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The cubic moment of central values
of automorphic L-functions
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1. Introduction

The values of L-functions at the central point s = % (we normalize so
that the functional equation connects values at s and 1 — s) are the subject
of intensive studies in various aspects: the algebraicity, the nonvanishing, the
positivity. In some instances these numbers are expressible in terms of impor-
tant geometric invariants (cf. the Birch and Swinnerton-Dyer conjecture for
elliptic curves), and the nonvanishing is meaningful in certain structures (such
as in the Phillips-Sarnak theory of spectral deformations). The positivity of
the Dirichlet L-functions with real characters at s = % would yield quite re-
markable effective lower bounds for the class number of imaginary quadratic
fields. Moreover, a good positive lower bound for the central values of Hecke

L-functions would rule out the existence of the Landau-Siegel zero.

*Research of both authors supported by the American Institute of Mathematics and by NSF
grants DMS-95-00857, DMS-98-01642.
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Independently there is a great interest in upper bounds for the central
values; in particular one desires to have a strong estimate in terms of the con-
ductor. The Riemann hypothesis yields the best possible results for individual
values, but still there are known unconditional estimates for the average value
over distinct families which are as good as the Riemann hypothesis can do, or
even slightly better (asymptotic formulas for power moments).

In this paper we consider two families of automorphic L-functions asso-
ciated with the classical (holomorphic) cusp forms of weight k£ > 12 and the
Maass (real-analytic) forms of weight k& = 0, both for the group I' = T'y(q)
(see the reviews in §2 and §3 respectively). Let x = x4 be the real, primitive
character of modulus ¢ > 1. Throughout this paper we assume (for technical
simplification) that ¢ is odd, so ¢ is squarefree and x(n) = () is the Jacobi
symbol. To any primitive cusp form f of level dividing ¢ we introduce the
L-function

oo
(L.1) Ly(s,x) = ) Ag(n)x(n)n™
1
The main object of our pursuit is the cubic moment
(1.2) > LX)
feF~

where F* is the set of all primitive cusp forms of weight k£ and level dividing
q. For this we establish the following bound:

THEOREM 1.1. Let k be an even number > 12 such that x(—1) = i*. Then
(1.3) > LX) < 't
feFs

for any € > 0, the implied constant depending on £ and k.

Note (see [ILS]) that

7 = = Lo(a) + O((ka)

win

)-

Any cusp form

Z)\f n)n e (nz) € Sk(T'o(q))

yields the twisted cusp form

Z)‘f n'7 e(nz) € Sp(To(g?)),

and our L¢(s, x) is the L-function attached to fy(z). If f is a Hecke form then
fx is primitive (even if f is not itself primitive). However, the twisted forms f,
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span a relatively small subspace of Si(I'g(¢?)). In view of the above embedding
the cubic moment (1.2) looks like a tiny partial sum of a complete sum over the
primitive cusp forms of level ¢?; nevertheless it is alone a spectrally complete
sum with respect to the group I'g(g). This spectral completeness applies more
effectively to the normalized cubic moment C(q) which is introduced in (4.14).

In principle our method works also for k = 2,4, 6,8, 10, but we skip these
cases to avoid technical complications. One can figure out, by examining our
arguments, that the implied constant in (1.3) is c¢(e)k”, where A is a large
absolute number (possibly A = 3). We pay some attention to the dependence
of implied constants on spectral parameters at the initial (structural) steps,
but not in the later analytic transformations. If ¢ tends to oo over primes, one
should be able to get an asymptotic formula

(1.4) Ci(q) ~ cx(logq)?

with ¢ > 0, but our attempts to accomplish this failed. On the other hand the
difficulties of getting an asymptotic formula for Cx(¢) with composite moduli
seem to be quite serious (Lemma 14.1 loses the factor 72(g) which causes
troubles when ¢ has many divisors; see also Lemma 13.1).

The parity condition x(—1) = ¥ in Theorem 1.1 can be dropped because
if x(—1) = —i* then all the central values L(1,x) vanish by virtue of the
minus sign in the functional equation for L¢(s,x).

Although our method works for the cubic moment of Ly (s, x) at any fixed
point on the critical line we have chosen s = % for the property

(1.5) Li(3:x) > 0.

Of course, this property follows from the Riemann hypothesis; therefore it was
considered as a remarkable achievement when J.-L. Waldspurger [Wa] derived
(1.5) from his celebrated formula; see also W. Kohnen and D. Zagier [KZ].
Without having the nonnegativity of central values one could hardly motivate
the goal of estimating the cubic moment (still we would not hesitate to get
an asymptotic formula). As a consequence of (1.5) we derive from (1.3) the
following bound for the individual values.

COROLLARY 1.2. Let f be a primitive cusp form of weight k > 12 and

level dividing q, and let x(modq) be the primitive real character (the Jacobi
symbol). Then

(1.6) Ly(hx) < 57
for any € > 0, the implied constant depending on £ and k.

Let us recall that the convexity bound is Lf(3,x) < g2+ while the
Riemann hypothesis yields L f(%, X) < ¢°.
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An interesting case is that for a Hecke cusp form f of level one and weight
k (so k is an even integer > 12),

o0

f(z) = Za(n)n%e(nz) € Sk(Tp(1)).

1
This corresponds, by the Shimura map, to a cusp form g of level four and

weight % ,

g9(z) = Zc(n)n%e(nz) € S% (To(4)).
1

We normalize f by requiring a(1) = 1, while g is normalized so that
1 (251
o[ laGPy e =1,
Do (4H)\H

Then the formula of Waldspurger, as refined by Kohnen-Zagier (see Theorem

1 of [KZ]), asserts that for ¢ squarefree with x,(—1) = ¥,

_k _
(L.7) Ag) =m2T(5)Ls (5. x) (> )7}
where

(fif) = / |f(2) 2y dpcz.
Do (q)\H

By (1.6) and (1.7) we get:

COROLLARY 1.3. If q is squarefree with x,(—1) = i then
(1.8) cq) < qs**
where the implied constant depends on € and the form f.

This result constitutes a considerable improvement of the estimates given
in [I1] and [DFI]. It also improves the most recent estimate by V. A. Bykovsky
[By] who proved (1.8) with exponent 3/16 in place of 1/6. Actually [DFI] and
[By] provide estimates for L(s,x) at any point on the critical line. To this
end (as in many other papers; see the survey article [Fr] by J. Friedlander) the
second moment of relevant L-functions is considered with an amplifier which
is the square of a short Dirichlet polynomial. In such a setting the property
(1.5) is not needed yet a sub-convexity bound is achieved by proper choice of
the length and the coefficients of the amplifier.

Here is the second instance where the nonnegativity of central values of
automorphic L-functions plays a crucial role for their estimation (the first case
appears in [IS] in the context of the Landau-Siegel zero). By comparison with
the former methods one may interpret the cubic moment approach as a kind of
amplification of Lfc(%, X) by the factor Lf(%, X). In this role as a self-amplifier
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the central value L f(%, X) is represented by a Dirichlet polynomial whose length
exceeds greatly all of these in previous practice (here it has length about gq).
Hence the question: what makes it possible to handle the present case? There
are many different reasons; for instance we emphasize the smoothness of the
self-amplification. Consequently, it can be attributed to our special amplifier
L f(%, X) that at some point the character sums g(x, 1) in two variables over
a finite field crop (see (11.10)). From then on our arguments are powered
by the Riemann hypothesis for varieties (Deligne’s theory, see §13). In fact
our arguments penetrate beyond the Riemann hypothesis as we exploit the
variation in the angle of the character sum (10.7) when estimating general
bilinear forms (11.1) (see the closing remarks of §11).

To reduce the spectral sum (1.2) to the character sums in question we go
via Petersson’s formula to Kloosterman sums, open the latter and execute the
resulting additive character sums in three variables (which come from a smooth
partition of L:}(%, x) into Dirichlet polynomials) by Fourier analysis on R3. One
may argue that our computations would be better performed by employing
harmonic analysis on GL3(R); however, we prefer to use only the classical
tools (Poisson’s formula) which are commonly familiar. In this connection we
feel the demand is growing for practical tables of special functions on higher
rank groups to customize them as much as the Bessel functions are on GLa(R).
Still, there is a revealing advantage to direct computations; see our comments
about the factor e(mmima/c) in (8.32) and (10.1), which presumably would
not be visible in the framework of GL3(R). This technical issue sheds some
light on the position of Bessel functions towards Kloosterman sums.

In this paper we also consider the spectral cubic moment of central values
of L-functions attached to Maass forms of weight zero. Since the space of such
forms is infinite we take only those with bounded spectral parameter; i.e., we
consider

* q R
(1.9) Z Lj(%,x)+/_R|L(%+ir, ¥)|%0(r) dr

[tj|<R

where £(r) = 72(4 + 12)"1. We refer the reader to Sections 3 and 5 to find
the terminology. Actually the Maass forms were our primary interest when
we started. Here the special attraction lies in the subspace of the continuous
spectrum which is spanned by the Eisenstein series Ea(z,% + ir) (there are
7(q) distinct Eisenstein series associated with the cusps a of T'g(q)). Every
Eisenstein series gives us the same L-function L(s—ir, x)L(s+ir, x) (however,
with different proportions equal to the width of the cusp; see (3.27)) whose
central value is | L(% +ir, x)|?; hence its cube is the sixth power of the Dirichlet

L-function.
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THEOREM 1.4. Let R > 1. For any € > 0,

« R
o) Y L;‘?(%,X)+/ LA 4 ir, ) 56(r) dr < RAqM
—R

ltjl<R
with some absolute constant A > 1, the implied constant depending on &.

