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Permanents, Pfaffian orientations,
and even directed circuits

By Neil Robertson,* P. D. Seymour, and Robin Thomas**

Abstract

Given a 0-1 square matrix A, when can some of the 1’s be changed to −1’s
in such a way that the permanent of A equals the determinant of the modified
matrix? When does a real square matrix have the property that every real
matrix with the same sign pattern (that is, the corresponding entries either
have the same sign or are both zero) is nonsingular? When is a hypergraph with
n vertices and n hyperedges minimally nonbipartite? When does a bipartite
graph have a “Pfaffian orientation”? Given a digraph, does it have no directed
circuit of even length? Given a digraph, does it have a subdivision with no
even directed circuit?

It is known that all of the above problems are equivalent. We prove a struc-
tural characterization of the feasible instances, which implies a polynomial-time
algorithm to solve all of the above problems. The structural characterization
says, roughly speaking, that a bipartite graph has a Pfaffian orientation if
and only if it can be obtained by piecing together (in a specified way) planar
bipartite graphs and one sporadic nonplanar bipartite graph.

1. Introduction

Computing the permanent of a matrix seems to be of a different computa-
tional complexity from computing the determinant. While the determinant can
be calculated using Gaussian elimination, no efficient algorithm for computing
the permanent is known, and, in fact, none is believed to exist. More precisely,
Valiant [24] has shown that computing the permanent is #P-complete even
when restricted to 0-1 matrices.
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It is therefore reasonable to ask if perhaps computing the permanent
can be somehow reduced to computing the determinant of a related matrix.
In particular, the following question was asked by Pólya [17] in 1913. If A
is a 0-1 square matrix, under what conditions does there exist a matrix B

obtained from A by changing some of the 1’s to −1’s in such a way that the
permanent of A equals the determinant of B? For the purpose of this paper
let us say that B (when it exists) is a Pólya matrix for A. The complexity
status of the decision problem of whether an input matrix has a Pólya matrix
remained open until present. In this paper we solve the problem. Specifically,
we first give a structural characterization of matrices that have a Pólya ma-
trix. Roughly speaking, they can all be obtained by piecing together “planar”
matrices and one sporadic nonplanar matrix. We then use this characteri-
zation to design a polynomial-time algorithm that given an input matrix A

outputs either a Pólya matrix for A, or a certain “obstruction” submatrix of A
whose presence implies that A has no Pólya matrix. The algorithm easily
extends to matrices with nonnegative entries, as pointed out by Vazirani and
Yannakakis [25].

Our results are best stated and proved in terms of bipartite graphs. By
a graph we mean a finite simple undirected graph, that is, one with no loops
or parallel edges. A set M of edges of G is a matching if every vertex of
G is incident with at most one edge in M ; it is a perfect matching if every
vertex of G is incident with exactly one edge in M . Let G be a graph, and
let H be a subgraph of G. We say that H is central if G\V (H) has a perfect
matching. (If G is a graph, and X is a vertex, an edge, or a set of vertices or
edges, then G\X denotes the graph obtained from G by deleting X.) Let D
be an orientation of G, and let C be a circuit of G of even length. (Paths and
circuits have no “repeated” vertices.) We say that C is oddly oriented (in D)
if C contains an odd number of edges that are directed (in D) in the direction
of each orientation of C. We say that D is a Pfaffian orientation of G if every
central circuit of G of even length is oddly oriented in D.

A graph G is bipartite if its vertex-set can be partitioned into two sets
A and B in such a way that every edge has one end in A and the other end
in B. We say that (A,B) is a bipartition of G, and we refer to A and B as
color classes. With every 0-1 square matrix A we associate a bipartite graph
G as follows. There is a vertex of G corresponding to every row and every
column of A, and two vertices of G are adjacent if and only if one represents
a row, say r, and the other represents a column, say c, such that the entry of
A in row r and column c is nonzero. Vazirani and Yannakakis [25] proved the
following.

1.1. Let A be a 0-1 square matrix, and let G be the associated bipartite
graph. Then A has a Pólya matrix if and only if G has a Pfaffian orientation.
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Little [9] proved the following elegant characterization of bipartite graphs
that admit a Pfaffian orientation (and hence of matrices that admit a Pólya
matrix). We say that a graph G is a subdivision of a graph H if G is obtained
fromH by replacing the edges ofH by internally disjoint paths, each containing
at least one edge. We say that G is an even subdivision of H if G is obtained
fromH by replacing the edges ofH by internally disjoint paths, each containing
an even number of vertices and at least one edge. We say that a graph G

contains a graph H and that H is contained in G if some even subdivision of
H is isomorphic to a central subgraph of G.

1.2. A bipartite graph admits a Pfaffian orientation if and only if it does
not contain K3,3.

Unfortunately, 1.2 does not seem to imply a polynomial-time algorithm to
test whether a bipartite graph has a Pfaffian orientation, the difficulty being
that it is not clear how to efficiently test for a K3,3 containment. Our main
result gives a structural description of graphs that admit a Pfaffian orientation,
and it enabled us to derive a polynomial-time recognition algorithm.

To state our main result we need some definitions. Let G0 be a graph, let
C be a central circuit of G0 of length four, and let G1, G2 be two subgraphs
of G0 such that G1 ∪ G2 = G0, G1 ∩ G2 = C, V (G1) − V (G2) 6= ∅ and
V (G2)− V (G1) 6= ∅. (The intersection and union of two subgraphs of a graph
is defined in the natural way.) Let G be obtained from G0 by deleting some
(possibly none) of the edges of C. In these circumstances we say that G is
a 4-sum of G1 and G2. The Heawood graph is the bipartite graph associated
with the incidence matrix of the Fano plane (see Figure 1 below).

A graph G is k-extendable, where k ≥ 0 is an integer, if every matching of
size at most k can be extended to a perfect matching. A 2-extendable bipartite
graph is called a brace. It is easy to see (and will be outlined in §7) that the
problem of finding Pfaffian orientations of bipartite graphs can be reduced to
braces. The following is our main result.

1.3. A brace has a Pfaffian orientation if and only if either it is isomor-
phic to the Heawood graph, or it can be obtained from planar braces by repeated
application of the 4-sum operation.

