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Abstract. In this paper we investigate the restrictions which are placed on the
focal set of a submanifold of Euclidean space under the assumption that the sub-
manifold has a parallel normal field.

1. Introduction

Throughout this paper f : M™ — R™* is a C* immersion of a connected C* m-dimensional
manifold M without boundary into Euclidean (m + k)-space.

The tangent space of M at a point p will be denoted by T,M. So df, : T,M —
Tr) (R™*) = {f(p)} x R™™F = R™** is an injection.

There is a standard inner product <, > on R™**_ The total space of the normal bundle
of f is defined by

N(f) ={(p,v) € M x R™™* : < v df,(X)>=0 VX eT,M} |,

and the affine normal k-plane to f(M) at pis v,(f) = {f(p) + v : (p,v) € N(f)}. Note that
N(f) is an (m + k)-dimensional manifold. The endpoint map n(p,v) = f(p) + v. A point
x € R™** is a focal point of M with base p if 1 is singular at (p, T — f(p)). The focal point
has multiplicity p > 0 if rank(Jac n) = m + k — p at that point. The set of focal points of f
with base p will be denoted by F,(f). This is an algebraic variety in v,(f). We remark that
by [9], = € F,(f) if and only if 2 € v,(f), =z = f(p) + 3& where £ = ;:;8”, and ) is an
eigenvalue of the shape operator A; : T,M — T, M, ie. Ais a principa{ curvature of f at p
in the normal direction &.
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If f has flat normal bundle it is known that for each p € M, F,(f) is a union of at most
m hyperplanes in the normal plane v,(f) [17], [10]. The origin of this fact can be traced
back to [18]. By Corollary 1.5 in [14], if there is a unit parallel normal field £ for f such
that the shape operator A, has m distinct eigenvalues, then the normal bundle of f is flat.
Also for any k > 2, if there exists locally an orthonormal set of (k — 1) parallel normal fields
&1,...& 1 for f at each point of M, then f has flat normal bundle [17].

In this paper we consider the case where f has a parallel normal field and show that for
k > 2 and for all p € M, each 2-plane in v,(f) which contains the normal line at f(p) in
the direction of this parallel normal field intersects F,(f) in the union of at most m straight
lines. We use this to compare critical points of height and distance functions for f with those
for parallel immersions to f.

2. Parallel immersions and focal sets

Let f : M™ — R™* be an immersion and assume that there exists a parallel normal field
£: M™ — R™* for f. The map

fe: M™ = R™* s defined by fe(p) = f(p) + ().

If f¢ is an immersion, it is called a parallel immersion to f and £ is said to be immersive.

We state the following important relations between f and fe. Formal proofs can be found in
[11], [13].

Theorem 2.1. Let f : M™ — R™* be an immersion and assume that there exists a parallel
normal field for f, € : M™ — R™t*  then

(i) fe is an immersion if and only if, for allp € M, fe(p) & Fo(f),

(ii) vp(fe) = vp(f) for allp € M,
(iii) z € R™* s a focal point of fe with base p if and only if x is a focal point of f with
base p, i.e. Fp(fe) = F,(f) for allp € M.

When f¢ is an immersion, the indez of f¢, ind f¢ is defined to be the total multiplicity of the
focal points of f with base p on the line segment between f(p) and fe(p). As observed in
[16], [2], it follows from the above theorem that this integer is a constant for all p € M. We
also call this integer the index of &.

For a given immersion f : M — R™* we may not have a parallel normal field on M,
even locally. But we can compose f with an inclusion of R™** in R™**+! or with an inverse
stereographic projection from R™t* to S™tk C R™*+*+1 to get a parallel normal field, namely
define

g : MR by g(p)=(f(p),0) and

2f(p)  IfW)I* = 1)
I+ I f)I2+1/"

N}

M —S™* by g(p) = (”f

Then ¢ = (0,0,...,0,1) and §~~= g are parallel normal fields for ¢, g respectively. Now,
for p € M, let @ C v,(g) and @ C v,(g) be 2-planes containing g(p), g¢(p) and g(p), G¢(p)
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respectively. Then one can calculate that @ N F,(g) and Q N F,(j) are either empty or a
union of at most m lines; in fact @ N F,(g) is either empty or a union of at most m parallel
lines and Q N F,(§) can only be the union of m lines (counting multiplicities) intersecting at
the centre of the unit sphere S™*.