Here, as in the case of holomorphic cusp forms, the central values Lj(%, X)
are also known to be nonnegative without recourse to the Riemann hypothesis
due to Katok-Sarnak [KS] and Guo [Gu]. Note that in the space of continuous
spectrum this amounts to |L(3 -+ ir, x)|? > 0. However, this property for the
central values of cuspidal L-functions is quite subtle, and is indispensable in
what follows, even for estimating the Dirichlet L-functions. First it allows us
to derive from (1.10) the corresponding extensions of the estimates (1.6) and
(1.8) for the Maass cusp forms. Another observation is that we receive the
Dirichlet L-functions at any point on the critical line (not just at s = % as
for the cuspidal L-functions) by virtue of the integration in the continuous
spectrum parameter. Ignoring the contribution of the cuspidal spectrum in

(1.10) and applying Hoélder’s inequality to the remaining integral, one derives
R 1
(1.11) / IL(L 4+ ir,x)| dr < RAqh+
-R

where the implied constant depends on € (in this way we relax the peculiar
measure {(r)dr which vanishes at » = 0 to order two). Hence, we have the
following result:

COROLLARY 1.5. Let x be a real, nonprincipal character of modulus q.
Then for any € > 0 and s with Res = %,

(1.12) L(s,x) < |s| g5
where A is an absolute constant and the implied constant depends on €.

It would not be difficult to produce a numerical value of A which is quite
large. A hybrid bound which is sharp in both the s aspect and the g-aspect
simultaneously (not only for the real character) was derived by R. Heath-
Brown [H-B| by mixing the van der Corput method of exponential sums and
the Burgess method of character sums. In the g-aspect alone our bound (1.12)
marks the first improvement of the celebrated result of D. Burgess [Bu] with
exponent 3/16 in place of 1/6. Moreover, our exponent 1/6 matches the one in
the classical bound for the Riemann zeta-function on the line Re s = %, which
can be derived by Weyl’s method of estimating exponential sums. Though
Weyl’s method has been sharpened many times (see the latest achievement of
M. N. Huxley [Hu]) any improvement of (1.12) seems to require new ideas (we
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tried to introduce an extra small amplification to the cubic moments without
success). On this occasion let us recall that the aforementioned methods of
Weyl and Burgess yield the first boundsbreaking convexity for the L-functions
on GLj. Since then many refinements and completely new methods were de-
veloped for both the L-functions on GL; and the L-functions on GLg; see [Fr].
We should also point out that Burgess established nontrivial bounds for char-
acter sums of length N > g€, while (1.12) yields nontrivial bounds only if
N > q%+5. In particular, (1.12) does not improve old estimates for the least
quadratic nonresidue.

Our main goal (proving Corollaries 1.2 and 1.5) could be accomplished
in one space L;(I'o(q)\H) of square-integrable functions F' : H — C which
transform by

k
(1.13) Flyz) = (%) F(2)

for all v € I'g(q). In this setting the holomorphic cusp forms f(z) of weight k
(more precisely the corresponding forms F(z) = y~*/2f(z)) lie at the bottom
of the spectrum, i.e., in the eigenspace of A = %(1 — %) of the Laplace operator

0? 0? .0
(1.14) Ay =1y? <w + 8—gﬂ) - zky%,
while the Eisenstein series still yield the Dirichlet L-functions on the critical
line. We have chosen to present both cases of holomorphic and real-analytic
forms separately to illustrate structural differences until the end of Section
5. From this point on both cases are essentially the same so we restrict our
arguments to the holomorphic forms.

Acknowledgement. Our work on this paper began and was nearly finished
in July 1998 at the American Institute of Mathematics in Palo Alto, California.
The second author is grateful to the Institute for the invitation and generous
support during his visit. He also wishes to express admiration to John Fry for
his unprecedented will to support research in mathematics in America and his
deep vision of the AIM. Finally, we thank the referee for careful reading and
valuable corrections.

2. A review of classical modular forms

Let g be a positive integer. We restrict our considerations to the Hecke
congruence group of level ¢ which is

roto) = { (¢ ) €81@): e = 00mod o) |
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its index in the modular group is

v(q) = [To(1) =qJJ+

plg

The group I' = T'g(¢) acts on the upper half-plane H = {z =z +iy : y > 0} by

az+b a b
TTara N7 (c d)e

Let k be a positive even integer. The space of cusp forms of weight k£ and level

q is denoted Si(I'o(g)); it is a finite-dimensional Hilbert space with respect to
the inner product

(2.1) / f(2)g(2)yFdpz

where duz = y 2dxdy is the invariant measure on H. Let F = {f} be an
orthonormal basis of S;(I'g(¢g)). We can assume that every f € F is an eigen-

function of the Hecke operators
az+b
(22) TN == S G S (),
ad=n b(mod d)
for all n with (n,q) = 1; ie., To,f = Af(n)f if (n,q) = 1. We call F the Hecke
basis of S;(I'g(q)). The eigenvalues A¢(n) are related to the Fourier coefficients
of f(z). We write

(2.3) Zaf n)n'T e (nz).

Then for (n,q) =1 we have

(24) ag(n) = ag(1)Ag(n).

Note that if af(1) = 0 then af(n) = 0 for all n co-prime with ¢. The Hecke
eigenvalues A¢(n) are real and they have the following multiplicative property

(2.5) M) = 57 Ap(mn/d?)
d|(m,n)
if (mn,q) = 1.
For any orthonormal basis F of Si(I'o(¢) and any m,n > 1 we have the
following Petersson formula (cf. Theorem 3.6 of [I3]):

(2.6) (4™ - 1)) ag(m)ag(n)

feF

= 6(m,n) + 2mi* Z ¢ rS(m,m;¢) Ty (
¢=0(mod q)

4
c

)
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where §(m,n) is the Kronecker diagonal symbol, S(m, n; c) is the Kloosterman
sum defined by

am + dn
(27) S(mana C) - Z e(f)v
ad=1(mod c¢)
and Ji_1(z) is the Bessel function of order k — 1. Notice that the series on the
right-hand side of (2.6) converges absolutely by virtue of the Weil bound
1

(2.8) |S(m,n;c)| < (m,n,C)EC%T(C).

For the orthonormal Hecke basis and (mn, q) = 1 we can write (2.6) as
(2.9)

wa/\f(m))\f(n):é(m,n)—i—m Z ¢ 28(m, n; ¢)J(2y/mn/c)

feF ¢=0(mod q)
where
(2.10) wr = (4m) Tk = Dag (1),
(2.11) J(z) = dnifz = 1 (2m).

According to the Atkin-Lehner theory [AL] the sum (2.9) can be arranged into
a sum over all primitive forms of level dividing ¢ , but, of course, with slightly
different coefficients. Precisely, a primitive form f appears with coefficient

-1
(2.12) wi = ﬁ((g:l Af(ﬁ)z—l) > (kq) ™ °

for any € > 0, the implied constant depending only on e.

Remarks. For the formula (2.12) see [ILS]. The coefficient w} is essentially
(up to a simple constant factor) the inverse of the symmetric square L-function
associated with f at the point s = 1. J. Hoffstein and P. Lockhart [HL| showed
that w;‘c < (kq)a_l, but we do not need this bound for applications in this
paper. The lower bound (2.12) can be established by elementary arguments.

Later we assume that k > 12 to secure a sufficiently rapid convergence of
the series of Kloosterman sums in (2.9). Indeed we have

Je—1(x) < min(zF1, 271/?)
which yields
(2.13) J(z) < min(z', 27%%) < 2'0(1 4 2%) 7/,
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3. A review of Maass forms

In this section we introduce the notation and basic concepts from the
theory of Maass forms of weight £ = 0 in the context of the Hecke congruence
group I' = I'g(gq). There is no essential difference from the theory of classical
forms except for the existence of a continuous spectrum in the space of Maass
forms. This is important for our applications since it brings us the Dirichlet
L-function.

Let A(I'\H) denote the space of automorphic functions of weight zero,
i.e., the functions f : H — C which are I'-periodic. Let £(I'\H) denote the
subspace of square-integrable functions with respect to the inner product (2.1)
with kK = 0. The Laplace operator

o [ 02 0?
2= (5 + )

acts in the dense subspace of smooth functions in £(I'\H) such that f and
A f are both bounded; it has a self-adjoint extension which yields the spectral
decomposition L(I'\H) = C & C(I'\H) & E(I'\H). Here C is the space of con-
stant functions, C(I"'\H) is the space of cusp forms and £(I"\H) is the space of
Eisenstein series.

Let U = {u; : j > 1}, be an orthonormal basis of the C(I"\H) which are
eigenfunctions of A, say

1
(A + )\j)uj =0 with )‘j = Sj(l — Sj), S5 = 5 + ’itj.

or 2 < s; < 1. Any uj(z) has the Fourier

NI

Since A\; > 0 we have Re s; =
expansion of type

(3.1) uj(2) = ) pj(n)Wi, (n2)
n#0
where Wy (2) is the Whittaker function given by

(3.2) Wi(2) = 2ly|2 K1 (2ry])e(=)

and K(y) is the K-Bessel function. Note that Ws(z) ~ e(z) as y — oo. The
automorphic forms u;(z) are called Maass cusp forms.

