆ gcd([C : A], [C : B]).

Corollary 3.3. Let R be a G-GCD ring. For all A,B,C ∈ S(R),

(i) lcm(gcd(A,B), C) = gcd(lcm(A,C), lcm(B,C)).

(ii) gcd(lcm(A,B), C) = lcm(gcd(A,C), gcd(B,C)).

Proof. (i) By Theorem 3.1 and Corollary 3.2, we have

lcm(gcd(A,B), C) = gcd(A,B) ∩ C = [gcd(A,B) : C]C

= C gcd([A : C], [B : C])

= gcd([A : C]C, [B : C]C)

= gcd(A ∩ C,B ∩ C)

= gcd(lcm(A,C), lcm(B,C)),

and hence (i) is clear. Now, using (i) twice and by Lemma 1.7 we get

lcm(gcd(A,C), gcd(B,C)) = gcd(lcm(A, gcd(B,C)), lcm(C, gcd(B,C))

= gcd(lcm(A, gcd(B,C)), C)

= gcd(gcd(lcm(A,B), lcm(A,C)), C)

= gcd(lcm(A,B), gcd(lcm(A,C), C))

= gcd(lcm(A,B), C).
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G-GCD rings are a generalization of G-GCD domains and Prüfer domains. We extend
methods used by Lüneburg [11] to this more general case. In particular, let R be a G-GCD
ring and A,B ∈ S(R). Define

ΦA,B = {I : I is an ideal of R, I|A, gcd(I, B) = R}.

Lüneburg showed that if R is a Dedekind domain then ΦA,B always has a smallest element,
and that if R is a Prüfer domain, an element M ∈ ΦA,B is smallest if and only if for all
f.g. ideals S of R, if AM−1 ⊆ S and S + B = R then S = R. Ali [2] has extended some of
Lüneburg’s results and methods to arithmetical rings.
We note that by Lemma 1.4, ΦA,B ⊆ S(R) and ΦA,B is non-empty since R ∈ ΦA,B.
The following observation will be useful later. It follows easily from Proposition 2.3 and

Corollary 3.2.

Lemma 3.4. Suppose R is a G-GCD ring and that A,B, J ∈ S(R). If gcd(A, J) =
gcd(B, J) = R, then

gcd(lcm(A,B), J) = R = gcd(AB, J).

Theorem 3.5. Let R be a G-GCD ring and A,B ∈ S(R). Then ΦA,B forms a lattice of
ideals. Moreover, if ΦA,B contains a minimal element, then it is unique.

Proof. Let X,Y ∈ ΦA,B. Then X, Y ∈ S(R) and gcd(X, Y ) = G and lcm(X, Y ) = L exist.
Cleary G|A and by Lemma 1.7 gcd(G,B) = R, and hence G ∈ ΦA,B. As X|A and Y |A, we
infer that L|A and hence, from Corollary 3.2 gcd(L,B) = R. This shows that L ∈ ΦA,B and
the first assertion follows. Suppose now that M is a minimal element in ΦA,B. Let X ∈ ΦA,B.
Then lcm(M,X) ∈ ΦA,B. But lcm(M,X) ⊆ M. It follows that lcm(M,X) = M and hence
M ⊆ X. Therefore, M is the smallest element in ΦA,B.

Notice that if the G-GCD ring R has ACC on elements of S(R), then the conditions of
Theorem 3.5 are satisfied, and ΦA,B has a unique minimal element for all A,B ∈ S(R).

Corollary 3.6. Let R be a G-GCD ring and X, Y ∈ ΦA,B. Then [X : Y ] ∈ ΦA,B.

Proof. By Theorem 3.1, [X : Y ] is in S(R). As [X : Y ]|X, the corollary is now clear.

Theorem 3.7. Let R be a G-GCD ring and A,B ∈ S(R). Then M ∈ ΦA,B is smallest if
and only if the only ideal dividing [A :M ] and relatively prime to B is R.