In Section 9 we use 1.3 to design a polynomial-time algorithm to decide if a
bipartite graph has a Pfaffian orientation. By 1.1 this also gives a polynomial-
time algorithm to decide if a 1-1 square matrix has a Pólya matrix, by [25]
this solves the even circuit problem for directed graphs (see [19], [20], [21], [22],
[23]), by [11], [18] it solves the problem of determining which hypergraphs with
n vertices and n hyperedges are minimally nonbipartite, and by [8] it solves
the problem of determining which real n × n matrices are sign-nonsingular.
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The Heawood graph

Figure 1

See also [1] for variations of sign-singularity. We briefly review some of these
equivalent formulations in Section 7.

Let us outline the proof now. We first characterize containment-minimal
nonplanar 1-extendable bipartite graphs. To state this characterization we
need to define several classes of graphs. Let k ≥ 2 be an integer, and let C be
a circuit with vertices u1, u2, . . . , u2k listed in their order on C. Let G be the
graph obtained from C by adding k edges e1, e2, . . . , ek where ei has ends ui
and ui+k (i = 1, 2, . . . , k). If k ≥ 4 we say that G is a Möbius ladder; the edges
e1, e2, . . . , ek are called rungs. Let H be the graph obtained from C by adding
two vertices v1 and v2, an edge joining v1 and v2, and for i = 1, 2, . . . , k an
edge with ends v1 and u2i−1, and an edge with ends v2 and u2i. We say that
H is a biwheel; the vertices v1 and v2 are called hubs, and the edges incident
with exactly one of them are called spokes. A stem is a graph obtained from a
Möbius ladder with an even number of rungs by replacing all rungs by disjoint
paths on three vertices with the same ends. A flower is a graph obtained
from a biwheel by replacing all spokes by internally disjoint paths on three
vertices with the same ends. The flower on ten vertices is called Bud. Let
({a1, a2, a3}, {b1, b2, b3}) be the bipartition of K3,3. We define Uno to be the
graph obtained from K3,3 by subdividing every edge incident with a1 exactly
once, and adding a two-edge path joining a2 and a3. We define Duo to be the
graph obtained from K3,3 by adding a two-edge path joining a2 and a3, and a
two-edge path joining b2 and b3. See Figure 2.
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Figure 2

1.4. Let G be a nonplanar 1-extendable bipartite graph. Then G contains
one of the following graphs:
(i) K3,3,

(ii) a stem,

(iii) a flower,

(iv) Uno, or

(v) Duo.



     

934 NEIL ROBERTSON, P. D. SEYMOUR, AND ROBIN THOMAS

To prove 1.4 we first give in Section 2 a description of graphs with no
“magic” circuits. We then prove in Section 3 that if G is as in 1.4 and is
containment-minimal, then it has no magic circuit. Using the result of Section 2
it is then easy to prove 1.4.

As a next step we use 1.4 in Section 4 to prove the following.

1.5. Let G be a nonplanar 2-extendable bipartite graph. Then G contains
one of the following graphs:
(i) K3,3,
(ii) the Heawood graph, or
(iii) Rotunda.

The graph Rotunda is defined as follows. Let C be a circuit of length four,
and let H be obtained from C by adding four new vertices of degree one, each
adjacent to a different vertex of C. Let the new vertices be a, b, c, d listed
in the order of their neighbors on C. Let H1, H2, H3 be three isomorphic
copies of H, and let ai, bi, ci, di (i = 1, 2, 3) be the vertices corresponding to
a, b, c, d, respectively. Then Rotunda is obtained by identifying a1, a2, a3 into
a0, identifying b1, b2, b3 into b0, and so on. We say that {a0, b0, c0, d0} is its
center. See Figure 3 below.

In Section 5 we prove that if a brace G does not contain K3,3, but contains
Rotunda, and X is the set of vertices of G corresponding to the center of
Rotunda, then G\X is disconnected. This is a lemma that will be used in the
next section to show that in those circumstances G is a 4-sum of two smaller
graphs. In Section 6 we derive our main theorem from 1.5, as follows. The
easy “if” part follows from 1.2. To prove the difficult “only if” part of 1.3 we
may assume that G is a nonplanar brace with a Pfaffian orientation. Then by
1.2 and 1.5 G contains the Heawood graph or Rotunda. We prove that if G
contains the Heawood graph, then it is isomorphic to it, and that if it contains
Rotunda, then it is a 4-sum of two smaller braces. For the latter assertion we
use the result of Section 5. In Section 7 we deduce several consequences of the
main theorem, in Section 8 we prove several lemmas needed for the algorithm,
and in Section 9 we design a polynomial-time algorithm to test if a bipartite
graph has a Pfaffian orientation.

2. Magic circuits

An edge e of a graph G is called planarizing (in G) if G\e is planar, and
nonplanarizing otherwise. We say that a circuit C in a graph G is magic if at
most one edge of C has the property that it is planarizing and has both ends
of degree at least three. Our objective in this section is to prove a theorem
about 2-connected nonplanar graphs with no magic circuits.
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Let (A,B) be the bipartition of K3,3. Let K+
3,3 denote the graph obtained

from K3,3 by joining two vertices of A by an edge, let K
+
+

3,3 denote the graph
obtained from K+

3,3 by joining two vertices of B by an edge, and let K++
3,3

denote the graph obtained from K3,3 by adding two edges joining two distinct
pairs of vertices of A. The main result of this section is the following.

2.1. Let G be a 2-connected nonplanar graph with no magic circuit. Then
G is isomorphic to a subdivision of one of the following graphs:
(i) a Möbius ladder,

(ii) a biwheel,

(iii) K+
3,3,

(iv) K
+
+

3,3,

(v) K++
3,3 , or

(vi) K5.

Let H be a subgraph of a graph G. By an H-path in G we mean a path P
in G with at least one edge such that P has both ends in H and is otherwise
disjoint from H. A first step in the proof of 2.1 is the following. Let us remark
that, by definition, every Möbius ladder has at least eight vertices.

2.2. Let G be a 2-connected graph with no magic circuit such that some
subgraph of G is isomorphic to a subdivision of a Möbius ladder. Then G is
isomorphic to a subdivision of a Möbius ladder.
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Proof. Choose a subgraph H of G such that

(i) H is isomorphic to a subdivision of a Möobius ladder L, and
(ii) subject to (i), |V (L)| is maximum.

Let V (L) = {u1, u2, . . . , u2k} as in the definition of a Möbius ladder, let
v1, v2, . . . , v2k be the corresponding vertices of H, and for i, j ∈ {1, 2, . . . , 2k}
such that ui and uj are adjacent in L let Qi,j denote the corresponding path
in H. We claim the following.

