Beitrige zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 41 (2000), No. 2, 537-555.

Pairwise Intersections of Stupecki Type
Maximal Partial Clones

Lucien Haddad! Dietlinde Lau

Département de Mathématiques et d’Informatique, Collége militaire royal du Canada
boite postale 17000, STN Forces, Kingston ON K7K 7Bj Canada

Fachbereich Mathematik, Universitat Rostock
Universitatsplatz 1, 18055 Rostock, Germany
e-mail: dietlinde.lau@mathematik.uni-rostock.de

Abstract. Let £ > 2 and k be a k-element set. We study the pairwise intersections
of all maximal partial clones of Stupecki type on k. More precisely, we show that
with one exception, if M and M’ are two strong maximal partial clones of Stupecki
type on k, then M N M’ is covered by both M and M'. We also show that the
situation is quite different if the non-strong maximal partial clone on k is involved
in the intersection.

1. Introduction

Let k > 2and k := {0,...,k—1}. Denote by Par(k) the set of all partial functions and Op(k)
the set of all (total) functions on k, that is Op(k) consists of all everywhere defined functions
on k. A partial clone on k is a subset of Par(k) closed under composition and containing
all the projections on k. If a partial clone is contained in Op(k), then it is called a clone on
k. For example if p is any relation on k, then the set pPol p (Pol p) of all partial functions
(of all functions) that preserve p is a partial clone (a clone) on k (this and other concepts
will be precisely defined in Section 2). The partial clones on k (the clones on k), ordered by
inclusion, form a dually atomic lattice, that is a bounded lattice where every proper partial
clone (proper clone) can be extended to a maximal one and contains a minimal one (see
e.g., [2], [7] and [15]). The foundation of a partial clone is the set of its unary functions. A
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famous result on clones whose foundation is Op(l)(k), the set of all unary functions on k,
was established by Stupecki in 1939 ([20]). This result is known as the Stupecki criterion and
may be formulated as follows. For 3 < h <k, let
= {(®1,...,2) €K" | 7; = z; for some 1 < i < j < h}.

Then Pol 7, is the unique maximal clone that contains the set Op™®) (k) of all unary functions
on k. Motivated by the remarkable Stupecki criterion, we call a partial clone on k of Stupecki
type if it contains the set Op!)(k) of all unary functions on k.

In [14], A.I. Mal'tsev gives an excellent proof of the Stupecki criterion and moreover
improves it by showing that

Pol 73 C ... C Pol 7, C Op(k)
is the unique unrefinable finite chain of clones containing Pol 73. Later on Burle in [4] uses
Mal’tsev results to show that the interval of all clones of Stupecki type on k is simply the
chain
(0pM(k)) € Pol R, C Pol 73 C ... C Pol 73, € Op(k),

where (Op”)(k)) is the clone generated by the set Op’)(k) and

Ry ={(z,y,2,t) ek*|[r=yand z=t]or [t =z and y =t] or [z =t and y = 2]}.
As OpV (k) is a finite set, one can easily obtain (e.g., see [3]) that every clone of Stupecki
type on k is finitely generated.

The situation is quite different for the partial case. Denote by Mj the set of all partial
functions that are either everywhere or nowhere defined on k. It is shown in [7] that this is
the unique non-strong maximal partial clone on k and it is clearly of Stupecki type. A partial
clone is strong if it is closed under formation of suboperations. Now from the description
of all maximal partial clones on k given in [6] and [8], one can easily see that there are
k strong maximal partial clones of Stupecki type on k, they consist of pPol R;, pPol R,,
pPol 73, ..., pPol 7%, where
Ry ={(z,y,2,t) €ek*|[zr=yand z=t] or [xt =1 and y = 2]}.

We point out here that these results were found independently by Romov in [17] and [19].
Moreover it is shown in citeinfinite that M) is the only finitely generated maximal partial
clone of Stupecki type on k. Finally, it is shown in [10] that for & > 2, the interval of all
partial clones of Stupecki type on k has the cardinality of the continuum.

In this paper, we focus our attention on maximal partial clones of Stupecki type over k.
We study the pairwise intersection of such clones and show that with one exception, the
intersection of any two strong maximal partial clones of Stupecki type on k is covered by
both these two maximal partial clones. The exception is the case of the two maximal partial
clones pPol R; and pPol R, since pPol Ry NpPol R; is not covered by pPol R,. Furthermore,
we show that such results do not hold if the non-strong maximal partial clone My on k is
considered. Here we show that if M is a strong maximal partial clone of Stupecki type, then
the interval of partial clones [My N M, M] is of continuum cardinality on k. A part of the
proof here is based on results established in [1] and [10].
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2. Preliminaries

Let & > 2 be an integer and k := {0,1,...,k — 1}. For a positive integer n, an n-ary partial
function on k is a map f : dom (f) — k where dom (f) C k" is called the domain of f. Let
Par(™ (k) denote the set of all n-ary partial operations on k and let Par(k) := U Par™ (k).
n>1
Moreover set Op™ (k) := {f € Par™ (k) | dom (f) = k"} and let Op(k) := J Op™(k), i.e.,
n>1

Op(k) is the set of all total functions on k. In the sequel we will say “function” for “total
function”.

For every positive integer n, and every 1 < i < n, we denote by e the n-ary function
i-th projection defined by e (z1,...,z,) := x; for all (zy,...,z,) € k™. Furthermore let

Jpi={el |1 <i<n< oo}
be the set of all projections on k.

Definitions. 1. A partial clone on k is a composition closed subset of Par(k) containing
the set of all projections J;. For a formal definition, we refer the reader to one of the papers
[2], [6] or [8].

2. A partial function g € Par™ (k) is a subfunction of f € Par™ (k) (in symbols g < f
or g = fldaom (¢)) if dom (g) C dom (f) and g(d@) = f(d@) for all @ € dom (g). A partial clone
C is strong if it contains all subfunctions of its partial functions, i.e., if for every f € C and
g € Par(k), g < f = g € C. It is well known (e.g., see [3]) that a partial clone C is a strong
partial clone if and only if it contains the set of all partial projections on k.

3. Let h>1 and p be an h-ary relation on k, (i.e., p C k"), and let f be an n-ary partial
function on k. Denote by M (p, dom(f)) (p # 0) the set of all Axn matrices M whose columns
M,; € p, for j = 1,...,n and whose rows M;, € dom (f) for i = 1,...,h. We say that
f preserves p if for every M € M(p,dom(f)), the h-tuple f(M) := (f(Mis), ..., [(Mpi)) €
p. Set pPol p := {f € Par(k) | f preserves p} and Pol p = pPol p N Op(k) (i.e., Pol p is
the set of all (total) functions that preserve the relation p). It is well known that for every
relation p, pPol p (Pol p) is a strong partial clone (a clone) on k. Now an h-ary relation
p is said to be repetition-free if for all 0 < i < j < h — 1, there exists (ag,...,an-1) €
p with a; # a;. Moreover p is said to be irredundant if it is repetition-free and has no
fictitious components, i.e., there is no ¢ € {0,...,h — 1} such that (ag,...,ap_1) € p =
(agy- .-y Qi—1,%,Qix1,---,ap_1) € p for all x € k. Tt is easy to see that if u is any relation,
then one can find an irredundant relation p such that pPol u = pPol p (see [8] for details).