The eigenpacket in £(I'\H) consists of Eisenstein series E,(z,s) on the
line Re s = % These are defined for every cusp a by

Ey(z,5)= Y (Imo;'y2)*
~yel\I

if Re s > 1 and by analytic continuation for all s € C. Here I', is the stability
group of a and o, € SLy(R) is such that 0,00 = a and o, 'T'yo0, = I'e. The
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scaling matrix o, of cusp a is only determined up to a translation from the
right; however the Eisenstein series does not depend on the choice of o,, not
even on the choice of a cusp in the equivalence class. The Fourier expansion
of E,(z,s) is similar to that of a cusp form; precisely,

(3.3) Eu(2,5) = 0ay® + 0a(8)y'* + Y ¢aln, s)Wi(nz)
n#0
where ¢, =1 if a ~ 0o or ¢, = 0 otherwise.

We can assume that U is the Hecke basis, i.e., every u; € U is an eigen-
function of all the Hecke operators (2.2) with & =0,

(3.4) Thuj = Aj(n)u; if (n,q) =1.

Moreover, the reflection operator R defined by (Rf)(z) = f(—Z) commutes
with A and all 7;, with (n,q) = 1 so that we can also require

(35) RUj = 6j’LLj.

Since R is an involution the space C(I"\H) is split into even and odd cusp forms
according to €; = 1 and €; = —1. All the Eisenstein series F,(z,s) are even
and they are also eigenfunctions of the Hecke operators

(3.6) TnEa(z,8) =na(n, s)Ea(z,5), if (n,q) =1
The analog of Petersson’s formula (2.6) for Maass forms is the following
formula of Kuznetsov (see Theorem 9.3 of [12]):

(3.7)
S ht)psmdps(m) + 3 5 [ hrpatm, b gl § + ir) dr
J a -

47
c

=6(m,n)H + Z c1S(m,n; C)Hi(
¢=0(mod q)

where =+ is the sign of mn and H, H" (z), H™ () are the integral transforms of
h(t) given by

(3.8) H= % / " h(t) th(rt)tdt,
(3.9) HT(z) = 2i /_Oo Jgit(x)%dt,
(3.10) H(z) = % / " Kon(@) sh(rt)h(t)tdt.

This formula holds for any orthonormal basis U of cusp forms in C(I'\H), for
any mn # 0 and any test function h(t) which satisfies the following conditions;

(3.11) h(t) is holomorphic in |Im ¢| < o,
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(3.12) h(t) = h(—t),
(3.13) h(t) < ([t} +1)77,
for some o > % and 0 > 2.
For the Fourier coefficients ¢,(£n, s) of the Eisenstein series E,(z, s),

_1
(3.14) Pa(En, 8) = @a(1, 8)na(n, s)n" 2,
if n > 0, (n,q) = 1. For the coefficients p;j(n) of the Hecke-Maass form wu;(z)
we have a similar formula

(3.15) pi(En) = p;(£1)A;(n)n "2,
if n >0, (n,q) = 1. Moreover
(3.16) pi(=1) = €;p;(1).

To simplify presentation we restrict the spectral sum in (3.7) to the even forms;
these can be selected by adding (3.7) for m,n to that for —m,n. We obtain
for m,n > 1, (mn,q) =1,

(3.17)
S h(t )i mN () + 3 [ hr)ea(r)e(m,  + ir)e(n, 3 + ir) dr
- A7 J_

= 18(m,n)H + v/mn Z

¢=0(mod q)
x ¢ 2{S(m,n;c)JT(2y/mn/c) + S(—m,n; )] (2y/mn/c)}

where 3 restricts to the even Hecke cusp forms,

(3.18) w; = 47|pj(1)[?/ chrt,
for A\; = s;(1 —s;) with s; = 3 + it; and
(3.19) wa(r) = 47|pq(1, 3 + ir)|? /chrr.

The J-functions which are attached to the Kloosterman sums on the right-
hand side of (3.17) are defined by J*(x) = 271 H* (27z). In our applications of
(3.17) we assume that the conditions (3.11)-(3.13) hold with o > 6 to ensure
the bound Ht(z) < min(z',z71/2). For 2 > 1 this follows by Jy(z) <
=12 chnt, and for 0 < z < 1 this follows by moving the integration in (3.9)
to the horizontal line Im ¢t = 6 and applying J,(z) < x7¢™*/2. The same
bound is derived for H™ (x) by similar arguments. In any case we get

(3.20) T (@) < min(2, 279/2) < 210(1 + 22) 24,

Recall that (3.17) requires the condition (mn,q) = 1. By the theory of
Hecke operators (as in the case of (2.9)) the sum (3.17) can be arranged into a
sum over primitive cusp forms of level dividing ¢ with coefficients wj satisfying

(3.21) Wi > (qls;))~1e.
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In the case of continuous spectrum we know the Fourier coefficients ¢, (n, s)
quite explicitly. We compute them by using the Eisenstein series for the mod-

=1y Z Z lcz +d| 25,

(e,d)=1
This has the Fourier expansion (3.3) with

ular group

(3.22) p(n,s) = 7°T(s)1¢(28)|n| " 2n(n, )

where

(3.23) n(n,s) = > (a/d)" 2
ad=|n|

Every Eisenstein series F,(z, s) for the group I' = T'y(¢) can be expressed as a
linear combination of E(dz, s) with d|q. Below we derive these representations.

Recall that ¢ is squarefree, so every cusp of I'g(g) is equivalent to a = 1/v
with v|g. The complementary divisor w = ¢/v is the width of a. We find that
(by the arguments in [DI, p. 240], or [He, p. 534])

) {(“c/&/g lg\*g) : <‘C‘ 2) € SLy(Z), c = —cw(q)}.

Hence the cosets 'y, \o; ' are parametrized by pairs of numbers {c\/w, dy/w}
with (¢, dw) =1 and v|c. Therefore the Eisenstein series for the cusp a = 1/v
is given by

Ey(z,s) = Z (Im 72) < ) Z Z|cz—|—d| —2s,

TEFOO\U;lF (c,dw)=
vlc

MlH

Removing the condition (d,c) = 1 by Mobius inversion we get

s —25
B =5 (5) 3 wes 3 S |
(6,w)=1 (¢,d)#(0,0)
(e,w)=1
— ¢(25)" 5)62 <M>E< vz >
¢(2s) (6§1u() %u(v) 'yq G0

= G(28) D Y w(69)(699) " E(y5 7. 9)

blv yw
where (,(s) is the local zeta-function

(3.24) Gls) =T -p)""

plg
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Putting v = 86 we arrive at

(3.25) Ea(z,5) = G(28)p(0)(qv) ™ Y Y u(By)B*E(Byz, 9).
Blv vlw

By (3.22)-(3.25) we deduce that for n > 1, (n,q) =1

M(v)(i sGq(25) n(n, s)

I'(s) ‘qu” ¢(2s) vn

Hence, for any cusp, nq4(n, s) = n(n,s) if (n,q) =1, and

_ Am |G (14 2in)

Coqu |C(1 4 26r) |2

Note that w,(r) > 4rw|v(q)¢(1+2ir)| 2, where w is the width of the cusp and
v(q) is the index of the group.

(3.26) wa(n,s) =

(3.27) wa(T)

4. Hecke L-functions

From now on we assume that ¢ is squarefree, odd. Let x = x4 be the
real, primitive character of conductor g; i.e., x is given by the Jacobi-Legendre
symbol

(41) ) = ().

To any primitive form f of level ¢|q we associate the L-functions
(4.2)

Le(s) =Y Mpmn " =] (1 = Ap(p)p~° +p )7 T2 @p)™
1 pte’ plg’
and

(43)  Lg(s,0) = > As(m)x(m)n* =1 = Ap(p)x(p)p~> +p )"
1 ptg

The latter is the L-function of the twisted form
s k—1
f(z) = arn)x(n)n'z e(nz) € Sp(To(q?)).
1

Moreover, the completed L-function

(4.4) Ar(s.) = (55 ) T+ 554 L5

is entire and it satisfies the functional equation

(4.5) Ag(s,x) = wr(x)As(1 = 5, x)
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with wy(x) = x(—1)i* (see Razar [R], for example). Note that w(x) does not
depend on f. From now on we assume that

(46) (1) = i*
so that (4.5) holds with ws(x) = 1 (otherwise all the central values Ly(1,x)

vanish).

Remarks. By a theorem of Winnie Li [L] the Euler product (4.3) and the
functional equation (4.5) guarantee that f, is primitive. Also, we can see more
explicitly the dependence of ws(x) on f and x as follows. If f is primitive

of level ¢lg then wy(x) = x(~1)u(¢)A\s(d)wy and wy = *u(@)As(d), so
that wy(x) = x(—1)i*. Clearly all the above properties of L¢(3,) (including
the definition (4.3)) remain true for any cusp form f from the Hecke basis F
(because the character x kills the coefficients with n not prime to ¢ ).

Using the functional equation (4.5) we shall represent the central values
L¢(3,x) by its partial sum of length about O(kq). To this end we choose a
function G(s) which is holomorphic in |Re s| < A such that

(4.7) G(s) = G(-s),
L(5)G(0) = 1,
(s + %)G(s) < (|s]+1)724

for some A > 1. Consider the integral
=5 /(1) As(s + %,X)G(s)s_l ds.
Moving the integration to the line Re s = —1 and applying (4.5) we derive

Af(3,X)G(0) = 2I.