Proof. Suppose first that M is the smallest element in ΦA,B. Let S be an ideal in R such
that S|[A : M ]. [A : M ] ∈ S(R) by Theorem 3.1 and hence S ∈ S(R) by Lemma 1.4. Now
as A = [A :M ]M, we have MS|A. Also, we have

gcd(S,B) = R = gcd(M,B),

so by Lemma 3.4, gcd(MS,B) = R, and this implies that MS ∈ ΦA,B. It follows that
M ⊆ MS ⊆ M, and hence M = MS. By Lemma 1.3, S = R. Conversely, let M be an ideal
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in R satisfying the condition of the Theorem. Suppose X ∈ ΦA,B. Then X|A,M |A and hence
lcm(X,M)|A. It follows that

[lcm(X,M) :M ]|[A :M ],

and hence [X :M ]|[A :M ]. Furthermore

R = gcd(X,B) ⊆ gcd([X :M ], B) ⊆ R,

so that [X :M ] = R and hence M ⊆ X, and M is the smallest element in ΦA,B.

Theorem 3.8. Let R be a G-GCD ring and A,B, J ∈ S(R). Then the following are equiva-
lent:
(i) J |A and gcd(J,B) = R.

(ii) J |[A : G] and gcd(J,G) = R where G = gcd(A,B).
In particular, ΦA,B = Φ[A:G],G.

Proof. Let (i) be satisfied. Then

R = gcd(J,B) ⊆ gcd(J,G) ⊆ R.

Let K = lcm(A,B). Then K ⊆ A ⊆ J, and hence

[A : G] = [K : B] = [K : B] gcd(J,B) = gcd(J [K : B], [K : B]B) ⊆ gcd(J,K) = J.

But J ∈ S(R). Thus J |[A : G] and hence (ii) is satisfied. Conversely, let (ii) be satisfied.
Then, obviously, A ⊆ [A : G] ⊆ J, and hence J |A. From Lemma 1.7 and since A ⊆ J , we
have

R = gcd(J,G) = gcd(J, gcd(A,B)) = gcd(gcd(J,A), B) = gcd(J,B)

This proves the theorem.

Let R be a G-GCD ring and A,B ∈ S(R). Define two sequences of ideals in R recursively as
follows: M0 = A, N0 = B, Ni+1 = gcd(Mi, Ni) and Mi+1 = [Mi : Ni+1] for all i ≥ 0. As a
consequence of Theorem 3.8, the following are satisfied.

(i) Mi ⊆Mi+1, Ni ⊆ Ni+1 for all i ≥ 0.

(ii) Mi, Ni ∈ S(R) for all i ≥ 0.

(iii) ΦA,B = ΦMi,Ni for all i ≥ 0.

Theorem 3.9. Let R be a G-GCD ring and A,B ∈ S(R) with the sequencesMi, Ni as above.
The following statements are equivalent:

(i) ∪∞i=iMi is the smallest element in ΦA,B.

(ii) ∪∞i=1Mi ∈ ΦA,B.

(iii) ∪∞i=1Mi ∈ S(R).

(iv) ∃ n ∈ N with ∪∞i=1Mi =Mn.

(v) ∃ n ∈ N with Mn =Mn+1.

(vi) ∃ n ∈ N with Nn+1 = R.
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Proof. (i)⇒(ii)⇒(iii)⇒(iv)⇒(v) is clear. We show (v)⇒(vi). Let Gi = gcd(Mi, Ni), Ki =
lcm(Mi, Ni). Then Mi+1 = [Mi : Gi] = [Ki : Ni] for all i ≥ 0. If Mn =Mn+1, then

Mn = [Mn : Gn] = [Kn : Nn],

and hence
MnNn = [Kn : Nn]Nn = Kn.

But Theorem 2.1 says that MnNn = GnKn, and hence Kn = KnGn. By Lemma 1.3, Gn =
Nn+1 = R. To complete the proof of the corollary, we have to show that (vi)⇒(i). Suppose
that R = Nn+1 = gcd(Mn, Nn) = Gn. Then Mn+1 = [Mn : Gn] = [Mn : R] = Mn. Also
R = Nn+1 ⊆ Nn+k and hence Nn+k = R for all k ≥ 1 and hence

R = Nn+k ⊆ Nn+k+1 = Gn+k for all k ≥ 1.

It follows that
Mn+k+1 = [Mn+k : Gn+k] = [Mn+k : R] =Mn+k

for all k ≥ 1. Therefore ∪∞i=1Mi = Mn. Finally since Mn|Mn and gcd(Mn, Nn) = Nn+1 = R,
it follows that Mn ∈ ΦMn,Nn , and hence from Theorem 3.8, Mn is the smallest element in
ΦA,B.