(1) For every H-path P in G there exists an integer i such that one of the ends
of P is equal to vi and the other belongs to Qi+k−1,i+k ∪Qi+k,i+k+1\vi+k
(index arithmetic is modulo 2k).

To prove (1) let P be an H-path in G with ends u and v. We may assume
that for some integer i with 1 ≤ i ≤ k + 1 either u ∈ V (Q1,k+1) − {v1, vk+1},
v ∈ V (Qi,k+i) ∪ V (Qi,i+1)− {vi+1, vk+i} and i ≤ k − 1, or u ∈ V (Q1,2)− {v2}
and v ∈ V (Qi,i+1) − {vi+1}. If i < k − 1, then every edge of the circuit of
Q1,k+1 ∪Q1,2 ∪Q2,3 ∪ . . .∪Qi,i+1 ∪Qi,k+i ∪P is nonplanarizing, and hence the
circuit is magic, a contradiction. If i = k − 1, then every edge of the circuit
Q2,k+2∪Q2,3∪Q3,k+3∪Qk+2,k+3 is nonplanarizing. Thus we may assume that
i ∈ {k, k + 1}, u ∈ V (Q1,2)− {v2} and v ∈ V (Qi,i+1)− {vi+1}. If u = v1, then
v 6= vk+1, because otherwise Q1,k+1 ∪ P is magic, and so (1) holds. Thus we
may assume that u ∈ V (Q1,2)−{v1, v2}. Now v 6∈ V (Qk+1,k+2)−{vk+1, vk+2},
because otherwise H ∪ P contradicts (ii). If v = vk+1 then (1) holds, and so
we may assume that v ∈ V (Qk,k+1) − {vk+1}. Now every edge of the circuit
Q2,3 ∪ Q3,k+3 ∪ Qk+2,k+3 ∪ Q2,k+2 is nonplanarizing, and hence the circuit is
magic, a contradiction. This proves (1).

We claim that H = G. To prove this suppose to the contrary that H 6= G;
then (since G is 2-connected) G has an H-path P . By (1) we may assume that
one end of P is v1 and the other is v ∈ V (Qk+1,k+2) − {vk+1}. Let Q denote
the subpath of Qk+1,k+2 between vk+1 and v. We may assume that P is chosen
so that |V (Q)| is minimum; in other words there is no H-path P ′ with ends v1

and v′ ∈ V (Q) − {vk+1, v}. Since every edge of Q1,k+1 ∪ P is nonplanarizing
and the circuit Q1,k+1 ∪Q ∪ P is not magic, we deduce that V (Q)− {vk+1, v}
contains a vertex w of degree at least three in G. Thus w is an end of an
H-path P ′. By (1) and the choice of P it follows that the other end of P ′ is
v2 and that P and P ′ are vertex-disjoint. It is now easy to check that every
edge of the circuit C = Q3,4 ∪ Q4,4+k ∪ Q3+k,4+k ∪ Q3,3+k is nonplanarizing,
and hence C is magic, a contradiction.

2.3. Let G be a 2-connected graph with no magic circuit, such that some
subgraph of G is isomorphic to a subdivision of a biwheel on at least eight
vertices. Then G is isomorphic to a subdivision of a biwheel.
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Proof. Choose a subgraph H of G such that

(i) H is isomorphic to a subdivision of a biwheel W , and
(ii) subject to (i), |V (W )| is maximum.

Let u0, u2k+1 be the hubs of W , let u1, u2, . . . , u2k (in order) be the vertices
of the circuitW\{u0, u2k+1} and assume that u0 is adjacent to u1, u3, . . . ,u2k−1.
Thus u2k+1 is adjacent to u2, u4, . . . , u2k. Let v0, v1, v2, . . . , v2k, v2k+1 be the
corresponding vertices of H, and let Qi,j be the corresponding paths. Let C
denote the circuit Q1,2 ∪ Q2,3 ∪ · · · ∪Q2k−1,2k ∪ Q2k,1. We need the following
claim.

(1) Every H-path either has one end v0 and the other in

V (C)− {v1, v3, . . . , v2k−1},

or it has one end v2k+1 and the other in V (C)− {v2, v4, . . . , v2k}.

To prove (1) let P be an H-path with ends w1 and w2. Suppose first
that w1, w2 6∈ {v0, v2k+1}. Let i ∈ {1, 2}. If wi ∈ V (Q0,j) for some j ∈
{1, 3, . . . , 2k − 1} or wi ∈ V (Q2k+1,j) for some j ∈ {2, 4, . . . , 2k} let Wi be the
subpath of Q0,j or Q2k+1,j with one end wi and the other end on C; other-
wise let Wi be the null graph. It follows that W1 ∪W2 ∪ C ∪ P includes a
circuit every edge of which is nonplanarizing, and hence the circuit is magic,
a contradiction. Thus we may assume that w1 = v0. If w2 ∈ V (Q0,j) for
some j ∈ {1, 3, . . . , 2k − 1} then Q0,j ∪ P includes a magic circuit, and if
w2 ∈ V (Q2k+1,j)−{vj} for some j ∈ {2, 4, . . . , 2k}, then Q0,2k+1 ∪Q2k+1,j ∪P
includes a magic circuit, a contradiction. Thus w2 ∈ V (C)−{v1, v3, . . . , v2k−1},
as desired. This proves (1).

We claim that H = G. To prove this suppose to the contrary that H 6= G;
then (since G is 2-connected) G has an H-path P . By (1) we may assume that
one end of P is v0, and that the other is v ∈ V (C) − {v1, v3, . . . , v2k−1}. We
may assume that v ∈ V (Q1,2)−{v1}. Let Q be the subpath of Q1,2 between v1

and v. We may assume that P is chosen so that |V (Q)| is minimum. In other
words, there is no H-path P ′ with one end v0 and the other in V (Q) − {v},
and if v = v2 then there is no H-path P ′′ with one end v2k+1 and the other in
V (Q) − {v1, v2}. Since the circuit P ∪Q ∪Q0,1 is not magic, the path Q has
an internal vertex w of degree at least three. Thus w is an end of an H-path
P ′. By the minimality of |V (Q)| the paths P and P ′ are disjoint. By (1) the
other end of P ′ is v0 or v2k+1; by the minimality of Q the other end is v2k+1

and v 6= v2. Now H ∪ P ∪ P ′ is isomorphic to a subdivision of the biwheel on
|V (W )|+ 2 vertices, contrary to (ii). This proves our claim that G = H, and
hence completes the proof of the lemma.
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2.4. Let G be a 2-connected nonplanar graph with no magic circuit,
such that no subgraph of G is isomorphic to a subdivision of K3,3. Then G is
isomorphic to a subdivision of K5.