The aim of this section is to prove the following theorem which is motivated by the above

two examples. When there can be no confusion we abbreviate v,(f), F,(f) to vp, F).

Theorem 2.2. Let f : M™ — R™* be an immersion with k > 2 and assume that there
exists a parallel normal field for f, &: M™ — R™ . Forp € M, let Q C v, be a 2-subplane
containing f(p) and fe(p). Then either @ N F, = O or Q N F, is the union of at most m
straight lines.

Note that this theorem could be proved from the fact that the shape operator A commutes
with the shape operator for any other normal direction. A more sophisticated method is
to use a partial tube as defined in [3] with type fibre a (k — 2)-sphere with a line as axis.
The axis is defined by the given parallel normal field and the methods of [4] show that this
partial tube has flat normal bundle. The fibres of this normal bundle can be identified with
the 2-planes referred to in the theorem and the lines in these planes together with the axes
of the spheres are the focal sets of the partial tube. For more details on this method and a
generalisation of Theorem 2.2 see [1]. However here we prefer to use a more direct geometrical
approach which throws light on the structure of focal sets, and for this we need the following
two propositions.

Proposition 2.3. Let f : M™ — R™* be an immersion, let p € M and let Q be an n-
subplane of v, through f(p). Then Q N F, is isometric to the zero set in R" of a polynomial
h € Rlty,...,t,] of degree at most m.

Proof. Let p € M, then without loss of generality we can assume that f(p) is at the origin
in R™™*. Let {e1,e,...,e,} be an orthonormal basis of Q. Then y € Q is a focal point of
f with base p if and only if

Y= Xn:tiei and det([ — itiAi) =0
i=1 i=1

where A; : T,M — T, M is the shape operator of f at p in the normal direction e; . So QN F,
is isometric to the zero set of the polynomial h(ty,... ,t,) = det (I -3, tiAZ-). O

P. J. Ryan proved that given a codimension one immersion of a manifold M with unit parallel
normal field £, there exist continuous functions {\; : M — R}i<i<,, such that each A;(p) is
an eigenvalue of the shape operator A, [12]. By a similar technique we prove that in the
higher codimension case, for each p € M, the focal points of f with base p on normal lines
through f(p) vary continuously with respect to the normal direction.

Proposition 2.4. Let f : M™ — R™* be an immersion, let p € M and let Q be a 2-
subplane of v, through f(p) with orthonormal basis {e1,es}. Then there exist continuous
functions {X; : S' = Rli<icm such that, for all 6 € S', \i(0), ..., \n(0) are the eigenvalues
of the shape operator Ay at p in the direction 1(6) = cosfe; + sinfey, and A1(0) > A2(0) >
> Am(0).
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Proof. Let g(t,0) = t™ + a1 (0)t™ ' + - - - + a,p(0) be the characteristic polynomial of A, ).
Consider g(z, 6) as a complex polynomial in z.

For 6y € S', let {11;(f) }1<i<r be the distinct eigenvalues of Any) and let {m;}i<i<, be
their respective multiplicities. So Y ._, m; = m. Assume py(6p) > pa(0o) > -+ > pr(6) -

Let € > 0 be arbitrary, let ¢, = min {¢, 1, §1gnn |14i(80) — 11;(6o)|} and let C; = {z € C :

|2 = pi(0o)| = o} Sid
Clearly g(z,6y) # 0 on C;. Now choose 6y > 0 so that if |6 — 6| < dy then g(z,6) # 0 on
Ci' Now
1 !
my = / g0),,
2mi Je, 9(z,00)
and

(Z7 00) gl(zv 0)

‘L/ (g’(z, o) ¢'(2, 9)>dz g B
2mi Jo, N g(2,600)  9(2,0)/ 1 7 Tieclg(z,600)  g(2,0) 1

When 6 — 6, the right hand side converges uniformly to 0 on C;, thus there exists § < &g
such that |§ — 6| < § implies

gl(za 90) gl(za 9)
g(z, 90) - g(zao) ‘ <t

sup
2€Cy

Hence, as the integral ;- fc oCe ze))dz is the number of zeros of g(z,0) inside Cj, it is

integer valued and is equal to m;.
So [#—6,| < 0 implies that g(z,6) has m; roots inside C;. For each § € S*, let {Xi(6) }1<icm
be the m eigenvalues of A4 with Ay > Ay > --- > A, They are real as A,y is real

symmetric, and {)‘1(90)7 )‘2(90)7 Tty /\m(QO)} = {/'1’1(90)a N2(00)7 e a:uT(QO)}'
So if |0 — 6y] < & then |A;(8) — X;(6o)| < €0 < €. So each ); is continuous. O