If R is a G-GCD ring which has ACC on elements of S(R), then Theorem 3.9 and the remark
before it, give us the possibility of finding Mn which satisfies Mn = Mn+1, and hence the
smallest element of ΦA,B.

We conclude with the following application which should be compared with [11, Theorem 10].

Theorem 3.10. Let R be a G-GCD ring and A,B ∈ S(R). Let K = lcm(A,B). Let MA
and MB be the smallest elements of ΦA,[K:A] and ΦB,[K:B] respectively. Then the following
statements are satisfied:

(i) lcm(MA,MB) = lcm(A,B).

(ii) gcd([A :MA], [B :MB] gcd(MA,MB)) = R = gcd([B :MB], [A :MA] gcd(MA,MB))

(iii) gcd(MA, [lcm(MA,MB) :MA]) = R = gcd(MB, [lcm(MA,MB) :MB]).

Proof. Let G = gcd(A,B). We have

R = gcd([K : A], [K : B]) = gcd([A : G], [B : G]).

It follows that

gcd([A :MA], [B :MB], [A : G], [B : G]) = gcd([A :MA], [B :MB], gcd([A : G], [B : G])

= gcd([A :MA], [B :MB], R) = R.

As gcd([A :MA], [B :MB], [A : G])|[A : G], we infer from Theorem 3.7 that

gcd([A :MA], [B :MB], [A : G]) = R.
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Also, since gcd([A :MA], [B :MB])|[B :MB], we have from Theorem 3.7 that

gcd([A :MA], [B :MB]) = R.

Now, [B : G]|B and gcd([A : G], [B : G]) = R, then [B : G] ∈ ΦB,[A:G] = ΦB,[K:B]. But MB is
the smallest element in ΦB,[K:B]. Thus MB ⊆ [B : G] = [K : A], and hence

lcm(MA,MB) ⊆ lcm(MA, [K : A]).

Also, since MA ∈ ΦA,[K:A], we infer that R = gcd(MA, [K : A]). It follows from Theorem 2.1
that

lcm(MA, [K : A]) =MA[K : A],

and hence
lcm(MA,MB) ⊆MA[K : A].

Similarly, lcm(MA,MB) ⊆ MB[K : B]. Since A ⊆ MA and B ⊆ MB, we have that
A = [A :MA]MA and B = [B :MB]MB. It follows that

lcm(MA,MB) = lcm(MA,MB)R

= lcm(MA,MB) gcd([A :MA], [B :MB])

= gcd([A :MA]lcm(MA,MB), [B :MB]lcm(MA,MB))

⊆ gcd([A :MA]MA[K : A], [B :MB]MB[K : B])

= gcd([K : A]A, [K : B]B) = gcd(K,K) = K = lcm(A,B).

On the other hand A ⊆ MA, B ⊆ MB and by Lemma 1.6, lcm(A,B) ⊆ lcm(MA,MB). This
finishes the proof of (i). To prove (ii), as MA ∈ ΦA,[K:A], we have gcd(MA, [K : A]) = R, and
hence gcd([A : MA],MA, [K : A]) = R. This implies that gcd(gcd([A : MA],MA), [K : A]) =
R. But gcd([A :MA],MA)|[A :MA] and [A :MA]|A. Thus by Theorem 3.7,

gcd([A :MA],MA) = R.

It follows that
gcd([A :MA], gcd(MA,MB)) = R.

As noted earlier we have
gcd([A :MA], [B :MB]) = R,

So by Lemma 3.4,
gcd([A :MA], [B :MB] gcd(MA,MB)) = R.

Similarly,
gcd([B :MB], [A :MA] gcd(MA,MB)) = R.

For (iii), we have MA ∈ ΦA,[K:A], and hence gcd(MA, [K : A]) = R. But gcd(MA, [A :MA]) =
R. It follows from Lemma 3.4 that gcd(MA, [K : A][A :MA]) = R. It is clear that

[K : A][A :MA] ⊆ [K :MA] = [lcm(MA,MB) :MA].
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Hence
gcd(MA, [lcm(MA,MB) :MA]) = R.

Similarly
gcd(MB, [lcm(MA,MB) :MB]) = R,

and this concludes the proof of the Theorem.
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37(2) (1996), 399–414.
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