Proof. By Kuratowski’s theorem G has a subgraph K isomorphic to a
subdivision of K5. Let v1, v2, . . . , v5 be the corresponding vertices of K, and
let Q12, Q13, . . . , Q45 be the corresponding paths. We claim that G = K. To
prove this suppose to the contrary that G 6= K; then G has a K-path P . If
both ends of P belong to V (Qij) for some distinct integers i, j ∈ {1, 2, . . . , 5},
then P and an appropriate subpath of Qij form a circuit C such that every
edge of C is nonplanarizing, and hence C is magic, a contradiction. Thus the
ends of P belong to V (Qij) for no pair of distinct integers i, j ∈ {1, 2, . . . , 5},
in which case it is easy to see that K ∪ P has a subgraph isomorphic to a
subdivision of K3,3, contrary to hypothesis.

2.5. Let G be a 2-connected graph with no magic circuit, and let K be
a subgraph of G isomorphic to a subdivision of K3,3. Assume that no subgraph
of G is isomorphic to a Möbius ladder or a biwheel on at least eight vertices.

Then G is isomorphic to a subdivision of K3,3, K+
3,3, K

+
+

3,3, or K++
3,3 .

Proof. Let v1, v2, v3, v4, v5, v6 be the vertices of K of degree three in K,
and let Qij (i = 1, 2, 3, j = 4, 5, 6) be the corresponding paths, say. We claim
the following.

(1) For all i = 1, 2, 3, all j = 4, 5, 6 and every K-path P , not both ends of
P belong to V (Qi4) ∪ V (Qi5) ∪ V (Qi6) − {v4, v5, v6} or V (Q1j) ∪ V (Q2j)
∪ V (Q3j)− {v1, v2, v3}.

To prove (1) suppose for instance that a K-path P has both ends in
V (Qi4) ∪ V (Qi5) − {v4, v5}. Then Qi4 ∪ Qi5 ∪ P has a circuit C such that
every edge of C is nonplanarizing in G. Thus C is magic, a contradiction.
This proves (1).

From (1) we deduce the following claim.

(2) Every K-path P has at least one end in {v1, v2, . . . , v6}.

Indeed, otherwise K ∪ P is isomorphic to a subdivision of the Möbius ladder
on eight vertices by (1), contrary to hypothesis. This proves (2).

To complete the proof assume first that every K-path has both ends in
{v1, v2, . . . , v6}. Then, by (1), every K-path has both ends either in {v1, v2, v3}
or in {v4, v5, v6}. Furthermore, every two distinct K-paths are vertex-disjoint,
except possibly for their ends, because otherwise G would have a magic circuit.
Similarly, no two distinct K-paths have the same set of ends. If G has three
K-paths with ends v1 and v2, v2 and v3, and v1 and and v3, then their union is



      

PFAFFIAN ORIENTATIONS 939

a magic circuit, a contradiction. If G has three K-paths P1, P2, P3 with ends
v1 and v2, v2 and v3, v4 and v5, respectively, then P1 ∪ Q26 ∪ Q16 is a magic
circuit, a contradiction. (To see that P1 ∪Q26 ∪Q16 is magic notice that every
edge of P1 ∪ Q26 is nonplanarizing and that every internal vertex of Q16 has
degree two in G, because every K-path has both ends in {v1, v2, . . . , v6}.) It
follows from the symmetry that G is isomorphic to a subdivision of one of K3,3,

K+
3,3, K

+
+

3,3, K++
3,3 , as desired.

We may therefore assume that there is a K-path P with one end v1 and
the other end v ∈ V (Q24) − {v2, v4}. Let C be the circuit of Q14 ∪ P ∪ Q24.
We may assume that v and P are chosen so that |V (C)∩V (Q24)| is minimum.
Since every edge of Q14 ∪ P is nonplanarizing in G and C is not magic, we
deduce that the subpath of Q24 between v4 and v has an internal vertex w

of degree at least three. Thus w is an end of a K-path P ′. By (1) and (2)
the other end of P ′ is vk for some k ∈ {1, 3, 5, 6}. From the choice of P we
deduce that P ′ is disjoint from P\v1. Now k 6= 1 by the choice of v, and k 6= 3,
because otherwise Q24 ∪ Q34 ∪ P ′ contains a circuit C ′ such that every edge
of C ′ is nonplanarizing in G, in which case C ′ is magic. Thus k = 5 or k = 6,
and it follows that K ∪P ∪P ′ is isomorphic to a subdivision of the biwheel on
eight vertices, a contradiction.

Theorem 2.1 follows immediately from 2.2, 2.3, 2.4 and 2.5.

3. One-extendable bipartite graphs

In this section we prove 1.4. If G is a graph and X ⊆ V (G), we denote
by NG(X) the set of vertices of V (G)−X adjacent to a vertex in X. We need
the following well-known characterization of k-extendable bipartite graphs (see
[13]).

3.1. Let G be a connected bipartite graph with bipartition (A,B), and let
k ≥ 0 be an integer. Then the following two conditions are equivalent.
(i) G is k-extendable, and
(ii) |A| = |B|, and for every nonempty subset X of A, either |NG(X)| ≥
|X|+ k, or NG(X) = B (or both).

3.2. Every 1-extendable connected bipartite graph with more than two
vertices is 2-connected. Every connected brace on at least five vertices is 3-
connected.

Proof. This follows immediately from 3.1.
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The following lemma is crucial for the proof of 1.4. If M is a matching in
a graph G and P is a path or a circuit, we say that P is M -alternating if every
vertex of P of degree two in P is incident with an edge of M ∩ E(P ).

3.3. Let G be a 1-extendable bipartite graph, let M be a perfect matching
of G, and let C be a circuit in G such that no two edges of C form an edge cut
of G. Then there exists an edge e ∈ E(C)−M such that G\e is 1-extendable.