On the other hand, integrating term by term, we derive

RCCICORIE)

where V(y) is the inverse Mellin transform of (27)~*T(s + £)G(s)s71,

(4.8) Viy) = % | Tl DO omy) s s

Hence by the normalization condition (4.7) we get:

LEMMA 4.1. For any Hecke form f € F we have

(4.9) Le(4.x) =2 Ap(n)x(n)n~ 2V (n/q).
1
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Observe that V (y) satisfies the following bounds

(4.10) V(y)=1+0®y?)
(4.11) Viy) < (1+y)~4,
(4.12) VO@) <yt (1 +y) 724,

for 0 < ¢ < A where the implied constant depends on that in (4.7). Actually
V(y) depends on the weight k. One can choose G(s) depending on k so that

Viy) < k(1+y/k)~

therefore the series (4.9) dies rapidly as soon as n exceeds kq. If one is not con-
cerned with the dependence of implied constants on the parameter k& then one
has a simple choice G(s) = I'(k/2)~! getting the incomplete gamma function

1 e k

Viy) = —/ e “x2 ! da.
F(%) 2my

By (2.5) and (4.9) we deduce that

dnq dns
413) L3(L,x) =4 d! Ap(ning) X072y, (—) v (—> .
(613 2 2 ) Y (VA
Now we have everything ready to begin working with the cubic moment

of the central values L f( %, X). From an analytic point of view it is natural to
introduce the spectrally normalized cubic moment

(4.14) Cr(g) = Y wrLH(3,x) = Y wiL}(3. %)
JeF JeF*

where F is the Hecke orthonormal basis of Si(I'g(g)). This differs from the
arithmetically normalized cubic moment (1.2) by the coefficients w¥. Recall
that the w} satisfy the lower bound (2.12). Therefore

(4.15) > LHE,X) < Culg)(kg)' e
feF*

for any € > 0, where the implied constant depends only on . Hence for
Theorem 1.1 we need to show that

(4.16) Cr(a) < ¢

where the implied constant depends on € and k.
Applying (4.9) and (4.13) we write (4.14) as follows:

x(nning) <n na n2>
4.17) ) =83 wr S5 S M)A (mang) M2y (B T2 T2
( Cela) =8 wr ) rmArlmn) =2V e 0

fer n. nip n2
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where

(4.18) V(z,a1,20) = Vi) Y d 'V(de1)V(dy).
(d,g)=1

Next by the Petersson formula (2.9) this is transformed into

(4.19) Ch@) =D+ >, S
¢=0(mod q)

where D is the contribution of the diagonal terms given by

(4.20) D=8 Y3 (dmng)'V <"1"2> Vv <@> 14 <@> :

(dning,q)=1 4 g q

and S(c) is the contribution of the Kloosterman sums of modulus ¢ given by
(4.21)

2./nnins
S(e)=8% > > x(nminz)S(n,mnz;c)] (ﬂ) v (g, u, %) .
n ny n2

5. Maass L-functions

To any even cusp form w; in the Hecke basis ¢ of L(I'\H) we associate
the L-function

(5.1) Li(s,x) = Y Aj(n)x(n)n".
1

This has the Euler product of the type (4.3). Moreover the completed
L-function

(5.2) Aj(s,X) = (2)5r (#) r (8 —22@-) Lj(s,x),

™

is entire and it satisfies the functional equation

(5.3) Aj(s, %) = Ay(1 = 5,%).
Hence arguing as in Lemma 4.1 we deduce:

LEMMA 5.1. For any even cusp form uj € U,
- 1
(5.4) Li(3.x) =2 Aj(n)x(n)n~2Vj(n/q)
1
with Vi(y) given by
R s+ it s — it ' e 1
55 Vi =g [T (“52)r (5 estom) s as

where G(s) is any holomorphic function in |Res| < A such that
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(5.6) Gj(s) = Gj(=s),
(5.7) r G " %) r G - %) Gi(0) =1,
(5.8) P () e (251 6500 < (o) + 1)

Observe that Vj(y) satisfies the bounds (4.10)—(4.12).
To the Eisenstein series F,(z, % + ir) we associate the L-function

(5.9) Loy (5, %) Zna n, 5 +ir)x(n)n=°.

It turns out that the L, (s, x) is the same one for every cusp, indeed it is the
product of two Dirichlet L-functions (see (3.26))

(5.10) Loy(s,x) = L(s+ir,x)L(s —ir, x).

This satisfies the functional equation (5.3) (which can also be verified directly
using the functional equation for L(s, x); see [Dal), so (5.4) becomes

(511) (LG +ir ) 22 (Z (a/d) ) x(n)n=3Vi(n/q)
ad=n
where V,.(y) is given by the integral (5.5) with ¢; replaced by r in (5.5)(5.8).
Now we are ready to introduce the spectrally normalized cubic moment
of the central values of L-functions associated with the even cusp forms and
the Eisenstein series

1

6.12) Gl = S Mt LG 0+ - [ AL il dr
J

where the coeflicients w; are given by (3.18) and w(r) = >~ wa(r). By (3.27)
we obtain

4 1, |Cq(1 + 2ir) 2
(5.13) wry=—1|101+- )—
q 11 (L + 2dr)|?
plq
Note that the largest contribution to the continuous spectrum comes from the

cusp of the largest width (which is the cusp zero). Now,
(5.14) w(r) > r¥((r? +1)g) "=,

Assuming h(r) > 0 and h(r) > 1 if —R < r < R, we derive by (3.21) and (5.14)
that

R
(515 330+ / IL(L + i, x)[6(r) dr < Cl(q)(Rg)™*
[tj|<R —k
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for any € > 0, where the implied constant depends only on €. Therefore, for
Theorem 1.4 we need to show that

(5.16) C)(q) < R

where the implied constant depends on € and the test function h.
Applying (5.4) and (5.11) we transform Cj (q) by the Kuznetsov formula
(3.17) into

(5.17) Gla)=D'+ Y S0,
c¢=0(mod q)

where D’ is the contribution of the diagonal terms and S’(¢) is the contribution
of the Kloosterman sums to modulus ¢. Here D’ is similar to D in (4.20) and
S'(c) is similar to S(c¢) in (4.21). From this point on our treatments of C(q)
and Cj(q) are almost identical except for technical details. Both cases are
based on the same properties of the involved functions J(z), J*(z) and J~ ().
Therefore, for notation economy, we choose to proceed further only with the
classical cusp forms, i.e. we shall complete the proof of (4.16) and claim (5.16)
by parallel arguments. The reader should note that the dependency on the
spectral parameter in our estimates is polynomial at each step; hence the
factor R4 in (5.16) and (1.10).

6. Evaluation of the diagonal terms

Recall that D is the contribution to the cubic moment Ci(q) of the diagonal
terms which is given by (4.20). Using the bounds (4.10)—(4.12) one shows that

s () (2] (22
~ 16(#)3/;{ (/lyl (/lml d—;/) %)% = g(#logq)&

A more precise asymptotic can be derived from the complex integral

s+81+s
D:8(2m')_3/ / / C
(€) J(e) J(e) M4T

T(s+ %)F(sl + %)F(sz + %)G(S)G(Sl)G(SQ)
Ce(s+s1+1)C(s+s2+1)Cy(s1+ 52+ 1)(ss150) ! ds dsy dso;
however, we only need the upper bound

(6.1) D < ¢°.



1194 J. B. CONREY AND H. IWANIEC

7. A partition of sums of Kloosterman sums

Recall that S(c¢) is the sum of Kloosterman sums S(n,ning;c) to the
modulus ¢ = 0(modgq) given by (4.21) where n,n;,ny run over all positive
integers. The special function J(z) = 4wz~ J,_1(27z) for x = 2\/nning/c
which is attached to the Kloosterman sum S(n,ning;c) in (4.21) is itself a
continuous analog of the latter. But this analogy is merely visual. One can
compute asymptotically J(2,/nninz/c) by the stationary phase method while
the Kloosterman sum S(n,nine;c) requires more advanced arguments from
algebraic geometry (see §§13 and 14).

All we need to know about the J-function is that it can be written as (see

[W, p. 206])
(7.1) J(x) = Re W(x)e(x)

where W (x) is a smooth function whose derivatives satisfy the bound (assum-
ing k > 12)

(7.2) WO (2) < 201 + %)~/

for all £ > 0 where the implied constant depends on k£ and £. One could display
the dependence on k, but we abandon this feature for the sake of notational
simplicity.

To get hold on the variables n,n;,ne of summation in (4.17) we split
the range by a smooth partition of unity whose constituents are supported in
dyadic boxes

r T1 X2
7.3 N: 3 ) :1<_a_7_<2
(7.3 {1 g 5h 2 <2
with N, Ny, No > % Accordingly S(c) splits into sums of type
(7.4)

S(Wie) = Z Z Z x(nning2)S(n, ning; c)e(2y/nning/c)W(n,ni, na; c)

n niy no
where
r X1 X9
(7.5) W(x,x1,22;¢) = P(x,21,22)V priation W (2y/xx122/C)
and the P-functions are the constituents of the partition of unity. Precisely,

(7.6) S(c) =8Re Y S(W;e).
N

We shall treat the sums of Kloosterman sums (7.4) in full generality. All we
need to know about the function W (x, z1, z2; ¢) is that it is smooth, supported
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in the box (7.3), and its partial derivatives satisfy the bound
(7.7) xéa:{lxg?\w(é’el’&)(a:,a;l,arg; o)l <Q

for 0 < 4,01,0, < A (A is a large constant) with some @ > 0.
We also restrict the modulus ¢ to a dyadic segment

(7.8) C<e<g20, ¢ = 0(mod q),

with C' > ¢. Notice that our particular function (7.5) satisfies (7.7) with

NN Ny \° NN Ny ~23/4
C? 1 C?