Proof of Theorem 2.2. By Proposition 2.3 we can identify @ with R?, f(p) with (0,0) and
F2 = F,NQ with {(z,y) € R* : h(z,y) = 0} where & is a polynomial in 2 variables of degree
< m. By the Unique Factorization Theorem [8] we can write h as

h(z,y) = cH hi(x,y)™
i=1

where c is a real number, each h; is an irreducible polynomial in R[z, y|, for i # j h; is not a
T

factor of h; and m; + me + -+ - +m, < m. Then FpQ is the zero set of []hi(z,y). We know
i=1

that for 7 # j, h; and h; have finitely many intersection points and also each h; has finitely

many singular points [7]. Let W denote the complement in F2 of this finite set of points.
Assume that the factors of h are ordered so that W N h;'(0) # 0 if and only if i =1,... ,s
Then the zero set of H hi(z,y) is a finite set of points, P say, and for i = 1,... , s the zero

= s—|—1
set of each h; is a piecewise smooth curve with finitely many components.
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Fix i € {1,...,s} and let (a,b) € W be such that h;(a,b) = 0 and (a,b) is a regular
point of h;. Then, without loss of generality, we can assume %;’b) # 0, and therefore by
the Implicit Function Theorem we get a smooth function 3 such that h;(z, 3(z)) = 0 and
(z,8(z)) € W for all z € (a — €,a + €) for some € > 0. Define the smooth curve a by
a(z) = (z, B(z)). We will show that the curvature of o, £(z), is zero for all z € (a—¢€,a+e€).

Let ¢ denote the line {f(p) + t£(p) : t € R} and for z € (a — €,a + ¢€) let £, denote the
tangent line to a(a — €, a + €) at a(z).

Figure 1.

Suppose kq (o) # 0 for some zy € (a — €,a + €), then there exists 6 > 0 such that x(x) # 0
for all z € (xg — 0,20+ 0) C (a — €,a + €). Then an elementary calculation shows that
{¢Nly:x € (xg— 0,20+ 3d)} contains an open interval. So, as there are only a finite number
of focal points with base p on £ there exits u € (g — 9,29 + ¢) such that £ N ¢, # () and
(N, ¢ FQ.

Let £ N4, = f(p) + s€(p) = fse(p). Since fs(p) ¢ F, we can use Theorem 2.1 to show
that there exists a neighbourhood U of p in M such that fs|U is an immersion and has the
same focal set as f|U. Thus F2 is the focal set of fy|U at p.

Now as k(u) # 0 there exists v > 0 such that a(u — 7v,u + ) lies on one side of
the tangent line /,, see Figure 1. But, as ¢, C @, it is a normal line to f, at p. So
a(u) = fs (p)+ﬁn(0) for some principal curvature function X of f,¢ as defined in Proposition

2.4, where n(0) = % determines the unit direction of ¢,. But A is not continuous at
¢ since the focal points of f,¢ at p do not change continuously as the normal direction changes
continuously (there is no focal point near «(u) on normal lines moving in one direction away
from ¢,). This contradicts Proposition 2.4 for fy.

Hence k(z) = 0 for all z € (a — €,a + €) and therefore a(a — €,a + €) is a straight line
segment. Since this is in the zero set of h; and h; is irreducible it follows that the zero set of

h; is a straight line, A; say, and degree of h; = 1.
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So the focal set FpQ consists of the focal lines Ay, ..., A; with corresponding multiplicities
mi,...,ms, together with the finite set of points P. Now we are going to show that P = ).