4.  The partial clones on k, ordered by inclusion, form an algebraic lattice ([17]) in which
every meet is the set-theoretical intersection. A partial clone C' covers a partial clone D if
D C C and the strict inclusions D C C' € C hold for no partial clone C’ on k. Furthermore
a partial clone M is a mazimal partial clone if M is covered by Par(k). For F' C Par(k),
the partial clone (F') generated by F, is the intersection of all partial clones containing the
set F'.

5. Let h > 2 and let Ej, denote the set of all equivalence relations on the set {1,...,h}.
For € € E}, put
A, ={(x1,...,21) €K | (4,5) € e = ; = 1},
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thus A, consists of all h-vectors over k constant on every equivalence class of €. An h-ary
relation p is diagonal if there exists ¢ € Ej, such that p = A.. It is well known (see e.g. [8])
that a non-empty relation A on k is a diagonal if and only if pPol (\) = Par(k).

6. A partial clone is called of Stupecki type if it contains all unary (total) functions on k
(see [3], [10] and [18]). It is shown in [10], that if A is an irredundant relation on k, then
pPol X is a Shupecki type partial clone if and only if A is a union of diagonal relations. Such
relations are called primitive relations in [8] and [10].

For k > 2, let My := Op(k) U {p,, | n > 1}, where p, is the n-ary partial function on k with
empty domain. Notice that M is a partial clone of Stupecki type of k, however it is not a
strong partial clone and cannot be written as pPol p, where p is some relation over k (see
[7]). We need the following relations. For 3 < h < k, let
= {(z1,...,2n) €K" | {x1,..., 20} < h -1},
R ={(z,y,2,t) €ek*|[z=yand z=t]or [x=zand y =t] or [xt =t and y = 2]},

and
Ry ={(z,y,2,t) €k*|[r=yand 2 =t] or [t =t and y = 2|}.
Recall that an h-ary relation p on k is totally symmetric if for every (zy,...,z,) € k" and
every permutation 7 on the set {1,...,h}, we have
(w1,...,21) € p = (Tr1)s - - - Tn(n)) € p-
Notice that Ry, 73,..., 7T, are totally symmetric relations on k. This fact will be used later

on in this paper.

The following result comes from [8] (see also [17]). It gives a description of all maximal
partial clones of Stupecki type on k.

Theorem 1. Let k > 3. Then there are exactly k+1 maximal partial clones of Stupecks: type
on k, namely My, pPol R, pPol Ry, pPol 73, ..., pPol 7%.

We want to study the pairwise intersections of maximal partial clones of Stupecki type over
k. We will employ the Definability Lemma shown in [17] (see Lemma 1.7 in [8] for a weak
version of it). We need the following terminology to state it:

Let hy,...,h, > 1 be integers and py,..., 0, be n relations on a set B, each of arity h;,
i=1,...,n. We say that the family F := {p1,...,0,} covers the set B if for every = € B,
there is an ¢ € {1,...,n} such that = appears in at least one h;-tuple of the relation p;.

We have

Lemma 2. [17] (Definability Lemma) Let hy, ..., h, > 1, t > 1 be integers, p; be an h;-ary
n

relation on k, 1 = 1,...,n and X\ be a t-ary irredundant relation on k. Then ﬂ pPol p; C

=1
pPol X if and only if there are n auziliary relations o1, ..., on on the set {1,...,t}, each of
arity h;, such that the family F = {o1,..., 0.} covers the set {1,...,t} and
A={(z1,..., 1) €K | (xijl-,...,a:ii‘) € pj forall (i,...,4,) € 0, j=1,....,n}. O
J
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Example. Let p; be a binary and p, be a ternary relation on k. Suppose that the 5-ary
irredundant relation \ is defined by

Ai={(z1,...,25) €K | (71,22) € p1, (z3,73) € p1, (T2, T5,T4) € p2},
then pPol py N pPol p, C pPol A\. Here n = 2,51 = 2,750 = 3, o1 = {(1,2),(3,3)} and
0o = {(2,5,4)}.

We will also employ the following result established by Romov.

Lemma 3. [17]. Let C be a strong partial clone on k. There erists a non-empty family of
irredundant relations {p; | i € I} such that C = (] pPol p;.

iel
Our study is divided into two main parts. In the first part we consider only strong maximal
partial clones of Stupecki type, while in the second part the intersection of these partial clones
with M}, is considered.

3. Intersections of strong partial clones

Consider two (distinct) maximal partial clones pPol p and pPol § and suppose that

[pPol p N pPol § C pPol A\] = [pPol A C pPol p or pPol A = pPol 4]
holds for every irredundant relation A. Then the partial clone pPol p N pPol # is cov-
ered by the maximal partial clone pPol . Indeed let C' be a partial clone on k such
that pPol p N pPol § C C' C pPol . As both pPol p and pPol # contain all partial pro-
jections, the same holds for C' and so C' is a strong partial clone. By Lemma 3, there

exists a family of irredundant relations {p; |i € I} such that C' = [|pPol p;. Then
iel
pPol p N pPol 8 C pPol p; and by the above property we have pPol p; C pPol p or pPol p; =
pPol 6 for each 7+ € I. If pPol p; = pPol 8 holds for all + € I, then C' = pPol §. On the
other hand, if pPol p; C pPol p for some i € I, then as C' C pPol § we get C' = ﬂ pPol p; C
iel
pPol p N pPol # and consequently C' = pPol p N pPol §. This shows that
[pPol p N pPol 8 C C C pPol ] = [C = pPol p N pPol 0 or C' = pPol 0]
holds for every partial clone C on k, i.e., the partial clone pPol p N pPol 6 is covered by the
maximal partial clone pPol . This fact will be used later on in this paper.

In the sequel we will assume £ > 3. We start with the following

Theorem 4. Let 9o € {Ry, Ry}, 0 € {Ry,73,...,7} with p # 6. Then the partial clone
pPol p N pPol @ is covered by the mazximal partial clone pPol 6.

Proof. Let t > 1 and A be a t-ary irredundant relation such that
pPol p N pPol 8 C pPol A

By Lemma 2, there is a 4-ary relation p and an f-ary relation ¥, (where £ = 4 if § = R; and
£ =hif 0 =7, for some h =3,...,k), with {p, 9} covering the set {1,...,¢} and such that

A={(z1,...,2t) €K' | (zi),...,xi,) € pforall (i1,...,14) €0

and (zj,,...,z;) €0 for all (jy,...,J.) € V}.

Note that if o = ), then )\ can be defined from # and by Lemma 2, pPol § C pPol )\, thus

pPol # = pPol A\ by the maximality of pPol . So assume p # (). We have
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Claim 1. If |[{i1,...,i4}| < 3 for all (iy,...,14) € p, then pPol A = pPol 6.