Proof. We may assume that G is connected. For e ∈ E(G) let a(e) denote
the number ofM -alternating circuits ofG that contain e. Choose e ∈ E(C)−M
with a(e) minimum. We claim that e satisfies the conclusion of the lemma.
Suppose for a contradiction that it does not, and let (A,B) be a bipartition
of G. The graph G\e is connected by 3.2, and hence, by 3.1 applied to G\e,
there exists a nonempty proper subset X of A such that |Y | = |X|, where
Y = NG\e(X). Let F be the set of all edges of G with one end in Y and the
other in A − X. Then F ∩M = ∅, every M -alternating circuit containing a
member of F contains precisely one such member, and also contains e. Thus
a(e) ≥ a(f) for every f ∈ F , and the inequality is strict if |F | > 1, because
a(f) > 0 since G is 1-extendable. Since E(C) ∩ F 6= ∅ we deduce from the
choice of e that |F | = 1, say F = {f}. Then {e, f} is an edge cut of G,
contrary to the hypothesis of the lemma. Thus e satisfies the conclusion of the
lemma.

Let G denote the class of all containment-minimal 1-extendable nonpla-
nar bipartite graphs. More precisely, G consists of all 1-extendable nonplanar
bipartite graphs G such that if G contains a 1-extendable nonplanar bipartite
graph H, then G is isomorphic to H. Thus to prove 1.4 we need to show that
every member of G is isomorphic to K3,3, a stem, a flower, Uno or Duo. To
this end we need two lemmas.

3.4. Let G ∈ G, and let {e1, e2} be a matching of G of size two. Then
G\{e1, e2} is connected.

Proof. The graph G is clearly connected, and hence is 2-connected by
3.1. Suppose for a contradiction that G\{e1, e2} has two components, say G1

and G2, and let (A,B) be a bipartition of G. We shall construct 1-extendable
graphs G′1, G

′
2 contained in G; one of them will contradict the minimality of G.

Assume first that |V (G1)∩A| = |V (G1)∩B|. Then by 3.1 each of the sets
V (G1) ∩ A, V (G1) ∩ B, V (G2) ∩ A, V (G2) ∩ B contains precisely one vertex
incident with e1 or e2. Let a1 ∈ V (G1) ∩ A, b1 ∈ V (G1) ∩ B, a2 ∈ V (G2) ∩ A
and b2 ∈ V (G2) ∩ B be those vertices; then one of e1, e2 has ends a1 and b2,
and the other has ends b1 and a2. For i = 1, 2 let G′i = Gi if ai is adjacent to
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bi in Gi, and otherwise let G′i be obtained from Gi by adding an edge joining
ai and bi. It follows from 3.1 that G′1 and G′2 are 1-extendable.

We claim that G′1 and G′2 are both contained in G. From the symmetry
it suffices to argue for G′1. The claim is obvious if a1 and b1 are adjacent in
G′1, and so we may assume that they are not. Let M1 be a perfect matching
of G containing one (and hence both) of e1 and e2, and let M2 be a perfect
matching of G containing an edge of E(G) − {e1, e2} incident with a2. (Such
an edge exists because G is 2-connected.) The symmetric difference of M1 and
M2 contains two paths between a1 and b1; one of these paths, say P , includes
both e1 and e2, and otherwise is a subgraph of G2. Let G′′1 be obtained from
G1 by adding the path P ; then G′′1 is isomorphic to an even subdivision of G′1
and G\V (G′′1) has a perfect matching (namely a subset of M1 or M2). This
proves that G′1 is contained in G, and hence so is G′2. Since G is nonplanar
it follows that G′1 or G′2 is nonplanar, contrary to the minimality of G. This
completes the case when |V (G1) ∩A| = |V (G1) ∩B|.

Thus we may assume that |V (G1)∩A| > |V (G1)∩B|. Then |V (G1)∩A| =
|V (G1)∩B|+1 by 3.1. It follows that both e1 and e2 have one end in V (G1)∩A
and the other in V (G2)∩B. For i = 1, 2 let ai ∈ V (G1)∩A and bi ∈ V (G2)∩B
be the ends of ei, let G′1 be obtained from G1 by adding a new vertex adjacent
to a1 and a2, and let G′2 be obtained from G2 by adding a new vertex adjacent
to b1 and b2. It follows from 3.1 that G′1 and G′2 are 1-extendable, and an
argument similar to the one in the previous paragraph shows that they are both
contained in G. Since G is nonplanar, one of G′1, G

′
2 is nonplanar, contrary to

the minimality of G.

3.5. No member of G has a magic circuit.

Proof. Let G ∈ G, let C be a circuit of G, and let e0 ∈ E(C). Let M be
a perfect matching of G containing e0. By 3.3 and 3.4 there exists an edge
e ∈ E(C) −M such that G\e is 1-extendable. It follows that G\e is planar;
that is, e is planarizing. Also, since G\e is 1-extendable, both ends of e have
degree at least three in G. Since e 6= e0 and e0 was arbitrary, we deduce that
C is not magic, as desired.

Proof of 1.4. We must show that every member of G is isomorphic to
K3,3, a stem, a flower, Uno, or Duo. To this end let G ∈ G. Then G is clearly
connected, and hence it is 2-connected by 3.2. By 3.5 G has no magic circuit,
and so by 2.1 it is isomorphic to a subdivision of a graph H, where H is one
of the graphs listed in 2.1. It follows from the minimality of G that every edge
of H is subdivided at most once (that is, is replaced by a path on at most two
edges).
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Assume first that H is a Möbius ladder, and let C be a circuit of H of
length four. Then C contains two rungs and two nonrung edges. Since the
circuit of G corresponding to C in G is not magic and every rung of H is
nonplanarizing in H we deduce that the nonrung edges of C in H are also
edges of G (that is, they are not subdivided in G). If some rung of H was
not subdivided in G, then no rung of H would be subdivided (because G is
bipartite), and hence G = H. Since G is bipartite, it would have 4n + 2
vertices for some n ∈ {2, 3 . . .}. By deleting 2(n− 1) consecutive rungs we see
that G contains K3,3, contrary to the minimality of G. Thus every rung of H
is subdivided in G, and hence G is a stem.

If H is a biwheel on at least eight vertices, then the same argument applied
to the circuits of H of length four not containing the edge joining the two hubs

of H shows that G is a flower. Next we assume that H is K3,3, K+
3,3, K

+
+

3,3,
or K++

3,3 . Suppose first that H has an edge e joining two vertices of the same
color class (that is, H 6= K3,3 and e is one of the “added” edges). We claim
that no edge of K3,3 adjacent to e in H is subdivided in G. Indeed, suppose
for a contradiction that f is an edge of K3,3 adjacent to e in H such that f is
subdivided in G. The edges e and f belong to a circuit C of H of length three.
Since G is bipartite and f is subdivided in G, the circuit of G that corresponds
to C is magic, a contradiction. This proves that f is not subdivided in G.
Since G is bipartite we deduce that e is subdivided in G.