For # € R let ¢y denote the line {f(p) + t(cosfe; + sinfey) : t € R}, where eq, ey is an
orthonormal basis of ) and let

O={0cR:4NP=0 and NA#0, Vi=1,...,s}

Then R\ O is finite and V0 € © the total multiplicity of focal points with base p on £y is > m;.
i=1

S

Hence there is a “focal point at infinity on £,” with multiplicity m — > m;, i.e. the shape
i=1

operator of f at p in direction 1(f) = cosfe; + sin fe; has an eigenvalue 0 with multiplicity

S
m — Y_m;. It follows from Proposition 2.4 that the line at infinity in @ (extending @ to a
i=1

projective plane) is a focal line with multiplicity m— > m;, and V@ € R, the total multiplicity
i=1
of the eigenvalues of A, at p arising from the focal lines is m. (Note if N A; = () then the

multiplicity m; transfers to the eigenvalue 0). Hence P = ). Thus if F,;? # () it is a union of
straight lines. O

Note that we need only the existence of a parallel normal field in a neighbourhood of p to
obtain this result.

3. Parallel immersions, distance functions and height functions

In this section we obtain relations between the critical points of distance or height fuctions
for f and those for f;. As an application we prove the following theorem, which generalises
Theorem 3.6(i) from [2].

Theorem 3.1. Let f : M™ — R™* be an immersion of a compact manifold, and suppose
that there exists an immersive parallel normal field for f with odd index. Then the Fuler
characteristic x(M) = 0.

Definition 3.2. Let f : M™ — R™% be an immersion, let € : M™ — R™* be an immersive
parallel normal field for f and let x € R™*. The distance functions L, : M™ — R,
Ly : M™ — R for f, fe respectively are defined by Ly (p) = ||z — f(p)[1%, La(p) = |z — fe(p)|?
for allp € M.

Theorem 3.3. Let f: M™ — R™* be an immersion, let £ : M™ — R™* be an immersive
parallel normal field for f with index X and let x € R™™*. Then p is a (nondegenerate)critical
point of L, if and only if p is a (nondegenerate)critical point of L,. Further, if p is a
nondegenerate critical point of L, with index p then 3 £ € N, max{0,A + p—m} < { <
min{\, u} such that p is a nondegenerate critical point of L, with indez \ + uw—20.

Proof. 'We know that p is a critical point of L, if and only if € v,(f), and further p is
nondegenerate if and only if © ¢ F,(f) [9]. The proposition then follows immediately from
Theorem 2.1 which states that v,(f) = v,(fe) and F,(f) = F,(fe).
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So now assume that p is a nondegenerate critical point of L, with index p. We will
write ac for the open line segment between points a and ¢ in v,(f) and #ac for the total
multiplicity of focal points with base p on ac.

To simplify the notation we will write a = f(p) and ¢ = fe(p). Now z € v,(f) and
#xa = p [9]. Also, since ind f¢ is A we have #ac = \.

If  is on the line through f(p) and f¢(p), then the index of p as a nondegenerate critical
point of L, is

Ap if ze{f(p)+t&(p):t <0}
#oe=q A—p if z€{f(p)+t&(p): 0 <t <1}
p—A if ze{f(p)+t&(p):t>1}
which corresponds to [ = 0, i or A respectively.

Otherwise, if z is not on this line, consider the triangle, A, with vertices z, f(p),fe(p) in

v, as in Figure 2, and let () be the 2-subplane of v, which contains A.

Figure 2.

We know by Theorem 2.2, that () N F), is a union of at most m lines counting multiplicities.
Since none of the vertices of A are in Fj, it follows that none of the edges of A can be part
of a focal line, and therefore any focal line which intersects one edge of the triangle must
intersect another edge.

Let ¢ be the total multiplicity of focal lines which intersect both za and ac. So 0 < £ <
min{\, }. Then p — £ lines intersect both za and zc¢, and A — £ lines intersect both ac and
zc . Therefore #zc = (1 —£) + (A —€) = A+ 1 — 2¢ < m. Hence the index of p as a critical
point of Ly is A + p — 2¢.

Also the total multiplicity of focal lines which intersect A is £4+(A—£)+(u—£) = A+pu—1£) <
m. Hence (A 4+ pu—m) < /L. O

We next prove corresponding results for height functions.

Definition 3.4. Let f : M™ — R™* be an immersion, let £ : M™ — R™* be an immersive
parallel normal field for f and let z € S™*=1. The height functions H, : M™ — R, H, :
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M™ — R for f, fe respectively are defined by H,(p) =< z, f(p) >, f]z(p) =< 2, fe(p) > for
allpe M.