Proof (of the claim). Let (i1,...,44) € o be such that |{i1,...,44}| < 3. Since X is repetition-
free, the inequality [{iy,...,44}| < 3 implies that the condition (z;,,Zs,, Zis, i,) € p is su-
perfluous. This fact is shown in detail in [8]: Proposition 3.8 for the case p = Ry and
Proposition 3.10 for p = R;. We give a sketch of the proof for the case p = R;. Suppose
[{i1,...,14} < 3. Since R; is totally symmetric, we may assume i; = i9. If i3 # i4, then the
condition (x;,, z;,, Tis, Ti,) € Ry gives z;, = x;, for all (z1,..., ;) € A, contradicting the fact
that A is an irredundant relation. On the other hand if i3 = i4, then (z;,, z;,, Ty, i,) € Ry
reduces to (z;,, i, iy, Tiy) € Ri1, which holds for every z;,z;, € k, i.e., the condition
(%iy s Tiy, Tig, Tiy) € p is superfluous. Now if [{i1,...,i4}| < 3 holds for all (i1,...,14) € p,
then A may be defined from 6 and so pPol # C pPol A\. Again as pPol # is a maximal partial
clone, we deduce that pPol § = pPol . O

We now suppose that the t-ary relation A satisfies pPol p N pPol § C pPol A and pPol A #
pPol 8. According to Claim 1, the 4-ary relation g contains at least one 4-tuple (i1, ..., 1)
with [{i1,...,44}| = 4. Thus t > 4. For notational ease we assume that (1,2,3,4) € o. We
have

Claim 2. Let p = Ry. Then there are two 0-1 t-vectors a = (ai,...,qa;) and b =
(b1, ...,b;) € X such that (a1, ...,a4) # (b1,...,bs) and (ay,...,a4), (b1,...,bs) € {(0,0,1,1),
(071’170)’(07 1’07 1)}'

Proof (of the claim). Since ) is repetition-free, there is a ¥ = (uq,...,u;) € A with uy # us.
As (uy,...,u4) € Ry, we have either [u; = uz and uy = wuy] or [uy = uy and uy = us).
Define the unary partial function ¢ by setting dom (¢) = {uq,...,u}, p(u) = 0 if u #
us and @(uz) = 1. As A is a primitive relation, ¢ € pPol A and so (¢(u1),...,¢(u)) €
A and satisfies (p(u1),...,p(us)) € {(0,1,0,1),(0,1,1,0)}. In a similar fashion, one can
use the fact that A admits two t-vectors v = (vi,...,v),w = (wy,...,w;) with v # vs
and w; # wy, to show that there are two 0-1 t-vectors (z1,...,2¢), (y1,--.,¥:) € A such
that (z1,...,24) € {(0,1,1,0),(0,0,1,1)} and (y1,---,y4) € {(0,1,0,1),(0,1,0,1)}. As the
three sets {(0,1,0,1),(0,1,1,0)},{(0,1,1,0), (0,0,1,1)} and {(0,0,1,1),(0,1,0,1)} have no
common element, the result follows. Il

Using the definition of Ry, we can show in a similar fashion the following

Claim 2°. Let p = Ry,. Then there are two 0-1 t-tuples ¢ = (ai,...,a;) and b
(by,...,b;) € X such that ay =ay =0; a3 =a4s =1 and by = by =0; by = b3 = 1.

oo

We turn to the proof of our theorem. We have
Claim 3. pPol A C pPol p.

Proof (of the claim). We argue the contrapositive. Suppose pPol A € pPol p and let ¢ €
pPol A\ pPol p be n-ary. Then there is a 4 x n matrix M = [M;;] € M(p, dom (¢)) such that
(p(Myy), o(May), o(Msy), o(Masy)) € p. Put D := {My,, Ma,, Ms,, My, } and let ¢’ := ¢|p.
As pPol ) is a strong partial clone, ¢’ € pPol A. Define n binary partial functions g, ..., g,
by

dom (g1) = ... =dom (g,) = {(0,0),(0,1),(1,1),(1,0)},
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and
9:(0, 0) M;;
gi(Oa 1) My; .
= foralli=1,...,n.
gi(1, 1) Ms;
gi(la 0) My;

As (M1i7 M2i7M3i)M4i) € p, we have that |{M1i7 M2iaM3i;M4i)}| S 2 (recall that P is either
the relation R; or Ry). Consequently [Im (g;)| < 2 and so g; € pPol 7, for all i = 1,...,n,
and all h =3,...,k. We treat the cases p = R; and p = R, separately.

Case 1. p = Ry. In this case § € {r3,...,7}. First note that Ry is a totally symmetric
relation, that is
(.’El, R ,.’E4) € R <— (mw(l), .. ,CCW(4)) € Ry,

for every permutation 7 on the set {1,...,4}. Since (My;, My;, M3;, My;) € Ry and Ry is
totally symmetric, we see that g; € pPol R, for all : = 1,...,n. Consequently g; € pPol pN
pPol 6, and thus g; € pPol A, for all = 1,...,n. It follows that the binary partial function
© = ¢'[g1,.-.,9n] satisfies g € pPol \. Note that dom (¥) = {(0,0),(0,1),(1,1),(1,0)}
and 9(0,0) = ¢(M1.), 9(0,1) = p(Ma.), B(1,1) = ¢(Ms,) and B(1,0) = ¢(My,). Denote by
N :=a | b] the 0-1 matrix of size ¢ x 2 with first column N,; = @ and second column N,, = b,
where @ and b are constructed in Claim 2. Since dom (@) = {(0,0), (0,1), (1,1), (1,0)}, all
rows of the matrix N belong to the domain of . Moreover as a,b € \, we have N €
M()‘a dom (@)) Now (@(Nl*)a e a@(NAL*)) = (QO(MW(I)*)’ QO(MW(Q)*)a SO(MW(?:)*)a SO(MW(4)*)) for
some permutation 7 on the set {1,...,4}. Since R; is a totally symmetric relation and since
(@(Ml*), (,D(MQ*), QO(M?,*), QD(M4*)) € Rl, we get (@(Nl*), Cen ,@(NAL*)) € Rl. It follows that
(®(N1x)y - - -, B(Ni) € A contradicting @ € pPol .

Case 2. p = Ry. In this case § € {R1,73,...,7:}. As in Case 1, one may use the symmetries
of Ry and the fact that (My;, My;, M3;, My;) € Ry to show that g; € pPol Ry N pPol Ry, for
all = 1,...,n. Consequently, for p = Ry and 0 € {Ry,73,...,7x}, we have g; € pPol X for
all 2 = 1,...,n. The rest of the proof is similar to the one given for the Case 1, with the
difference that (P(Ni4), ..., ?P(Nu)) = (@(Mis), p(Mas), o(Ms,), p(My,)) in this case. d

From Claim 3 we deduce that for every p € {Ry, Ro}, 0 € {Ry,73,...,7c} with p # 6, the
inclusions pPol p N pPol # C C C pPol § hold for no partial clone C'. This concludes the
proof of our theorem. Il