Using the facts established above and that the color classes of G have the
same size it is easy to see that if H = K3,3, then G is isomorphic to K3,3 or

Bud, if H = K+
3,3, then G is isomorphic to Uno, and that if H = K

+
+

3,3, then G
is isomorphic to Duo. Similarly, it follows that H 6= K++

3,3 and H 6= K5.

4. Braces

The objective of this section is to prove 1.5. In a series of lemmas we will
show that if a brace contains one of the graphs listed in 1.4, then it contains
one of the graphs listed in 1.5. We use the method of “augmenting paths”
from network flow theory.

4.1. Let H be a subgraph of a brace G, let M be a perfect matching of
G\V (H), let (A,B) be a bipartition of G and let X be a nonempty subset of
A∩V (H) with |NH(X)| ≤ |X|+ 1 and NH(X) 6= B∩V (H). Then there exists
an M -alternating H-path P in G with ends x ∈ X and y ∈ V (H) − NH(X).
In particular, G\V (H ∪ P ) has a perfect matching.

Proof. Let R be the set of all vertices of G that can be reached by an
M -alternating path with one end in X. Thus X ⊆ R. If R ∩ B ∩ V (H) −
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NH(X) 6= ∅ then a corresponding M -alternating path is an H-path that
satisfies the conclusion of the lemma. We may therefore assume that R ∩B ∩
V (H) ⊆ NH(X). But then |R ∩A−X| = |R ∩B −NH(X)| and so

|R ∩A|+ 1 = |X|+ 1 + |R ∩A−X|
≥ |NH(X)|+ |R ∩B −NH(X)| = |NG(R ∩A)|;

hence NG(R∩A) = B by 3.1, and thus NH(X) = B∩V (H), a contradiction.

Let G be a graph, let u be a vertex of G of degree two, let e and f be the
two edges of G incident with u, and let G′ be obtained from G by contracting
both e and f and deleting parallel edges. We say that G′ was obtained from
G by a bicontraction. We say that a graph H is weakly contained in a graph G
and that G weakly contains H if G has a subgraph K such that G\V (K) has
a perfect matching and a graph isomorphic to H can be obtained from K by
a sequence of bicontractions. Thus if H is contained in G, then it is weakly
contained in G, but the converse is false. The following is a partial converse.

4.2. Let H be a graph of maximum degree three. Then H is contained in
a graph G if and only if it is weakly contained in G.

Proof. The proof is elementary and is omitted.

We denote the edge of a graph with ends u and v by uv or u-v. The latter
notation will be used when u and v are integers.

Let G be a graph, and let u, v be two vertices of G. If u and v are not
adjacent we define G + (u, v) to be the graph obtained from G by adding an
edge with ends u, v; otherwise we define G + (u, v) to be G. Now let G be a
bipartite graph with bipartition (A,B), let u ∈ V (G), and let e be an edge of G
with ends a ∈ A and b ∈ B. Let G′ be obtained from G by replacing the edge
e by a path with vertices a, b′, a′, b (in the order listed). Thus G′ is an even
subdivision of G. If u ∈ A we define G+(u, e) to be the graph G′+(u, b′), and
we say that b′, a′ (in this order) are the new vertices of G+ (u, e). If u ∈ B we
define G+ (u, e) to be the graph G′+ (u, a′), and say that a′, b′ (in this order)
are the new vertices of G+(u, e). If a graph H is contained in a graph G, then
G has a central subgraph K isomorphic to an even subdivision of H. We say
that K is a model of H in G. Since K is isomorphic to an even subdivision
of H, there exists a mapping φ with domain V (H) ∪ E(H) such that for all
vertices v, v′ ∈ V (H) and all edges e, e′ ∈ E(H),

(i) φ(v) is a vertex of K and if v 6= v′ then φ(v) 6= φ(v′),

(ii) if e has ends v and v′, then φ(e) is a path in K with ends φ(v) and φ(v′)
and with an even number of vertices,

(iii) if φ(v) belongs to φ(e), then it is one of its ends,
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(iv) if e 6= e′, then φ(e) and φ(e′) are vertex-disjoint, except possibly for a
vertex that is an end of both, and

(v) V (K) =
⋃

u∈V (H)

{φ(u)} ∪
⋃

f∈E(H)

V (φ(f)) and E(K) =
⋃

f∈E(H)

E(φ(f)).

We say that φ is an embedding of H into G, and we write φ(H) = K.
Let H be a bipartite graph with bipartition (A,B), and let X ⊆ A. If

|NH(X)| ≤ |X| + 1, NH(X) 6= B, and H is contained in a brace G, then
the analogous inequality does not hold in G by 3.1, and thus G contains an
“augmentation” of H. Let us make this precise. We define ΦH(X) to be the
set of all edges of H with ends u and v, where u ∈ NH(X) and v 6∈ X. Let H ′

be a subdivision of H. For v ∈ V (H) we define 〈v〉H′X = v. If e ∈ ΦH(X) has
ends u and v, where u ∈ NH(X) and v 6∈ X, then the edge e corresponds to a
path P in H ′ with ends u and v. We define 〈e〉H′X to be the edge of P incident
with v.

Now let k ≥ 1 be an integer, let e1, e2, . . . , ek−1 ∈ ΦH(X), and let ek ∈
ΦH(X), or let ek be a vertex of B−NH(X), or an edge of H not incident with
a vertex of NH(X). Let a0 ∈ X. We define H0 = H, and for i = 1, 2, . . . , k
we define recursively Hi = Hi−1 + (ai−1, 〈ei〉Hi−1

X ), and if ei 6∈ V (H) let bi, ai
be the new vertices of Hi. We say that Hk is a partial X-augmentation of H.
If ek 6∈ ΦH(X) we say that Hk is an X-augmentation of H. In either case
we say that Hk is determined by a0, e1, e2, . . . , ek. See Figure 4 below, where
a0 = w. Later on we will also consider H to be a partial X-augmentation of
itself determined by a0.

Now let G be a graph, and let φ be an embedding of H into G. We say that
an embedding φk of Hk into G extends φ if φ(v) = φk(v) for every v ∈ V (H)−X
and φ(H) = φk(H ′), where H ′ is obtained from Hk by deleting the edges ai−1bi
for all i = 1, 2, . . . , k. Let M be a perfect matching of G\V (φ(H)). We say
that φk is M -compatible if for all i = 1, 2, . . . , k, the path φk(ai−1bi) is M -
alternating. The following result is our main tool in the proof of 1.5.