N\ N A N\ A
. <1 + —) <1 + —1> (1 + —2> log q,
q q q

by virtue of (4.12) and (7.2) (the factor log ¢ appears from the summation in
d in (4.18)).

(7.9) Q< (

Remarks. Using individual estimates for the Kloosterman sums in (7.4)
one obtains

(710) S(W,C) < CQNNlNQ.

This bound is satisfactory for large ¢, but it is not sufficient in all ranges. In
order to improve (7.10) one has to exploit some cancellation of the terms in
(7.4), which is due to the variation in the argument of the twisted Kloosterman
sum

x(nning)S(n,ning; c)e(2y/nning/c)

with respect to n,ni,ng (we shall get an extra cancellation by summing over
c as well).

8. Completing the sum S(W;¢)

The character x(nninz) and the Kloosterman sum S(n,ning;c) with
¢ = 0(modgq) in (7.4) are periodic in n,n;,ng of period ¢ (however the ex-
ponential factor e(2,/nnina/c) is not). Thus splitting into residue classes and
applying the Poisson summation formula for each class we obtain

(8.1) S(W;c) :ZZZG(m,ml,mg;c)W(m,ml,mQ;c)

where m,my,my run over all integers (we call the variables m,my, my the
“dual” of the “original” n,nj,ng), G is the complete sum of Kloosterman
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sums twisted by characters to modulus c,
(8.2)
G(m,m1,ma;c) = Z Z Z x(aaraz)S(a,ajaz; c)ec.(am + aymy + azms)

a,a1,a2(mod c)

(recall the standard notation e.(z) = €2™*/¢), and W is given by the following
Fourier integral:
(8.3) W (m,mi, ma;c)
= W (cx, cx1, cxo; c)e(2y/cxrize — mx — myxy — maxs) drdxidrs.
R3
Before employing advanced arguments we cut the series (8.1) using crude
estimates for the sum (8.2) and the integral (8.3). By (10.16) we have

(8.4) |G(m, m1, ma;c)| < 3.

By (8.3) one gets directly W < QN N; NoC~3; however on integrating by parts
we can improve this bound to

(8.5) W (m,mq,ma;c)
|m| -4 || -4 |ma| -4
< QNN N,C~3 <1 + —> (1 + —) (1 + —>

where MN = M1Ny = MyNy = C + /NN1 Ny, = D, say. Since A is a large
constant it shows that W is very small outside the box

(8.6) Im| < Mg, |ma| < Mg, [me| < Mag®.

We denote this box by M(and say M is “dual” to N'). Estimating the tail of
the series (8.1) with (m,mi,m2) ¢ M by using (8.4) and (8.5) we are left with
(8.7)

S(Wie) = Z Z Z G(m, m1, ma; )W (m,m1, ma; ¢) + O(QN N1 Nag~?).

(m,m1,ma2)eM

Our next goal is to pull out from W(m,ml,mg;c) the phase factor
e(—mmimg/c) and then to separate the variables in

W (m,m1, ma;c).

(8.8) K(m,m1,ma;c) =€ (M) !

c
We choose the method of Fourier transform (because it is in harmony with the
forthcoming computations of the sum G(m,mi, mz;c) in §10); however the
Mellin transform would do the job as well.

Throughout D? stands for the differential operator

D?F (x,x1,22) = xaa;‘l“a;gQF(a’al’aQ) (x,21,22)

where F(®91,:92) is the partial derivative of order a = (a,ay, ag).
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LEMMA 8.1. Let W(x, z1,x2) be a smooth function supported in the dyadic

box

(8.9) X:{(x,m1,$2):1<%,§(—11,)x(—22<2}
with X, X1, Xo > 0, and its partial derivatives satisfy the bound
(8.10) |D*W (x, 21, 22)| <1

for any a = (a, a1, az) < 18 component by component. Put
(8.11) L(z,x1,22) = W(x,x1,22)e(2\/xT122),
(8.12) K(y,y1,92) = i’(yv Y1, y2)e(yyry2),

where L is the Fourier transform of L. Then the Li-norm of the Fourier
transform of K satisfies

(8.13)/ K (t, 11, ta)|dtdtrdts < (X X1X2)1 log(1 + X X1 X5) + (X X1 Xo) 2
3

where the implied constant is absolute.

Proof. Our arguments are direct but quite long as we go through the
Fourier inversion several times to avoid problems with the stationary phase.
Define Y, Y7, Y5 and Z by
(8.14) XXXy =22 XY =X\Y1=XoYo = Z.

Note that YY1Ys = Z. First we estimate the derivatives of
(8.15)  L(y,y1,y2) = /3 Wz, 21, x2)e(2y/xx102 — Y — T1Y1 — T2y2)dX
R

at any point y = (y,%1,%2) € R3 outside the box

L_y y oy
8.16 = N Gt g 3 3
( ) y {(y7y17y2) 3\Y7Y1>Y2\
One may say that ) is “dual” to X. Applying the operator D? with respect
to the variables (y,y1,y2) we get

D*L(y, y1,y0) = /3 Wz, z1, 22)(—2mizy)* (—2miz1y: )" (—2mizeys)*?
R

-e(2y/xx132 — TY — T1Y1 — T2Y2)dX.

Hence D2L(y,y1,y2) < Z2(Jy|X)%(|y1|X1)* (|y2] X2)® by trivial estimation;
however we can do better by partial integration. Since y = (y,y1,%2) ¢ Y
we may assume without loss of generality that y is not in the segment %Y <
y < 3Y, so xy does not match 2\/zz1z2. If Z+ |y|X > 1 then on integrating
by parts with respect to = eighteen times we gain the factor (Z + |y|X)';
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otherwise we do not integrate by parts with respect to x at all. In any case
we save the factor (1 + Z + |y|X)!8. The same operation can be applied
simultaneously with respect to the other variables xi,xs, provided y1,y2 do
not satisfy %YZ < yi < 3Y;, gaining the factors (14 Z + |y X;)*®. If one or both
variables y1,y2 do satisfy %YTL < y; < 3Y; then we do not integrate by parts
with respect to x;, but still claim the factor (1 + Z + |y;|X;)® by borrowing it
from the gain in the variable x. Thus for any y = (y,y1,y2) € R? outside the
box Y and any a = (a, a1, a2) we have

(8.17)
D2L(y, y1,y2) <Z*(|y|1X)* (Jyl| X1)* (|y2| X2)*2

(L Z 4 X)) A+ Z A+ ] X0) (L Z el Xo) C
Applying D? to (8.12) we derive by (8.17) that

DK (y,y1,y2) <Z*([y|X + lyyry2)*(ly2| X1 + lyyry2))™ (Jy2] Xz + [yyaya])®
A+ Z+YX) A+ Z+ |31 X1) (1 + Z + [y2] X2) 6

Here we have [y|X + |yyiye| < [y|XZ72(1+ Z + [y1|X1)(1 + Z + |y2| X2) and
similar inequalities hold for the other two combinations. Therefore if a < 2
andy ¢ ),

(818)  DK(y,y1,y2) <Z2(Iy|X 272" (1| X1 22" (ol X2 Z~2)"

(L [y X) T2+ [y X)) AL + Jyel X2) R

Now we proceed to the estimation of DK (y) in the box ). In this range
before integrating by parts we pull out the exponential factor e(—yy1y2) from
the Fourier integral (8.15). To this end we arrange the amplitude function
2\/Tx1Xx9 — XY — T1Y1 — T2y2 in the following form

1
(yVx — /T173)°.

1
—yy1y2 + —(z1 — yy2)(z2 —yy1) — -
Y )
Introducing this into (8.15) and changing the variables of integration
X = (x,21,22) into v = (v,v1,v2) by the formulas z1 = (v1 + y2/¥)\/Y,
z9 = (V2 + Y1)y and T = (v + \/z122/y)? [y we get
(8.19) K(y) = H(v;y)e(—v? + vyve)dvdvy dvs
1’3

where the kernel function is given by

(8:20) H(v;y) = 2(x(v;y)y)2 W (2(v;y), (01 + y2/0) VT, (02 + y15/B) VD)
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with

(8.21) 2(viy) = [+ (v1 + y2v/)% (2 + 1) 22y

Notice that the new variables v = (v, v1,v2) are restricted by

(SIS

(8.22) v = yVT — a1 < VX2 + (X1 X2)2 = 2V X2,
VY =21 — Yy < Xi+YYs =2X,,

Vo JY=22—yy2 <K Xo+YY] =2Xo,

by virtue of the support of W(x,z1,22) being in the box X and the point
(y,y1,y2) being in the box ). Put

v UL Vg
(8.23) p(v) = —/ / / e(—u? + uyug)dudu dus.
0 JO 0

Clearly, we have p(v) < log(1 + |viva|) on R3. Integrating (8.19) by parts we
get

O3H(v;y)
B = _ .
) /R?, p(v) 0v0v10v9 dvdvydvy

Applying the operator D? and the restrictions (8.22) we derive the following
estimate

03D2H (v;y)

(8.24) DK (y) < ’ SoTu s

’Z% log(1+ 2)

for some v = (v,v1,v2). We need (8.24) for all y € Y and a < 2; therefore we
have to differentiate H(v;y) up to nine times. However we only show details
for the first order partial derivatives, the higher order ones, being estimated
by repeating the arguments, are left for checking to careful readers.