Remark. From Theorem 4, we have that the partial clone pPol R; N pPol R, is covered by
the maximal partial clone pPol R;. One can easily verify that this results holds for k = {0, 1}.
The proof given above fails for the case p = R; and # = R,. Indeed there is no guarantee
that the partial functions g; defined in Claim 3 above preserve the relation R,. In fact the
dual result for Ry does not hold, indeed there is at least one partial clone that strictly lies
between pPol R; N pPol Ry and pPol R,. To show this, we define the 7-ary relation
A= {(x1,...,27) €K' | (71,29, 73,74) € Ry, (71, 22,75, T6) € Ry and (2, T4, Tg, T7) € Ry }.
Then from Lemma 2 we have pPol R, NpPol Ry C pPol A. Define the ternary partial function
¢ by setting
dom (¢) :={(1,0,0),(0,1,0),(0,0,1),(1,1,1)},
and
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©(1,0,0)
©(0,1,0)
©(0,0,1)
e(1,1,1) 1
Then clearly ¢ € pPol R;. The mathematical software Maple V was used to check that there
is no 7 x 4 matrix A with rows from the set {(1,0,0,0), (0,1,0,0),(0,0,1,0),(1,1,1,1)} and
such that the first three columns of A are in A while the fourth is not, thus ¢ € pPol A.
Consequently pPol A # pPol R; and in view of the Theorem 4 we have pPol A\ C pPol R,.
Define now the 4-ary partial function ¢ by
dom () := {(0,0,0,0), (1,0,1,0), (0,0,1,1), (0,1,1,0), (1,0,0,1), (1,1,1,1), (1,1,0,0)}

and

0
0
0

— — — — T —
Il
_ o O O O

w L ) 1

From the above matrix we see that ¢» ¢ pPol A (notice that (1,0,0,0,0,1,1) ¢ X since
(1,0,0,0) ¢ Ry). We used Maple V to check that there is no 4 x 5 matrix with all rows from
the set

{(07 07 07 07 0)7 (170’ 1707 0)7 (0’ 0’ 17 170)7 (OJ 17 ]‘707 O)’ (1’07 07 ]‘7 1)7 (17 17 ]" ]" )’ (]'7 17070’ 1)}

and such that its first 4 columns belong to R, while the fifth row does not, thus ¢ € pPol R,.
This shows that pPol Ry N pPol Ry C pPol A C pPol R;.

We now focus our attention on the family of maximal partial clones {pPol 73, | 3 < h < k}.
We have

Theorem 5. Let h € {4,...,k}, 0 € {R1, Ry, 73,...,7h_1}. Then the partial clone pPol 7, N
pPol 0 is covered by the maximal partial clone pPol 8. Moreover for i = 1,2, the partial clone
pPol 73 N pPol R; is covered by the mazximal partial clone pPol R;.

Proof. Let 3 < h <k, 0 € {Ry,Ry,73,...,7h_1} if h > 4 and 0 € {Ry, Ry} if h = 3. Let
¢ € pPol 8\ (pPol 7, NpPol #) be n-ary. As 73, and € are primitive relations, n > 2. Moreover
since ¢ & pPol 73, there is an h x n matrix M = M,; € M(r,,dom(¢p)) such that the h-
vector (o(Miy), ..., 0(Mpy)) & . Thus [{p(Miy), ..., o(My)}| = h and so the o(M;,) are
pairwise distinct. We show that ((pPol 7, N pPol ) U {¢}) = pPol §. Let ¢; be the n-ary
partial function defined by dom (¢1) = {M,, ..., My} and ¢y (M) = j—1,for j=1,...,h.
We have

Claim 1. ¢; € ((pPol 7, N pPol 0) U {p}).
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Proof (of the claim). Since {(pPol 7, NpPol #) U{¢}) is a strong partial clone, it contains the
partial function ¢’ := ¢|p where D := {M,,..., My.}. Let a be the unary partial function
defined by dom (a) = {@(Miy), ..., 0(Mps)} and a(p(M;,)) :=j—1forall j=1,...,h. As
pPol 7, N pPol # contains all unary partial functions, we have « € ((pPol 7, N pPol §) U {})
and so ¢; := «a[¢'] € ((pPol 7, N pPol A) U {¢}). 0

Claim 2. The partial clone ((pPol 7, NpPol 8) U{}) contains an n-ary partial function @
that satisfies dom (@) C {0,...,h —2}", |dom (P)| = h and Im (@) ={0,...,h — 1}.

Proof (of the claim). Let j € {1,...,h} and M,; = {My,,..., M};} be the j-th column of
the matrix M. Since M,; € 7, we have [{My;,..., Mp;}| < h — 1, and so one can define
a surjective unary function «; : {0,...,h — 2} — {My;,..., My;}. As pPol 7, and pPol 6
are Stupecki type partial clones, we have «; € pPol 7, N pPol 6. Let B;; € {0,...,h — 2}
be such that o;(B;;) = M;; for i = 1,...,n and j = 1,...,h. Consider now the n-ary
partial function @ := ¢1[a1,...,0,]. Then @ € ((pPol 7, N pPol §) U {¢}), dom (p) =

{(BH, ey Bln); PPN (Bhla ey Bhn)} and Im(@) :Im(cpl) = {0, 1, ey h — 1} U
We turn to the proof of the theorem. For 4 < / < k, denote by <, the ¢-ary partial function
whose domain consists of the cyclic permutations of the ¢-vector (0,0,1,...,¢ — 2), (thus

|dom ()| = ¥), and defined by

-1, if(zq,...,2,) =(0,0,1,...,£—2).
1, otherwise

’)’g(l’l,...,ﬂfg):{

Note that Im (y,) = {0,...,£—2,¢ —1}. We have

Claim 3. ~; € pPol 7, N pPol Ry NpPol Ry for all 3 < h < < k.

Proof (of the claim). First notice that if (z1,...,2¢), (y1,...,y¢) € dom () are such that
xz; =y; # 0 for some i = 1,...,¢, then (zq,...,2¢) = (y1,...,Y¢). Moreover as £ > 4, any
matrix with all rows in dom (7,) contains at least two non-zero entries in each of its rows.
Using these facts, one can easily show that if M € M(R;,dom(v,)) is 4 x ¢ matrix, then
(ve(Muy), Ye( Moy )ve( M3, )ve(Mys)) € Ry, for ¢ = 1,2. Consequently 7, € pPol R; for i = 1, 2.
We now show that v, € pPol 7, for all 3 < h < £ < k. Let B € M(7;,dom(v,)) be an
h x £ matrix. Then every column of B has at least two equal entries. If a column contains
two equal entries that are not zeros, then by the observation above the two rows containing
these entries are equal, and consequently (v,(Bix),---,Ye(Bh«)) € Th. So suppose that every
column of B contains at least two zeros. It follows that at least 2¢ entries of B are zeros.
On the other hand, as every ¢-vector in dom () contains exactly 2 zeros, we have that B
contains exactly 2h zeros with h < ¢, a contradiction. Therefore v, € pPol 73, for every

3<h</t<k. O
k!
Setm:zh—'n . We have

Claim 4. The partial clone {(pPol 7, N pPol 8) U {p}) contains an m-ary partial function
Y that satisfies dom () C {0,...,h —2}™, |dom (¢)| = k and (Im ¢) = k.

h+1)!
Proof (of the claim). For ¢ > 0 let m; := ( Z‘Z)

We construct recursively, for every 0 < i < k — h, an m;-ary partial function 1); as follows.

n, thus m; = (h + i)m;_; for every i > 1.
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Let @ be the n-ary partial function constructed in Claim 2 and set vy := . Consider now
1 < i < k — h. Define the m;-ary partial function 1); from the (m;_;)-ary partial function
;1 and the (h + i)-ary partial function 7,4, by setting

(®1,...,Tm,;) € dom (¢;) <=

1) (x1,.- s Tm,_,) €dom (Vi1), ..., (T(hti-1)mi1+15 - - - » Tm;) € dom (¢h;_1) and

2) (Vi (@1y- - Tmy)s - Vet (Bhtim1)mi_ 1415 - - -+ Tm;)) € dom (Y444) and

wi(xla cee ,fvm,-) = ’Yh+z'[¢z'—1($1, -y l”m,-_l), <y 'L/)i—l(x(h—I—i—l)mi_l—l—la cee ;xmi)]-
It is easy to verify that |dom (¢;)| = |dom (¢;_1)| + 1 holds for every 1 < i < k — h. As
|dom (t9)| = h (recall that ¢y = ¥ constructed in Claim 2), we have |dom (¢;)| = h + 7 for
all0 <i<k—h.