4.3. Let H be a bipartite graph with bipartition (A,B), let H be contained
in a brace G, and let X ⊆ A be a nonempty set of vertices with |NH(X)| ≤
|X| + 1 and NH(X) 6= B. Then some X-augmentation of H is weakly
contained in G. Moreover, if the degree in H of every vertex of X is at most
two, then some X-augmentation is contained in G.

Proof. We only prove the second statement; the proof of the first is similar.
Let φ be an embedding of H into G, let K = φ(H), let M be a perfect matching
of G\V (K), and let (A′, B′) be the bipartition of G with φ(A) ⊆ A′. Let X ′1
be the set of all vertices of K that belong to V (φ(e)) ∩ A′ for some edge e
of H incident with a vertex of X. Since |NH(X)| ≤ |X| + 1 we deduce that
|NK(X ′1)| ≤ |X ′1|+ 1.
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w w

H A partial {w}-augmentation of H

Figure 4

Let X ′2 be the set of all vertices of K that can be written as φk(ak),
where k ≥ 1 is an integer, φk is an M -compatible embedding of a partial
X-augmentation Hk of H into G extending φ, Hk is not an X-augmentation,
Hk is determined by a0, e1, e2, . . . , ek and the vertices a1, a2, . . . , ak are as in
the definition of partial X-augmentation. Since Hk is not an X-augmentation
it follows that X ′2 ⊆

⋃
e∈ΦH(X)

V (φ(e)) ∩A′. It is easy to see that if e ∈ ΦH(X)

has ends u and v, where u ∈ NH(X) and v /∈ X, and if a ∈ V (φ(e)) ∩ X ′2,
then every vertex of the subpath of φ(e) between a and φ(u) that belongs
to A′ belongs to X ′2. We deduce that |NK(X ′2) − NK(X ′1)| ≤ |X ′2|. Now let
X ′ = X ′1 ∪X ′2; then

|NK(X ′)| ≤ |NK(X ′1)|+ |NK(X ′2)−NK(X ′1)| ≤ |X ′1|+ 1 + |X ′2| = |X ′|+ 1.

Moreover, NK(X ′) 6= B′, because NH(X) 6= B.
By 4.1 there exists an M -alternating K-path P in G with ends x ∈ X ′ and

y ∈ V (K)−NK(X ′). If y ∈ φ(V (H)), let z ∈ B−NH(X) be such that φ(z) = y;
otherwise let z be an edge of H such that y ∈ V (φ(z)). Since x ∈ X ′ there exist
k ≥ 0, Hk, a0, e1, e2, . . . , ek, ak and φk such that x = φk(ak), Hk is a partial
X-augmentation ofH determined by a0, e1, e2, . . . , ek, the vertices a1, a2, . . . , ak
are as in the definition of X-augmentation, and φk is an M -compatible em-
bedding of Hk into G extending φ. Let t be the minimum integer such that
either t ≥ k, or t ∈ {0, 1, . . . , k − 1} and V (P ) ∩ V (φk(atbt+1)) 6= ∅. Since φk
is M -compatible and P is M -alternating, it follows that φk(Hk) ∪ P contains
the partial X-augmentation H ′ of H determined by a0, e1, e2, . . . , et, z if k ≥ 1
and by x, z if k = 0. Moreover, there exists an M -compatible embedding of
H ′ into G extending φ. (To see this, notice that if t = k, then φk(Hk) ∪ P is
as desired. Otherwise delete φk(ajbj+1) for all j = t + 1, t + 2, . . . , k − 1, and
suitable subpaths of P and φk(atbt+1).) We claim that z 6∈ ΦH(X). Indeed,
suppose for a contradiction that z is an edge that belongs to ΦH(X), and let
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y′ be the neighbor of y on the path φ(z) chosen so that φk(u), y′, y, φk(v) occur
on φ(z) in the order listed, where u ∈ N(X) and v 6∈ X are the ends of z.
Then y′ ∈ X ′2 by the definition of X ′2, contrary to the fact that y 6∈ NK(X ′).
Thus z 6∈ ΦH(X), and hence H ′ is an X-augmentation, as desired.

4.4. Let G be a brace, and let H be a bipartite graph contained in G. Let
(A,B) be a bipartition of H with |B| ≥ 3, and let w ∈ A be a vertex of H of
degree two. Then either

(i) there exists a vertex v ∈ B not adjacent to w in H such that G weakly
contains H + (w, v), or

(ii) there exists an edge e of H incident with a neighbor of w but not with w

itself such that G contains H + (w, e).

Proof. This follows immediately from 4.3 applied to X = {w}, because
|B| ≥ 3.

4.5. Let G be a 2-extendable bipartite graph containing Uno. Then G

contains either K3,3 or Bud.

Proof. Let H be Uno with its vertices numbered as in Figure 2. By 4.2
it suffices to show that G weakly contains K3,3 or Bud. By 4.4 and taking
symmetry into account G weakly contains either H + (10, 7) or H + (10, 2-4).
But H + (10, 7) contains K3,3 (delete 2-6 and 3-5), and H + (10, 2-4) contains
Bud (delete 2-10 and 3-4). Thus G weakly contains K3,3 or Bud, as desired.

4.6. Let G be a 2-extendable bipartite graph containing Duo. Then G

contains K3,3 or Bud.

Proof. Let H be Duo with its vertices numbered as in Figure 2. By 4.4
and taking symmetry into account G weakly contains H + (7, 8) or H + (7, 1),
or it contains H+(7, 2-5) or H+(7, 2-4). The first graph contains K3,3 (delete
the vertices 1 and 4), the second contains K3,3 (delete the vertices 6 and 8),
the third contains Bud (delete 2-7, 3-5 and 1-6), and the fourth contains Uno
(delete 2-7 and 3-4). Thus either G weakly contains K3,3 (in which case it
contains K3,3 by 4.2), or G contains Bud or Uno, in which case it contains
K3,3 or Bud by 4.5.

We need two refinements of 4.3, and we now introduce the first of the
two. Let Hk be an X-augmentation of H determined by a0, e1, e2, . . . , ek.
We say that Hk is weakly reduced if the following two conditions hold for all
i = 1, 2, . . . , k − 2.