We begin by the following estimate

(8.25) H(viy) < (XY)2 = Z3.

Next we estimate the partial derivatives of z(v;y) with respect to v, v, v and
Y, Y1, Y2 in the range restricted by the support of W(z,x1,x2). By (8.21) we
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derive the following estimates

ox

, 1 X
3 = 20v + (v1 + y2v/9)2 (va + 1) 2]yt < (7

2 1
> =XZ 2,

@:<U2+y1\/_> _]<< <XX2>%:X<X2>%
oy v1 + Y2y Yy YX, zZX1)
e _ <v1+y2f)% I <XX1)% :X( X, )
O0vy v2 +Y1./Y Yy Y Xo ZXs5)
Ox _1 1 1 1 _1 _
yay ={(.)72( )2y + ()2 ) T2ty — Py
< {(X2/X1)3Ys + (X1/X2)3Y1} X2 + X = 3X,
a 1 1 1 1
yla—;l —y( )R )2y < V(XX /X0)? = X,
ox 1 1 1 1
y28y2 =yo(...)72(... )2 ¢y 2 K Yo (X Xo/X)2 = X.

Continuing the differentiation along the above lines one shows that
(8.26) Dz(v;y) < X
and

Hlaan,a2)
v 0y Ovg?

if (a,a1,02) < 1 and a = (a,a1,a2) < 2. Now we are ready to estimate the
partial derivatives of H(v;y). By (8.20) we obtain the following estimates

o (b <w+28_W)@_x<<1,

(8.27) Dz(viy) < X(X3/X1) 2 (X1/X,) T Z zlotonto)

ov Oox ) Ov
OH vy 3 ow
8—111_<a:> <W+2‘Ta )81 2*”[

< (X3/X1)2 +YX2 X! = 2(X2/X1)§,

H
— < (X /Xg)% (by interchanging variables),

8H or\ ,y.1 ow 1

0H Ox 1 1 OW 10W 1
nom = (ay1)< (W + B0 ) + et 5 < 2%

H 1 . : .
yo—— < Z2 (by interchanging variables).



CENTRAL VALUES OF AUTOMORPHIC L-FUNCTIONS 1201

Continuing the differentiation along the above lines one shows that

(8.28) D?*H(v;y) < 73,
Hlaan,02) X, =2 X 2

8.29 — A T AR - L Z‘(l—a—al—az)
(8:29) Q> v Qvg? viy) < <X1> <X2> ’
if (o, 1, 9) < 1 and a = (a,a1,a2) < 2. In particular,

PD2H(v;y) 1

P 71

O0vdv10v9 <

Inserting this into (8.24) we conclude that fora <2 andy € Y
(8.30) D*K(y) < Z2log(1 + Z).

Finally we are ready to complete the proof of Lemma 8.1. Combining
(8.18) and (8.30) we deduce that the Fourier transform of K (y, y1,y2) satisfies

(8.31)
K(t,tl,tg) < (1 + |t|X1X2)_2(1 + |t1|XX2)_2(1 + |t2‘XX1)_2

22 (1+ [HY) 721+ |0 Y2) 21 A+ [to|Ya) 2

where the first term comes by partial integration outside the box ) by (8.18),
and the second term comes by partial intergration in the box ) by (8.30)
(needless to say the transition through the boundary of ) is made with a
smooth partition of unity to avoid boundary terms in partial integration). By
(8.31) we obtain

/ \K (¢, t1, t2)|dtdt1dts < Z~4 + Z2 log(1 + Z)
»3

which is the bound (8.13).

Remarks. The term Z~% is significant only if Z < 1, it could be improved if
we dealt with the factor e(yy1y2) in passing from (8.17) to (8.18) by stationary
phase methods rather than by direct differentiation.

By Lemma 8.1 we write

(8.32) W (m,my,ma;c) = e (—M

) K(ma mlamQ;C)
C

where for ¢ fixed K (y,y1,v2;¢) = K(y, y1,y2) is a smooth function on R?® whose
Fourier transform satisfies

(8.33) / K (t, 11, t2)|dtdtrdty < C(Z21og(1+ Z) + Z7%)
R3

with Z = y/NN;Ny/C. We shall see that the factor e(—mmima/c) which
we extracted from W (m,mq1,mo;c) in (8.32) cancels out with the factor
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e(mmymg/c) which appears in the formula (10.1) for the character sum
G(m,mi,mg;c). Originally G(m,m1, mg;c) was defined by (8.2); however,
anticipating the cancellation of the above character, we introduce the modified
sum

mmims

(8.34) G'(m,my,ma;c) = e(— )G (m, m1, ma;c),

c
and we refer the reader to Lemma 10.2 to see another expression for
G'(m,m1, ma;c). Inserting (8.32), (8.34) into (8.7) and applying the Fourier
inversion to K (m,m1,mg;c) we deduce by (8.33) that

(8.35)  S(Wic) < NNiNog™® +C 1 (Z7 log(1+ 2) + Z7%)

SN G mama, ma; ) (m ma ma))|

(m,m1,m2)eEM

where ¥(m, m1, mg) = e(—mt — mit; — mata) for some real numbers t, 1, to.
It does not matter what the numbers t,t;,ts are since in the following
sections we are going to establish estimates for sums of type
(8.36)
G(M, My, My;C) = > 2D DN G/ (myma, ma; €)mBm, ms |

Cge<2C m mi mo

¢=0(mod q)
for any complex coefficients oy, for |m| < M and By, m, for |mi| < M,
|ma| < Ms which are bounded.

PROPOSITION 8.2. Let C > q > 1 and M,My,Ms > 1. Let a,, and
Bmims be complex numbers with |ap,| < 1 for |m| < M and |Gy m.| < 1 for
|mi| < My, |ma| < M. Then

(8.37)
G(M, My, M;C) < C (14 (M + M; +M2)q_1)27—2(q

~—

1
2

+(1+ CMq_Q)% (1+ My Mag™")2 (CMM, My)2+*

for any € > 0, the implied constant depending only on €.

9. Estimation of the cubic moment — Conclusion

Using Proposition 8.2 we are ready to finish the proof of Theorem 1.1.
Recall that the cubic moment (4.14) was transformed by Petersson’s formula
to (4.19) where D is the contribution of the diagonal terms as estimated in (6.1).
The other terms S(c¢) are sums of Kloosterman sums. These are partitioned
into dyadic boxes in (7.6). We also divided the range of the modulus ¢ into
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dyadic segments (7.8). Now, given a box N of size N x N1 x Ny and C > g,
we need to estimate

(9.1) T(C)= > ¢ ?*8Wso).

Cgec2C
¢=0(mod q)

To this end we apply (8.35) getting
(9.2) T(C) < QNN No,C~ g™
+QC N (Z7 log(1 + Z) + Z~)G(M, My, My; C)
where @ satisfies (7.9) and M x M; x My is the size of the “dual” box. Let

us recall that Z = /NN Ny/C, and MN = M1N; = MaNy = D with D =
C + v NN N,. Introducing (8.37) into (9.2) we get

(9.3)

D D D \?
T NN No,C~ g~ Zi+zN(1+ =4+ 2 4+ =) D
(C) < QNN1N2C™ g "+ Q(Z2 + ) +qN+qN1+qN2

1 1 1
CD\? D? \z/ CD? \:?
c Y zi+z7Y(1+==) (1 De.
recrizrzren) o) (v
Taking into account the bound for W given in (7.9) we see easily that the

right-hand side of (9.3) multiplied by C¢ is the largest for C' = /N N; N, and
N = N; = Ny = ¢, and it is bounded by O(¢%). Therefore

(9.4) T(C) < ¢*C*

for any C' > ¢ and any € > 0, the implied constant depending on . Finally
gathering together all the pieces (9.4) and (6.1) into (4.19) we get Cx(q) < ¢*
which completes the proof of Theorem 1.1.

Of course, we still have to prove Proposition 8.2 for which we spend the
rest of this paper.

10. Evaluation of G(m,my, mo;c)

Recall that G(m,m1, ma;c) is defined by (8.2). Put ¢ = gr. We begin by
opening the Kloosterman sum

S(a7 alaz;c) = Z* e <w> .
d(mod ¢) ¢

The sum over a(mod ¢) vanishes unless d + m = 0(mod r) in which case it is
equal to r7(x)x((d + m)/r) where 7(x) is the Gauss sum

)= Y x(@)eg(x).

z(mod q)
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Similarly the sum over aj(modc) vanishes unless asd + m; = O(modr) in
which case it is equal to r7(x)x(d)x((a2 + dm1)/r). Now the sum over ay
is given by

Y. xlaz)x((az +dmi)/r)e(azms/qr)

az(mod c)
az=—dm1(mod )

= Z X(ur —dmy)x(u)e (

ums dm1m2>
u(mod q)

q qar

Finally we sum over d(mod c) with (d,c¢) = 1,d = —m(modr). These condi-
tions imply that m and r are co-prime. Having recorded that (m,r) = 1 the
condition (d,c) =1 is redundant so we are free to run over d(mod c) getting

Y x@x((d+m)/r)x(ur — dmi)e(~dmims/qr)

d(mod ¢)
d=—m(mod r)

—vmims 4 mimimso )
q ar )

- Z x()x(vr — m)x(ur — (vr — m)mq)e (

v(mod q)

Gathering the above results we obtain (for (m,r) =1)
(10.1) G(m, m1,ma; qr) = (r7(x))? eqr(mmyma) Hy(m, m1,ms; q)
where

H.(m,my1,ma;q) = ZZ x[uv(vr —m)(ur — (vr —m)my)|eq(ume —vmims).
w,v(mod q)

Changing v into u + vm; we arrive at

(10.2) H,(m,my, ma;q) ZZ v(u+ovmy)(vr—m)(ur+mmq)|eq(ums).

u,v(mod q)

Clearly the character sum H,(m,mj, mg;q) is symmetric in mq, mo by (10.1)
and (8.2). Note also that it is multiplicative in ¢; precisely if (¢1,¢2) = 1 then

(10.3) H,(m,my,ma; q1q2) = Hy.(m, m1G1, ma; g2) Hyr.(m, m1, maga2; q1)

where §1, g2 are the multiplicative inverses of ¢1, g2 to moduli g2, g1 respectively.
(The implied characters are Xq,40, Xgo» and Xgq, respectively.) This property
reduces our problem of computing H,(m,m1, ma;q) to prime modulus.