Now from Claim 3 we have ~, € pPol 7, N pPol R; N pPol Ry, whenever ¢ > h, and so
Yh+i € pPol 7, N pPol Ry N pPol Ry for every ¢ > 1. Consequently

[¢i € ((pPol 7, N pPol 8) U {¢}) = 11 € ((pPol 7, N pPol #) U {¢})], for all > 0.

As 1y = @ € ((pPol 7, N pPol 0) U {¢}), we have ¢;.; € ((pPol 7, N pPol #) U {¢}) for all
0<i<k—h.

Furthermore, one can check that for every 0 < i < k— h, the equality Im (¢;) = Im (y444)
implies Im (¢;11) = Im (Y44421). This together with Im (¢»9) = Im () = {0,...,h — 1}
gives Im (¢g_p) = Im () = {0,...,k — 1} = k. Moreover it is straightforward to verify
that dom (¢_s) C {0,...,h — 2}™-* and |dom (Yx_p)| = k. Put ¢ := ¢;_;, and note that

(h+(k—h))n . .
Mp—p, = W = m. This completes the proof of Claim 4. O
We now can complete the proof of our theorem. Denote by ¥ the (k x m) matrix whose rows
consist of dom (¢) and such that ¢)(¥q,) =0,...,%(Vk) = k— 1. Note that by construction
of the partial function ¢, we have that every entry of the matrix ¥ belongs to the set
{0,...,h—2}. Let t > 2 and g € pPol 0 be t-ary. We show that g € ((pPol 7,NpPol §)U{p}).
First define m unary total functions aj,...,am by a;(r) := ¥(4q);, for all r € k and all
j = 1,...,m. Notice that Im (o;) = ¥,;, the j-th column of the matrix ¥. As pPol 8 is
Stupecki type partial clone, we have o; € pPol 8 for every j =1,...,m. Next define m t-ary
partial functions gi, ..., gm by setting g;(z1,...,x:) == oj[g(z1,...,2¢)], forall j =1,....m
and all (z1,...,z;) € dom (g). Since ay, ..., ay,, are total functions we have
dom (¢1) =...,dom (g,,) = dom (g).

Moreover as g € pPol 6, we have g; = a;[g] € pPol 0 for all j =1,...,m.

AsIm (g;) C Im (¢;), the partial function g; takes on values from W¥,;, the j-th column of
the matrix ¥. Thus |Im (g;)| < h—1 and so g; € pPol 73, for all j = 1,...,m. It follows that
g; € pPol 7,NpPol @ for all j =1,...,m, and thus ¥|g1,. .., gn] € ((pPol 7, NpPol 8) U{p}).

We show that g = ¢[g1, ..., gm|. Clearly dom (¢[g, ..., gm]) C dom (g;) = dom (g). Let

z € dom (g), then g € (1] dom (g;) and (g1(2), -- -, gm(2) = (ealg(@)];-- ., m[g(z)]) which
j=1

is a row of the matrix U, i.e., (¢1(Z),...,gm(Z) € dom (¢). Now let £ € dom (g) and let

g(z) =r € k. Then

g, 9wl (@) = Ylaa(r)), ..., am(r)]
V[ (rt1)1s-- -5 Yi1ym) (by definition of the functions o, ..., o)

= r = g(z) (by definition of the matrix ¥).
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This shows that g € {((pPol 7, N pPol #) U {¢}) and concludes the proof of our theorem. O

Remark. The proof above cannot be used to show that pPol 7, N pPol 7/ is covered by
pPol 7} if h < h'. Indeed take § = 75 and let ¢ in Claim 4 take the value A’ — h. But then
Yht(h'—h) & PPol T and so 1y, Will not necessarily belong to the partial clone {((pPol 7, N
pPol ) U {¢}). However the result holds, we use Romov’s definability Lemma to prove it.
We have

Theorem 6. Let 3 < h < h' < k. Then the partial clone pPol 1, N pPol 7 is covered by the
mazimal partial clone pPol 7.

Proof. The proof here is similar to that of Theorem 4. Let A be a t-ary irredundant relation
such that
pPol 7, N pPol 7y C pPol A

We show that [pPol A # pPol 7y = pPol A C pPol 7,]. By Lemma 2, there is an h-ary
relation g and an h'-ary relation o with {p, o'} covering the set {1,...,¢} and such that
A={(z1,...,2¢) €K' | (zi),...,x;,) € T, for all (41,...,%,) € o and

(.le, ce ,mjh,) € 1y for all (jl; . ,jhl) S QI}.
As in Theorem 4, we may assume that o # () # ¢’ (otherwise pPol A = pPol 73, or pPol A =
pPol 73,/). Moreover we may assume that no condition (z;,,...,z;,) € 7 or (zj,,...,%;,) €
Ty is superfluous. Thus |{i1,...,i,}| = hfor all (iy,...,i,) € pand [{1,...,Jn}| = A for all
(J1y---,7w) € 0. Consequently ¢ > h' > h. For notational ease let (1,...,h) € p. We have

Claim. (ai,...,an,01,...,01) € X for all (a1,...,a;) € Th.

Proof (of the claim). Let (ai,...,ap) € 7. Then (al,...,ah,al,...,al) € A if and only
if for every (iy,...,i,) € o and every (ji,...,jw) € 0, we have (b;,...,b;) € 7, and
(bjys---5bj,,) € T, where b, = a, for s € {1,...,h} and b, = a; for s € ({i1,...,%} U
oo DAL ., B}

First we show that (b;,,...,b;,) € 7 for all (i1,...,4,) € o. If {41,...,9n} = {1,...,h}
then (b;,,...,b;,) € 7, holds trivially. Suppose therefore that {i,...,4,} # {1,...,h}. If
i1, ... i} 0 A{1,..., h}| < h — 2, then a; appears at least twice in the sequence b“, ooy by,
and consequently (bzl,...,bh) € Tn. Suppose now that |[{i1,...,in} N {1,...,h}| = h — 1
If 1 € {i1,...,in}, then again a; appears at least twice in the sequence b;,,...,b;, and we
are done. So let 1 & {iy,...,in}. As |{i1,...,in} N{Ll,...,h}| = h — 1, we may assume
{ila---,ih} = {’il,Q,...,h} with 11 Q {1,,h} Then bi1 = and thus (bz1’7blh) =
(a1,...,ap) € Th.