Theorem 3.5. Let f : M™ — R™* be an immersion, let £ : M™ — R™* be an immersive
parallel normal field for f with index \ and let z € S™*~1. Then p is a (nondegenerate)
critical point of H, if and only if p is a (nondegenerate) critical point of H,. Further, if pis
a nondegenerate critical point of H, with index u then 3¢ € N with max{0, A + p — m} <
£ < min{\, pu} such that p is a nondegenerate critical point of H, with index \ + w—20.

Proof. It is known that p is a critical point of H, if and only if f(p) + z € v,(f) [6]. This
holds if and only if f(p) + &(p) + 2 = fe(p) + 2 € v (f) = vp(fe), that is, if and only if p is a
critical point of H,.

Now assume that p is a nondegenerate critical point of H, with index pu. Let f~(p) =
{f(p) +tz:t <0} and f*(p) = {f(p) +tz: t > 0} with corresponding definitions for ;" (p)
and f¢(p). Then, with the notation used in Theorem 3.3, f(p) + 2 € v,(f), #f (p) = p and

#f*(p) =m — p. Also we have #ac = A where a = f(p) and ¢ = fe(p).

If £(p) = tz for some t € R, then #f; (p) + #f(p) = #f (p) + #fT(p) = m, since
F,(fe) = F»(f) and the line through f¢(p) and f¢(p) + z coincides with the line through f(p)
and f(p) + z. Hence p is a nondegenerate critical point of H, and its index is

A+p ift>0
#fe (0) = {u Aift<0 7

which correponds to £ = 0, A in the statement of the theorem.

Otherwise, if {(p) # tz for all t € R, let ) be the 2-subplane of v, which contains
f(), f(p) + z and fe(p) as in Figure 3.

Since #(f_(p) U f+(p)) = m it follows from Theorem 2.2 that @ N F}, is a union of
m lines counting multiplicity and each line intersects the line through f(p) and f(p) + 2
transversally and hence intersects the line through f¢(p) and f¢(p)+z transversally. Therefore
#(fg (p) U fgL (p)) = m and p is a nondegenerate critical point of H,.

Let ¢ be the total multiplicity of focal lines which intersect both f~(p) and ac. So
0 < ¢ < min{\, pu}. Then these lines intersect f;’(p) The remaining g — A lines which

intersect f(p) also intersect f; (p). Since A lines must intersect ac it follows that A — £ lines
intersect f*(p) and fe (p)- So 0 < A— £ < m— p, which gives £ > A+ p —m.

We then get that #f, (p) = (10— £) + (A — £) = A+ p — 2¢. Hence the index of p as a
critical point of H, is X + p — 20

If we start with a nondegenerate critical point p of ﬁz, then applying the above argument
to fe and (f¢)_¢ = f shows that p is a nondegenerate critical point of H,. O

Proof of Theorem 3.1. We are now assuming that M is compact. There exists z € S™*++1
such that H, is a nondegenerate height function for f. Then by Theorem 3.5, H, is a
nondegenerate height function for fe. Let C), (resp. D,) denote the number of critical points
of H, (resp. f]z) with index p. By Theorem 3.5, since A is odd, p is an even (resp. odd)
indexed critical point of H, if and only if p is an odd (resp. even) indexed critical point of
H,.
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Figure 3.

Therefore

ZCN:ZDN and ZCN: ZDN'

u even ©odd u odd u even

Now, by the Weak Morse inequalities [9],

X(M):Z(_l)ucu = ZCM_ZCu: ZDM_ZDN

=0 u even w odd u even u odd
= Z C,— Z C, (from the above relations)
u odd u even
= —x(M).
Hence x (M) = 0. O

4. Parallel immersions, tightness and tautness

Finally, in this section we draw some conclusions from the hypothesis that a taut or tight
immersion has an immersive parallel normal field.

Proposition 4.1. Let f : M™ — R™* be an immersion of a compact manifold and sup-
pose f has an immersive parallel normal field with index X\. Then, Yu € {0, \,m — X\, m},
any nondegenerate distance or height function for f has a critical point with index p.