LEMMA 10.1. Suppose q is prime. Then H,(m,m1,ma;q) is given by

(10.4) X (mmima)T(x), if qlr,
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1 .
(10.5) q_—lR(m;Q)R(ml; q)R(ma;q), if ¢fr and glmmims,

(10.6) H(rmmima;q),  if ¢frmmima.

Here 7(x) is the Gauss sum, R(m,q) = S(0,m;q) is the Ramanujan sum, and

(10.7) Z Z wo(u+ 1)(v+1))eq ((uwv — Dw).

u,v(mod q)

Remark. In the sequel we consider (10.7) as the definition of H(w;q) for
all ¢, not necessarily prime.

Proof. We use the expression (10.2). If g|r then (10.2) reduces to

(=m®m1) > Y x(v(u + vm))eq(uma) = x> (mmima) 7 (x).

Now suppose ¢ 1 r. Then changing u, v into ur, vr we get

(10.8) Z Z x[v(u+vmy)(v —m)(u + mmq)leqg(urms).

If g/m; then (10.8) reduces to

Z X2(u)eq(ufm2) Z x(v(v —m)) = R(ma; q)R(m;q)

which agrees with (10.5). The case g|mg follows by the symmetry. Now suppose
q {1 rmyms. Then (10.8) becomes

(10.9) ZZX[U(U—F’L))(’U —m)(u + m)]eq(urmims).

If g/m then (10.9) reduces to
Z Z x[uv? (u 4 v)]eg(urmimg) = 1

which agrees with (10.5). Finally, if g { rmmimg then (10.9) becomes (10.6)
by changing variables.

Remarks. Note that H,(m,m1, mg;q) vanishes if ¢|(r, mmims), and it is
equal to 72(x) = x(—1)q if q|r,q f mmima. One can express the two cases
(10.5) and (10.6) in one form

(10.10)
H, (m ml,mg,q) H(T'mmlmQaQ)

+ ﬁ{R(m; q)R(m1; q) R(ma; q) — R(mmima; q)}
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if ¢ 1 r because H(0;¢q) = 1. This formula, in spite of being quite compact, is
not convenient for extension to composite moduli since it lacks multiplicative
properties.

Let ¢ be squarefree. Notice that (10.4) and (10.5) are purely multiplicative
in ¢ while (10.6) satisfies the twisted multiplication rule

(10.11) H(w; q1q2) = H(waqi; ¢2) H(waz; q1)

if ¢ = qig2 (here H(x;q) is defined by (10.7) with x = x4 for ¢ = ¢1,¢2 and
q1q2 respectively). Put

(10.12) h=(r,q), k= (mmima,q/h), { = q/hk.

We write

H,.(m,m1,ma; q)

- H’I’(Hmv my,ma; h)H’r‘(mmu mi, ma; k)HT(ﬁW% my, ma; 6)7

by the rule (10.3). Applying Lemma 10.1 we arrive at

(10.13)

h _
H,(m,mi,ma;q) = Xh(—l)@R(m; E)R(mq; k)R(me; k) H (rhkmmima; £)
provided (h,mmims) = 1, or else H,(m,mi,me;q) vanishes. Combining

(10.13) and (10.1) we obtain:

LEMMA 10.2. Let ¢ = qr with q squarefree. Suppose m,my,mo are integers
with

(10.14) (m,r) =1, (mima,q,r) = 1.
Then the modified character sum (8.34) satisfies
(10.15)

R(m; k)R(mq; k) R(ma; k) H (rhkmmyma; £)

r2qh
G'(m,my,ma;c) = ka(—l)—i)

&(
where h = (r,q),k = (mmims,q) and ¢ = q/hk. If the co-primality conditions
(10.14) are not satisfied then G'(m,my,ma;c) vanishes.

Applying trivial estimates |R(m; k)| < ¢(k) and |H (w; £)| < £? we obtain:

COROLLARY 10.3. Let ¢ = qr with q squarefree. For any m,mi,ma we
have

(10.16) |G((m, m1,ma; c)| < ¢*r?.
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11. Bilinear forms H

Recall that H(w; q) is the character sum defined by (10.7) where x = x, is
the real primitive character of conductor ¢ (the Jacobi symbol). In this section
we estimate general sums of type

(11.1) H=> > vmbuH(armn;q)
(rmmn,q)=1

with any complex coefficients v, ,, and 3, for 1 < r < R,1 < m < M and
1 < n < N. Although (11.1) is a triple sum we consider it as a bilinear form
since the variables » and m are not separated. For convenience we assume that

(11.2) [Yrm| < 1,

but we make no conditions about 5 = (3,). We shall estimate H in terms of
the f5-norm

(11.3) 181 = (31673

LEMMA 11.1. Let (a,q) = 1. Now,
(11.4) H < ||B]/(a + RM)? (g + N)Z (qRM)2+*

for any € > 0, the implied constant depending only on €.

Actually we first prove (11.4) for the following sum
(11.5) H* = Z Z Z%,mﬂnH*(aan; q)
(rmn,q)=1
where H*(w;q) denotes the reduced character sum
(11.6) H*(w;q) = ZZ X(uv(u+1)(v+1))eq((uv — w).
)

u,v(mod ¢
(’U/U—l,q)zl

Let H(q) denote the above character sum restricted by the condition
uv = 1( mod q) instead of (uv—1,¢q) = 1. For g prime H(q) = —x(—1), whence

for any squarefree ¢ we obtain H(q) = u(q)x4(—1) by the pure multiplicativity.
Then by the twisted multiplicativity we derive

(1L.7) H(wiq) =Y > pla1)xg (1) H (qrw; g2).

Hence it is clear that (11.4) for H* implies that for H.
Now we can express the additive character e,((uv — 1)w) in H* by means
of the multiplicative characters 1)(mod ¢). Indeed for (a,q) =1,
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1 _
(11.8) eq(a):@ > r()(a)

¥ (mod q)

where 7(1)) is the Gauss sum. Hence we obtain

o X rebedi)

(1L.9) H* (wiq) = ——
ola ¥(mod q)

where g(x, ) is the hybrid character sum

(11.10) = > > x(uo(u+1)(v+ 1)) (uv — 1).

u,v(mod q)

Inserting (11.9) into (11.5) we obtain
(11.11)

H*zﬁq) S r@)g(x. ¥)¥(a) (ZZw’mzb(fm)) (ZMW)-

3 (mod q)

In the last two sections we shall prove that for any v (mod q)

(11.12) g0 ¥) < ¢'te

where the implied constant depends only on . Since |7(¢))| < g% we obtain

<zt Y I )| S Bavo(n))-

P(modgq) T

Finally by Cauchy’s inequality and the orthogonality of characters this yields
(11.4) for H*. This completes the proof of Lemma 11.1.

Remarks. The bound (11.12), which is best possible, is essential. We need
it for all ¥»(mod q); even one exception would weaken the final results consid-
erably. For example, if for one character we only had g(y, ) < q2+€, then the
method would yield Lf(3,x) < q%+€ in place of (1.6), and L(s,x) < ql%JrE
in place of (1.12). Knowing that H(w;q) < ¢ (by the Riemann hypothesis for
varieties) one can see that the estimate for bilinear form (11.4) saves an extra
factor q% because of cancellation which is due to a variation in the angle of
H(w;q) as the parameter w ranges over special numbers. Moreover it is very
important that the three variables r, m,n appear only in one block w = armn
in a multiplicative fashion. The point is that we lost a factor q% only one time
when passing from additive to multiplicative characters while we gained this
factor twice when applying the orthogonality of the multiplicative characters.
Another interesting point is that r originated from moduli of Kloosterman
sums S(m,n;qr) and was transformed to a variable modulo ¢ by means of a
kind of reciprocity.
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12. Estimation of G(M, My, Ms; C)

Inserting (10.15) into (8.36) we obtain

G(M, My, My; C ZZZ 2

hkl= (r,k0)=1
Cg hqr<2C

YD R(ms k) R(mas k) R(mas k) H (rh2kmmima; )i By ms |-

(mmima,h)=1
mmmo=0(k)
(m,r)=1
We put m into outer summation, estimate R(m, k) by (m, k)¢(k)/k, and keep
mi, mo in the inner summation. To simplify the inner sum we create one
variable n = myms9 with coefficients

(12.1) B(k) =D BmymyR(ma; k) R(ma; k).