We now show that (b;,,...,b;,) € 7 for all (j1,...,jw) € o' {1,...,h} C {j1,...,Jn},
then |{bj,,...,bj, } < h'— 1 provmg (bjys---,bj,,) € Tw. Otherwise [{1,...,h}N{j1,...,Juw}|
<h-1, and so a; appears at least h' — (h —|— 1) times (thus at least twice as A’ > h+ 1) in
the sequence bj,,...,b;,,. Again this shows that (bj,,...,b;,,) € 7 and completes the proof
of our claim. O

We return to the proof of our theorem. Set

pi=A(z1,...,z5) €K | (z1,...,2h,21,...,71) € A},
then in view of Lemma 2 we have pPol A C pPol u. We show that y = 7,,. Let (x1,...,25) €
7. Then from the claim above (z1,...,2p, 1,...,21) € Aand so (z1,...,2,) € u. Conversely
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if (z1,...,2,) € , then (z1,...,2p,21,...,21) € X and in view of (1,...,h) € p we have
(x1,...,Th) € Th, Proving u = 7p.
We have shown that if A is an irredundant relation such that pPol 7, NpPol 7,» C pPol A,
then [pPol A # pPol 7, => pPol A C pPol 73;]. Consequently
pPol 1, N pPol 7, C C' C pPol 13
for no partial clone C, hence the partial clone pPol 7, N pPol 73 is covered by the maximal
partial clone pPol 7. O

Combining Theorems 4, 5 and 6 we get

Corollary 7. Let k > 2 and M # M' be two strong mazimal partial clones of Stupecki type
on k. If (M,M') # (pPol Ry,pPol Ry), then the partial clone M N M' is covered by the
mazximal partial clone M'. O

It is shown in [3] that no strong maximal partial clone of Stupecki type on k is finitely
generated (this result was shown earlier in [12] for £ = 2). As the intersection of two strong
maximal partial clones of Stupecki type is covered by (at least) one of them, we get

Corollary 8. Let k > 2 and M # M' be two strong mazimal partial clones of Stupecki type
on k. Then the partial clone M N M' is not finitely generated. Il

4. Intersections of Stupecki type partial clones with M,

In this section, we consider the intervals of partial clones [M; N pPol @, pPol 6] and [M; N
pPol 8, M| on k, where 6 € {Ry, Ry, 73,...,7}. First notice that intervals of the type
[Mj, NpPol 8, M| are quite easy to describe. Indeed the equality Pol Ry = (Op(l)(k)) follows
from Burle’s Theorem ([4]) and is shown in [10]. Again from Burle’s Theorem we have that
the unrefinable chain
Pol RoU{p, |n>1} CPol Ry U{p, |n>1} CPolsU{p, |n>1}C...
C Pol 7, U{pn | n > 1} C Op(k) U{p, | n > 1},
is the interval of partial clones [Pol Ry U {p, |n > 1},0p(k) U {p, |n > 1}]. Thus for
0 € {R1, Ry, T3,...,T}, the interval [pPol §N My, My] is simply a subchain of the unrefinable
chain
pPol Ry N M}, C pPol Ry N M C pPol 3N M, C ... C pPol 7, N My, C M.

We now focus on intervals of the type [My N pPol A, pPol #]. We first need to recall the
descriptions of the clones Pol @ for # € {Ry,73,..., 7k}

Recall that an n-ary function f is said to be essentially unary if there are 1 <7 <n and
g € OpM(k) such that f(zy,...,z,) = g(z;) holds for all (zy,...,z,) € k”. Moreover f is
quasilinear if there are ¢ : {0,1} — k and ¢; : k — {0,1} ( =1,...,n) such that

(@1, 20) = do(d1(@1) + - .. + du(n))
for all (zy,...,z,) € k", where the sum is mod 2 on {0, 1}.

It is well known that (Op()(k)) is the set of all essentially unary functions on k and
Pol R; is the set of all functions that are essentially unary or quasilinear. Furthermore for
3 < h < k, Pol 7, is the set of all functions f that are essentially unary or satisfy |Im f| < h—1
(see e.g., [16] and [21] for details).
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We start with the maximal partial clone pPol R;. We will need the following notation
here. If C is a total clone on k, then we denote the strong closure of C' by Str (C), that is
Str (C) :={g € Par(k) | g < f for some f € C'}. Notice that for every clone C, Str (C) is a
strong partial clone on k. Moreover, if p is an irredundant relation on k, then Str (Pol p) C
pPol p, with the equality holding if and only if every partial function that preserve p can be
extended to a total function that preserve p (see [3] for details). We have

Theorem 9. Let k > 2. Then the interval of partial clones [Str (Pol R;),pPol Ry] is of
continuum cardinality on k.

Proof. This theorem is shown in [1] for £ = 2. We use the proof given in [1] to establish the
result for £ > 3. In the proof below, we will use the definition of a partial clone involving the
three Mal’tsev operations ¢, 7, A as well as the composition x of partial functions (see [8],[9] for
partial clones and [15] for the general theory). Moreover, we will denote by Op(2) (Par(2))
the set of all functions (partial functions) on {0,1}. Furthermore let Pol, Ry C Op(2)
(pPol, Ry C Par(2)) be the clone (the partial clone) of all functions (partial functions) that
preserve the relation R; on {0,1}. Let

Q := {C C Par(2) | C is a partial clone and Str (Poly R;) C C C pPol, R;}.

The equality |Q| = 2% is shown in [1]. Our main idea is to construct a one-to-one map from
the subset Q of Par(2) to the interval of partial clones [Str (Pol R;),pPol R,] on k. For every
C € Q we define a set C' C Par(k) as follows:

C := (ParM(k)) U
U {f € Par™ (k) | for somet>1, 3 F € CnPar ¥(2), Ip, 1,..., 0 € Op (k) ,

n>1
iy, d9,...,9} € {1,2,...,n} such that the following hold :

[Tm (¢o)| < 2, and
Im (¢;) C{0,1} Vi € {1,...,t} and,
flz, .o xn) = @o(F(o1(xiy), 02(Tiy), - - -, onl(ws,))) for all (xq,...,z,) € dom (f)}.

Recall that (Par(!)(k)) is the partial clone generated by all partial unary functions on k. We

~

show that C' is a partial clone on k.

First {(f),7(f), A(f)} € C for every f € C follows from {¢(F),7(F), A(F)} C C for
every F € C. Now let f € 5’, g€ CA’ﬂPar(l)(k). Then g« f € C is immediate and fxg € C
follows from Im (1) € {0,1} = Im (py%g) C {0,1}. Let now f, g € C\(Par¥(k)), where f
is n-ary and g is m-ary. Then (w.l.o.g.) there are F,G € C, fo,..., fn, 90, -+, 9m € Op(l)(k)
with [Im (fo)| < 2, [Im (go)| <2, Im (h) C {0,1} forall h € {f1,..., fu,91,---,9m} and

f@y, - wn) = fo(F(fi(21), fo(22), - -, fa(2n)))

and
9(@1, ..., Tm) = 90(G(g1(21), 92(72), - - -, gm(@m)))-
hold for every (x1,...,x,) € dom (f) and every (z1,...,Z,) € dom (g). Thus
(f *g)(flh, s ’xm-l-n—l) = f(g(xl, <. axm)axm—l—l; .- axm—l—n—l) =

Jo(F(fi(90(G(g1(1), g2(22), - - -, Gm(¥m))))s fo(Tmy1); - - -5 fr(Tmin—1)))-
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Since Par(2) € C and G € C, there is a function H € C with

H(gl(x1)7 LR gm(xm)) = fl(QO(G(gl(xl)a 92($2)7 RN gm(xm))))
Put T := FxH. Then T € C and from

(f *g)(m, s ;xm—l—n—l) =
Jo(F(H(g1(21), - - -, gm(Tm)); fo(@ms1)s - - -, fa(@man-1))) =
f()(T(gl(-Tl), 92($2), L) gm(xm)’ f2(33m+1), KRS fn(xm-l-n—l)))’

we get fxg € C. Hence C is a partial clone on k.