Proof. Let H, be a nondegenerate height function for f, for some z € S™**~1. Since M is
compact, H, and H, have critical points with indices 0 and m. By Theorem 3.5 applied to
fe and (fe)—¢ = f, if p is a critical point of H, with index 0 (resp. m) then p is a critical
point of H, with index A corresponding to £ = 0 (resp. m — A corresponding to £ = \).
Likewise using Theorem 3.3 a similar argument applies to distance functions. O
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Corollary 4.2. Let f : M™ — R™* be an immersion of a compact manifold and let
0 < A < m. If there exists a nondegenerate distance (resp. height) function for f which has
no critical point with index X\ then there does not exist an immersive parallel normal field for
f with index A nor with index m — .

Definition 4.3. The Morse number v(M) of a manifold M is defined by
v(M) = inf { Z Ci(@) : « is a nondegenerate function on M}
A=0

Then an immersion f : M™ — R™* s taut (resp. tight) if every nondegenerate distance
(resp. height) function has v(M) critical points.

In particular if the number of critical points of every distance (resp. height) function is equal
to the sum of Betti numbers of M with respect to some field then f is taut (resp. tight) by
using the Weak Morse Inequalities [9].

Proposition 4.4. Let f : M™ — R™* be an immersion. Suppose that there exists an
immersive parallel normal field for f, & : M™ — R™* . Then f is taut (resp. tight) if and
only if fe is taut (resp. tight).

Proof. This is immediate from the Theorems 3.3 and 3.5 since L, and ﬁz (resp. H, and

A

H,) have the same number of critical points. O

Proposition 4.5. Let f : M™ — R™* be a tight or taut immersion of a compact manifold
such that f has an immersive parallel normal field with index A for some 0 < A\ < m. Then
(M) > 4.

Proof.  This is a straightforward application of Proposition 4.1. Note that if A = m — A
then H, must have 2 critical points with index A corresponding to an index 0 and an index
m critical point of H,. Similarly for L,. O

Finally we consider a 2m-dimensional, compact, (m — 1)-connected manifold M. The diffeo-
morphism types of such taut submanifolds are determined in [15] . Here we use the methods
of [5].

Theorem 4.6. Let f : M?™ — R*™** be a substantial taut embedding of an (m — 1)-
connected, compact, 2m-dimensional manifold such that f has a parallel normal field & then
either k =1 or f(M) C S?m+k=1,

Proof. Suppose that £ > 1 and let p € M. Since f is substantial every normal line
through f(p) meets the focal set F, [5]. Further as each distance function for f can only
have nondegenerate critical points with index 0, m or 2m it follows that on each normal line
through f(p) there can be either one focal point with multiplicity m or 2m, or two focal
points each with multiplicity m. Now let Q C v, be a 2-subplane which contains f(p) and
fe(p). Then by Theorem 2.2, @ N F,, C v, is a union of lines, and by the above comments it
must be two intersecting lines each with multiplicity m. Hence the point of intersection of
the two lines is an umbilic in F,,. Thus f is spherical [5]. O
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Theorem 4.7. Let f : M*™ — R*™** be a substantial taut embedding of an (m — 1)-
connected (not m-connected) compact manifold such that f has flat normal bundle then k < 2
and if k =1, f has an immersive parallel normal field with index m.

Proof. As f has flat normal bundle it follows that for all p in M, F}, is the union of at most
2m hyperplanes in v, [10].

For k£ > 2, F,, must consist of 2 intersecting hyperplanes in v, each with multiplicity m
otherwise, as in the proof of Theorem 4.6, f would not be substantial or there would exist
a distance function for f which has a nondegenerate critical point with index not equal to
0, m or 2m. Further if k£ > 2 there is a line [ in the intersection of the two hyperplanes and
then the line !’ in v, through f(p) and parallel to the line { has no focal point on it. This
contradicts f is substantial. Hence k£ < 2.

Now assume k£ = 1 and let n : M?™ — R?>"*! be the inward pointing unit normal.
For each p € M, consider the inward pointing normal ray v,” = {f(p) +tn(p) : t > 0}. As
in the proof of Theorem 3.8 of [5], F, N I/;_ # () and consists of at most two points each
with multiplicity m. Let f(p) + t1(p)n(p) be the first point of F, N7, and, if it exists, let
f(p) + ta(p)n(p) be the second such point, so t;(p) < t2(p). Put

d = sup{t:(p) :p € M}
= inf{ta(p) :pe M} .

It is shown in [5] that 0 <d<e <oo. Now choose c€R such that d<c<e, then for all pe M,
f(p) + cen(p) ¢ F,. Hence € = cn is an immersive parallel normal field with index m. O
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