We obtain )

(122) g(MaMlaM27 ZZZ Z Z
hké=q (r,k0)= \m\<M

Cg hqr<2C (m,hlr)=

Y0 H(rhkmn; ) B, (k)]
(n,h0)=1
mn=0(k)

Before making further simplifications we isolate the contribution to
G(M, My, Ms;C) of the terms with mmimge = 0; we denote this contribu-
tion by Go(M, My, My; C). For these terms on the right side of (12.2) we have
h =/ =1 and k = q; therefore

Go(M, My, My; C) < Cq*Y ¥~ "(m, q)(m1,q)(ma, q)

mmimo=0

where the summation is also restricted by |m| < M, |m1| < Mi, |ma| < Ms
Hence
(12.3) Go(M, My, Mz; C) < C (1+ (M + My + My)g~)* 72(q).

Let G*(M, My, Ms; C') denote the contribution to G(M, My, Ma; C') of the
terms with mmjmeg different from Z€ero. Putting k= (m,k) in (12.2) we get

|G*(M, My, Ma; C Z Z > >

hké q rv=k R<T<2R O<\m\<M’
(M) (m, )=

Y0 HERPmn 0)5n (k)|
0<|n|< N’
(n,ht)=1
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where R = C/hq, M' = M/k,N' = M Ms/v and (,,(k) is as in (12.1). For
n # 0 we have |3,(k)| < (n, k)?7(n), so that

Do BB < 0) Y (nw)'n)
0<|n|< N’ 0<|n|<N!
< V' (v)r*N'(log 2N')* < k72 (k) My Mo (log 2M, Mo)*.

Now applying (11.4) we derive that
(12.4)

1 1
G* (M, My, My; C) < (14 CMq™2)? (14 My Mg~ )2 (CM M, My)2+e.

Adding the estimates (12.3) and (12.4) we complete the proof of Proposi-
tion 8.2.

13. Estimation of g(x, )

Our aim is to prove the bound (11.12) for the hybrid character sum g(x;, 1)
with x(modq) real, primitive character and (modq) any character. Since
g(x, ) is multiplicative in the modulus it suffices to show:

LEMMA 13.1. Let p be prime, x(mod p) the real, nonprincipal character,
and ¥ (mod p) any character. Then

(13.1) l9(x, V)| < p

where the implied constant is absolute.

In the proof we employ the Riemann hypothesis for varieties over the finite
field F),. We need to consider the character sums over the field extensions F,/F,
with ¢ =p™,m > 1. Put

(132)  gOtmetm) = 3 S X (v + 1) (v + 1) (v — 1)

u,vEF,m

where x,, and 1, are the characters derived from Y, 1 by composing with the
norm Ny, /g, : Fg — Fp. Let L(T) be the associated L-function

(13.3) L(T) = esxp (Zgum,ww) .
1

m
B. Dwork [Dw] showed that L(T') is rational:

(13.4) L(T) =[]0 - D) ] -81)".

v v
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Equivalently

(13'5) Xmawm = Za +Zﬂm

P. Deligne [De] showed that the roots a1, 3,1 are algebraic numbers with
(13.6) lay, | = p™/2, |8,| = p™/?

where k,, ¢, are nonnegative integers called the weights of «,,3,. The total
degree of L(T') (the number of roots) was estimated by A. Adolphson and
S. Sperber [AS] using Bombieri’s idea [Bo]; it is bounded by a number inde-
pendent of the characteristic p.

LEMMA 13.2. Let ¢ =p™ and x € [@‘q,x % 1. Then

(13.7) — > e =d’ —20-2.
d)ETF’

Proof. By the orthogonality of characters the left-hand side of (13.7) is
equal to

D> x(wwn(ur + 1)(on + 1)X(uzva(uz + 1)(v2 + 1))

ULV =UV

=3 30 x((ur 4 1)(v1 + 1) x((uz + 1) (urvr + uz))x(us).

ul,m,uge]}?;
The sum over u; equals

> x(ur + D)x(urvr + us)

u1#0

Now the sum over us equals

S X(us + 1>x<u2>< > ) — gx(o 1)+ o) + 1.

u27#0
Finally the sum over v; equals
St XX ) —ala-2 -2
v17#0 u27#0 u1#0

This completes the proof of 13.7.

Lemma 13.2 and the formula (13.5) imply (by choosing a suitable m) that
all the weights k,, ¢, are < 2 except for at most one root of weight three for
one character ¥. If such a root exists then ¢ must be real, precisely 1 = ¥,
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because for the trivial character )9 = 1 we have g(x, 1) = 1. This completes
the proof of Lemma 13.1 for all ¢ # x. For ¢» = x we shall estimate g(x, x)
without recourse to the Riemann hypothesis.

14. Estimation of g(y, x)

There are several interesting expressions for g(x, x) with real character
x(mod p). First recall that by the definition

(14.1) = > > x(wo(u+1)(v+ 1) (uww — 1)).
u,v(mod p)

Changing variables one gets

(14.2) = > > x(wo(u+ 1) (v + 1) (u—v)).

u,v(mod p)
Therefore g(x, x) is associated with the elliptic curves in the Legendre family
(14.3) Ey: y?=x(z+1)(z+N).
Next we write (14.2) in the following way:
(14.4) = > > x2w® - 1)(0* - 1)(u—v)).

u,0(mod p)

Notice that g(x,x) = x(=1)g(x, x), i-e. g(x,x) = 0if x(—=1) = —1. Now we
separate the variables in (14.4) by inserting

(14.5) X2l -v) = a(gp) x(@)ep(2a(u — v)).
This yields

2
(14.6) 9. X) = ﬁ 3 x(@)| 3w — 1)ep(2au)

The innermost sum is a Kloosterman sum, precisely

(14.7) Zx(uQ — 1Dep(2au) = S(a, a;p)

if a # 0(mod p). Therefore we have
(14.8) 906 X)700) = x(a)S*(a, a; p).

Weil’s estimate for the Kloosterman sums S(a, a;p), or Hasse’s estimate
for the number of points on the curve Ey /F,, yields |g(x, x)| < 2p*/? while our

goal is:
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LEMMA 14.1. For the real character x(mod p), x # 1,

(14.9) lg(x, x)| < 4p.

Writing S(a, a;p) = 2,/p cos(wp(a)) we derive from (14.8) that

g06X) =700+ x(=1) > x(a)e @,

a(mod p)

Therefore the estimate (14.9) reads as

(14.10) Y x(@)e*™ @] < 2v/p.

a(mod p)

In other words one can say that the variation of the Kloosterman angle wy(a)
is quite independent of the sign change of the character x(a).

Our proof of (14.9) is completely elementary. First notice that S(a, a;p) =
S(ab, ab; p) for any b # 0(mod p). By means of this parameter we create p — 1
copies of g(,x). Moreover changing a into ac? with ¢ #Z 0(mod p) we create
altogether (p — 1)2 copies of g(x,x). Thus,

2
P -1 00 =3" (Z X(a)52(abe?, abcz;p)> ,
b c a

Put bc? = z and bc? = y, i.e. b*> = x/y and ¢* = xy. Given x and y there are
at most two solutions for b and four for ¢; therefore g2(x, x) < T, where

. 2
(14.11) T= m;zy: (;Xm)SQ(ax,ay;p)) .

We shall compute T exactly. Opening the Kloosterman sum, squaring out and
executing the summation in x, y(mod p) we get

8
(14.12) T= —p2 Z ZX(&lClQ)V((Il/CZQ)
(p—1)? =4~
where v(a) is the number of solutions to the system

1 1 1 1
di+do) =ds+d — = =4 =
a< ! 2> 3 b “ (d1 dg) d3 d4

If di + dy = 0 then d3 + dy = 0. The number of such solutions is (p — 1)2.
If diy+dy # 0 then the second equation of the system can be replaced
by d1d2 = d3d4. Given dl,dQ with dldQ(dl + dg) 7& 0 the d3,d4 are the
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roots of X2 — a(dy + d2)X + dido = 0, and the number of roots equals
1+ x[a?(dy + d2)? — 4dyd3). Hence

v@)=(p—-1+ > > (1+x[a*(d +do)* —ddrdy))

d1do(dy +d2)#0
=(p-1°+(@-1) Y  (1+xla’(d+1)>—4d])
d(d+1)#£0
=p-1D*+@@-Dp-2)+@-1) > x(a®d®—4d+4).

d(d—1)#0

The last sum is equal to —3 + p&(a?), where §(a) = 1 if a = 1, and 6(a) = 0
otherwise, therefore

(14.13) v(a) =2(p—1)(p - 3) +p(p — 1)6(a”).
Inserting (14.13) into (14.12) we arrive at

(14.14) T = 8p*(1 + x(—1)).

This, together with g2(x, x) < 7T, completes the proof of (14.9).

Remarks. Some of the ideas of our proof of Lemma 14.1 are reminiscent
of the Kloosterman arguments [K1]. The method is capable of producing good
results for the sum Y x(a)S?(a, a;p) with any character y which assumes one
value with large multiplicity. In particular it works well for a character of any
fixed order. We believe that (14.10) is true for any x(mod ¢). A more advanced
study of the Kloosterman angles wy(a) can be found in the book [Ka).

Added in proof. W. Duke showed (in February, 1999) that g(x,x) =
2ReJ?%(x, 1) where J(x,1) is the Jacobi sum and ¢ is a quartic character
modulo p = 1(mod4). He also pointed out that g(x,x) is the p'® Fourier
coefficient of 17(42)% € S3(I'o(12), so Lemma 14.1 follows from Ramanujan’s
conjecture (proved by P. Deligne). N. Katz also informed us that g(x, x) can
be computed explicitly.
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