Furthermore, from the characterization of Pol R; given above, we see that C' N Op(k) =
Pol R;. Now from

U {f € Par(2) | 3f, € C N Par™ (k) such that V& € {0,1}", f1(@) = f(@)} = C,

n>1

for all C' € Q, we deduce o
VO, C"'e Q; C£C' = C #£(C".

This concludes the proof of our theorem. O

Now as pPol R; N Op(k) = Pol R; C Str (Pol R;) and {p, | n > 1} C Str (Pol R;), we have
pPol Ry N My, C Str (Pol Ry) , and so from Theorem 9 we deduce

Corollary 10. Let k > 2. The interval of partial clones [pPol Ry N My, pPol R;| has the
cardinality of continuum on k. O

We now prove a result similar to Theorem 10 for the each member of the family
{pPol 73, ...,pPol 7. }. We have

Theorem 11. Let 3 < h < k. Then the interval of partial clones [Str (Pol 1), pPol 1] is of
continuum cardinality on k.

Proof. For n > 2, denote by Fo,yp the family of all (binary) equivalence relations € on the
set {1,...,2n + h} such that either 1) ¢ has at most h — 1 equivalence classes or 2) ¢ has
exactly h equivalence classes and these h classes satisfy the following: h — 2 of them are
singleton (thus consist of one element each), one has size 2 and finally one has size 2n. For
example, if h = 5 and n = 3, then the equivalence ¢ on the set {1,...,11} with classes {1};
{2};{3}; {4,5}; and {6,7,8,9,10,11} belongs to Fi;.

Furthermore, for every n > 2, let 09,15, be the relation of arity (2n + h) on the set {1,...,2n+
h} defined by

Oon+h *— U AE .

e€Fon+tn
Thus for every (x1,...,Tontn) € K" (21,. .., Zonsn) € Oonin = {z1,..., Tonn}| < h—1
or |[{z1,...,Zonsn}| = h with 1) h—2 symbols occuring each once and 2) one symbol occuring

exactly twice and 3) one symbol occuring 2n times in 1, ..., Topip -
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Notice that 09,5 is a totally symmetric relation. Moreover since o9,., is a primitive
relation, pPol oy, contains all partial unary functions on k, and consequently it contains
the set (Par(!)(k)) of all essentially unary functions on k. Moreover since any at most (h—1)-
valued (2n + h)-vector of k belongs to gy, pPol 09,44 contains all at most (h — 1)-valued
functions on k, thus Pol 7, C pPol 09,,4. As pPol 75, is a strong partial clone, we have
Str (Pol 7,) C pPol 09,,44. On the other hand

Th = {(x1,...,75) EK"|(21,...,21,T0,...,Th) € Oonin} -

Indeed, if (z1,...,2,) € T, then the z;’s are all pairwise distinct, and so the vector v :=
(T1,...,1,To,-..,Tp) is h-valued. As the equivalence relation ker(%) := {(,j) € {1,..., h}?|
z; = x;} has h — 1 equivalence classes of size 1, we have ¥ € 09,,45. On the other hand, if
(x1,...,24) € Th, then [{z1,..., 2} < h—1and so ¥ := (x1,...,21,%2,...,%p) € Oaptn Dy
definition of gg,,. This shows that pPol 09,5 C pPol 7, and consequently, Str (Pol 73,) C
pPol 09,4, C pPol 75, for all n > 1.

Our goal is to show that the partial clones pPol 09,.; give a family of partial clones of
continuum cardinality in the interval [Str (Pol 73,), pPol 7).

We define a family of partial functions for this task. For every m > 1, denote by v the
(2m + h)-vector over k

o= (0,1,....,.h—3,h—2,h—2,h—1,...,h —1).

Notice that the (2m+h)-vector @ contains one symbol from each of 0,1, ..., h—3, two symbols
h—2 and 2m symbols h—1. Furthermore, let « be the cyclic permutation (01 ... 2m+h—1)
and for j =0,...,2m+ h — 1, let

Tj := (Tai(0)s Tai(1)s - - - > Tad 2mth—1))5
where
(o, -+ Toman1) = Vo
Thus
ti=01,...,h—3,h—2,h—2,h—1,....,h—1,0),...
Upo=(h—2h— ,h 1,.. h—l,O,...,h—B),
Up1=(h—-2h—1,...,h— 10 Lh—=3,h—2),
while
Tn=(h—1,...,h—1,0,...,h—3h—2,h—2),...
and

Tomint =(h—1,0,...,h—3,h—2h—2h—1,... h—1).
We now define the (2m + h)-ary partial function o, s by

dom (<P2m+h) = {?70, Tiyenns 772m+h—1},
and
h—1 if(z,....2 = U
Q02m+h(x1, ... 7‘T2m+h) = { o Other“(fisle, ) 2m+h) h—1

Notice that @om 4 (7;) = 7 for j = 0,...,h — 1. Also Qo n(7e) = ™" (&) for all £ =
0,....2m+h—1,0#h—1.

We have
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Claim Let n, m > 1. Then ponip € pPol 09,1 p <= n # m.

Proof. (=) Let n = m and consider the square matrix A of size 2n + h whose 2n + h rows
are the vectors of the domain of ¢y, 5. Then in every column of A, the symbols 0,1,...,h—3
appear exactly once, the symbol A — 2 appears exactly twice while the symbol A — 1 appears
2n times. Thus every column of A belongs to 09,15. Applying 9,1, on the rows of A we get
a (2n + h)-vector where each of 0,1,...,h — 3, h — 2 appears exactly once while the symbol
h — 1 appears 2n + 1 times. So if A, denotes the i-th row of A, we have
((p2n+h (A[l*])’ <o Ponth (A[Qn—l—h*])) ¢ O2n+h;
proving ¢onyn & pPol o9y p.

(«<=) Let A be a matrix of size (2n + h) x (2m + h) with all rows
Afas -+, Apnihy) € dom (pYomn), all columns Apa)s - - -5 Apsomen] € O2n4n and such that
((meJrh (A[l*])a <oy Po2m4h (A[Zn—f—h*])) ¢ O2n+h-

We show that m = n. For 1 < j < 2m + h, denote the (2m + h)-ary operation j-th projection
by e;. Since 09,44 is a totally symmetric relation, the rows of the matrix A may be listed in
any convenient order. As

(¢2m—|—h (A[l*])a <o P2mth (A[2n+h*])) ¢ O2n+h,

we have that (Y2nin(Aps); - - -5 Pom+n(Apntns)) is an h-valued vector over k. Thus each of
Ug, U1, - -., Up—g is a row of the matrix A. We will assume that the first h — 1 rows of A are
To, V1, - - -, Up_o respectively. Now if @, 1 is not a row of A, then o, 4 (7) = e1(7) for every

row ¥ of the matrix A, which is a contradiction with the choice of A. So let #,_; be the h-th
row of A. It follows that the last column A, op,45) of A is an h-valued vector.

On the other hand, as w1 (T;) = €aman(¥i) + 1 (mod h), for all i = 0,...,h, at least
one row of A is different from %y, ¥y, ...,7,. Now as every ¥ € dom (pan,ys) different from
Uy, U1, - - - , Up, has both its first and last entries equal to h — 1, we deduce on one hand that
the first column A,y of A is an h-valued vector and, on the other hand, that the last column
Ap 9m+n) of A contains at least two entries equal to h — 1. Moreover as ¥, 3 and vj,_; are
two rows of A, we deduce that at least two entries of A, are h — 2. We have three cases:

Case 1. Thereis a j € {0,1,...,h— 3} such that j is repeated 2n times in Apq). Since ogpip
is a totally symmetric relation, we may assume that
A= (0,1,...,h—3,h =2, h—2,h —1,5...,7),

and so

(Pamin(Apa), -+ Pomrn(Apninag)) =
(0,1,...,h—3,h—2,h—1,h—1,j...,j) € Oon+h,
a contradiction with the choice of A.
Case 2. h—2isrepeated 2n times in Apq]. Thus 2n rows of A belong to the set {7, o, Th—1}
and so 2n entries of the last column Ap, 945 belong to {h — 3,h — 2}. However since each
of h — 3 and h — 2 appears at least once and h — 1 appears twice in A, 2,44, We obtain the
contradiction Ay 2mn] € Tonth-

Case 3. h —1 appears 2n times in A[,;). Notice that in this case each of ¥, #1,..., U1 is a
row exactly once in A. Now since every element of dom (¢a,,15) whose first entry is A —1 has
its last entry from the set {h —2,h — 1}, and since h — 1 appears at least once in Af, omh]
(as 7y is a row of A), we deduce that at least one row of A has the form (h —1,...,h —1).



L. Haddad; D. Lau: Pairwise Intersections of Stupecki Type Maximal Partial Clones 553

Suppose that h — 2 appears 2n times in the last column Ay 9pmyp). Then as v =
(h—2,h—1,...,h—1,0,1,...,h—2) is a row of A, we have that 2n — 1 rows of A are equal
to . Now as 7, ¥/; are rows of A, the symbol h — 1 appears twice in the next to last column
Apoomyn—1]- By =(h—1,...,h—=1,0,...,h —2,h —2,h — 1) is not a row of A, then the
symbol h—2 will occur an odd number of times ( > 3) in the next to last column A, op4p-1]
a contradiction. It follows that 9, is a row of A and consequently the 2m + h—2-th column
Al 2m+h—2) is an h-valued vector and contains exactly three symbols h — 1, a contradiction.

It follows that the symbol h — 2 appears exactly twice in the last column A, 2,15 and
so h — 1 appears 2n times in that last column A, 5,15 Moreover this shows that exactly
one row of A is equal to v}.

Suppose now that m = 1 and n # m, thus n > 2. As each of vy, v1,...,0,_1 and ¥} is a
row exactly once of A, we have that @, (in this case equal to (h—1,0,1,...,h—2,h—2 h—1) )
is a row 2n — 1 times of A. Then the symbol 0 appears 2n — 1 times in the second column
Al4g), a contradiction.

We assume now that m > 2. So far we have shown each of the vectors t, ..., v, is a row
exactly once in A. Now the symbol h — 1 appears at least twice in the next to last column
Al 2m+n—1), and by a similar argument as above we can show that the vector 7, is a row
exactly once of A. Now let 1 <7 < 2n — 1 and suppose that @y, ..., U, ..., Uyy; are the first
h+ 1+ 1 rows of A and that each of these vectors is a row exactly once of A.

Then Apontn—(iy (i-e., the (2n+h—(i))-th column of A) is an h-valued vector and contains
two symbols h — 2 and at least 3 symbols A — 1. Thus all other entries of that column must
be A — 1. On the other hand, A2, (i+1)] is an h-valued vector and contains symbol h — 2
and at least 4 symbols h — 1. Thus this column must contain one more symbol h — 2. As
every row of A different from #, ..., Us_1, Uy has its first entry as well as its last entry equal
to h—1, we see that one row of A must be (h—1,...,h—2,h—2,h—1,...,h—1) where the
number of the consecutive h — 1 on the right is ¢ + 1, i.e., Uj1,.1 is also a row of A. If U ;11
appears more than once as a row of A, then each of the symbols A — 2 and h — 1 would be
at least 3 times in the column Ao, 44—(i+1)), @ contradiction.

We have shown that each of the vectors in dom (@o,+4) is a row exactly once of A. Thus
each row and each column of A contains exactly 2 symbols h — 2. Counting in two different
ways the number of symbols h — 2 in A leads to n = m. O

We turn to the proof of our theorem. Let P(IN) be the power set of N = {1,2,...}. From
the above claim, the correspondence x : P(N) — [Str (Pol 7,), pPol 73] defined by x(X) :

ﬂ pPol 09,11 is a one-to-one mapping, which completes the proof of our Theorem. ]
ngX

As for the case of the relation R;, we deduce

Corollary 12. Let 3 < h < k. Then the interval of partial clones [pPol 7, N My, pPol 73]
has the cardinality of continuum on k. U

On the other hand, a result similar to Corollary 10 is established for the relation Ry. The
relations used for the proof can be found in [9], Theorem 11. We have



554 L. Haddad; D. Lau: Pairwise Intersections of Stupecki Type Maximal Partial Clones

Corollary 13. ([10], Corollary 7) Let k > 2. The interval of partial clones [pPol Ry N
My, pPol Ry| has cardinality of the continuum on k. O

Combining Corollaries 10, 12 and 13, we get

Corollary 14. Let k > 2, pPol 0 be any mazimal partial clone of Stupecki type on k. Then
the interval of partial clones [pPol 8 N My, pPol 0] has cardinality of the continuum on k. O

Remark. This study yields several open problems, we mention some of them here.

1. Theorem 4 states that the interval of partial clones [pPol Ry N pPol Ry, pPol R;| consists
of the two bounds only. As shown after Theorem 4, this does not hold for the interval
[pPol R; NpPol Ry, pPol Ry]. So one may ask for a description of this interval. In particular,
is this interval finite?

2. The results established in Section 3 give families of partial clones covered by the maximal
partial clones pPol Ry, pPol Ry, pPol 73,...,pPol 7,. So one may ask here for a description
of all partial clones covered by pPol Ry, pPol Ry, pPol 73, ..., pPol 7.

3. Given a maximal partial clone of the form pPol p, describe the interval of partial clones
[Pol p, pPol p|. Notice that this problem was addressed in Section 4 for Stupecki type maximal
partial clones. The description of all maximal partial clones on k is given in [6], [8] and [19].
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