(R1) The edges ei and ei+1 are distinct, and

(R2) no vertex of NH(X) of degree three in H is an end of both ei and ei+1.
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4.7. Let H be a bipartite graph with bipartition (A,B), let H be contained
in a brace G, and let X ⊆ A be a nonempty set of vertices of H of degree two
such that |NH(X)| ≤ |X| + 1 and NH(X) 6= B. Then some weakly reduced
X-augmentation of H is contained in G.

Proof. By 4.3 we may choose the minimum integer k ≥ 1 and elements
a0, e1, e2, . . . , ek such that G contains an X-augmentation Hk of H determined
by a0, e1, e2, . . . , ek. We claim that Hk is as desired. Indeed, suppose first
that ei = ei+1 for some i ∈ {1, 2, . . . , k − 2}. Let ai, bi, ai+1, bi+1 be as in
the definition of X-augmentation, and let H ′ be obtained from Hk by deleting
the edges aibi and ai+1bi+1. Then H ′ is isomorphic to the subdivision of the
X-augmentation of H determined by a0, e1, . . . , ei−1, ei+2, . . . , ek, contrary to
the choice of k, because H ′ is contained in G.

Suppose now that v ∈ N(X) has degree three, and that it is an end of
both ei and ei+1 for some i ∈ {1, 2, . . . , k − 2}. Let w be the unique neighbor
of v in H that belongs to X. For j = 1, 2, . . . , k let aj , bj be as in the definition
of X-augmentation. Let φk be an embedding of Hk into G, let φk(Hk) = K,
and let P be the path of K corresponding to the edge ei of H. Let K ′ be
obtained from K by deleting the edges and interior vertices of the subpath of
P with ends φk(v) and φk(ai), and for j = 0, 1, . . . , i − 1 deleting the edges
and interior vertices of the path φk(ajbj+1). Since w has degree two in H we
deduce that K ′ is isomorphic to an even subdivision of the X-augmentation of
H determined by w, ei+2, ei+3, . . . , ek, contrary to the choice of k.

4.8. Let G be a brace containing a flower. Then G contains Bud.

Proof. For k = 2, 3, . . . let Fk be the flower on 4k + 2 vertices. Thus
F2 is Bud. We will prove that if G contains Fk for some integer k ≥ 3,
then it contains Fj for some j = 2, 3, . . . , k − 1. Let the vertices of Fk
be u0, u1, u2, . . . , u2k, u2k+1, v1, v2, . . . , v2k in such a way that the vertices
u1, u2, . . . , u2k form a circuit (in the order listed), and for i = 1, 2, . . . , k, the
neighbors of v2i are u2i and u2k+1, and the neighbors of v2i−1 are u2i−1 and u0.
Let us say that a graph is good if it contains Fj for some j = 2, 3, . . . , k − 1.

(1) Let i ∈ {1, 2, . . . , k}, and let x be v2i, or an edge of Fk incident with v2i.
Then Fk + (v1, x) is good.

To prove (1) we notice that Fk + (v1, x) contains Fk + (v1, v2i), and so we
may assume that x = v2i. We first assume that k = 3 and i = 2. Then
Fk + (v1, x) contains F2 (delete u5, v5, u6 and v6). Thus from the symmetry
we may assume that i ≥ 3. But then Fk + (v1, v2i) contains Fi−1 (delete uj
and vj for j = 2i + 1, . . . , 2k, and the edges u0v1, v2iu2k+1 and u2ku1). This
proves (1).
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(2) Let i ∈ {2, . . . , k}, and let x be u2i−1, or an edge incident with u2i−1, or
an edge incident with v2i−1. Then Fk + (v1, x) is good.

To prove (2) we may assume from the symmetry that i ≥ 3. Then Fk + (v1, x)
contains Fi−1 (delete uj and vj for j = 2i, 2i + 1, . . . , 2k and the edge u0v1),
and (2) follows.

Let H = Fk + (v1, u1u2), and let a, b be the new vertices of H. Thus b has
degree two in H. Let H ′ be obtained from H by deleting the edge v1a. From
(2) we deduce the following.

(3) Let i ∈ {2, 3, . . . , k} and let x be v2i or an edge incident with v2i. Then
H ′ + (b, x) is good.

To prove (3) we first notice that H ′ + (b, x) contains H ′ + (b, v2i). But
H ′ + (b, v2i) is isomorphic to Fk + (v1, u2i−1u2i), which is good by (2). This
proves (3).

(4) Let i = 3, 4, . . . , k, and let x be u2i−1, or an edge incident with u2i−1, or
an edge incident with v2i−1. Then H ′ + (b, x) is good.

Indeed, H ′ + (b, x) contains Fi−1 (delete uj and vj for j = 1 and j = 2i,
2i+ 1, . . . , 2k). This proves (4).

We are now ready to prove that if a brace G contains Fk for some integer
k ≥ 3, then it contains Fj for some j = 2, 3, . . . , k − 1. To this end let
k ≥ 3 be an integer, and assume that a brace G contains Fk. By 4.7 a weakly
reduced {v1}-augmentation K of Fk is contained in G. Let K be determined
by v1, e1, e2, . . . , et, where t ≥ 1. Let us first assume that t = 1; then either
e1 ∈ {u3, u5, . . . , u2k−1, v2, v4, . . . , v2k}, or e1 is an edge of Fk incident with one
of those vertices. By (1) and (2) K is good, and hence so is G, as desired.
Thus we may assume that t > 1, and hence e1 is an edge of Fk incident with
u0 or u1, but not with v1. If e1 is the edge u0u2k+1, then G contains Bud,
because Fk + (v1, u0u2k+1) does (delete ui and vi for i = 4, 5, . . . , 2k − 2 and
the edge u0v1). By (2) we may assume that e1 is not incident with u0, and
so from the symmetry we may assume that e1 is the edge u1u2 of Fk. If e2 is
the edge u0u2k+1, then G contains K3,3, because H + (b, u0u2k+1) does (delete
ui and vi for i = 3, 4, . . . , 2k − 1). By (R1) and (R2) e2 is not an edge of Fk
incident with u1, and so by (3) and (4) we may assume that e2 is v2, or u3, or
an edge incident with v2 or u3. In each case K contains Fk−1. It suffices to
check this for e2 ∈ {v2, u3}. If e2 = v2 delete u0v1, v2u2k+1, au2 and u1b; if
e2 = u3 delete u2, v2 and the edges u0v1 and u1b.
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We now introduce the second refinement of 4.3. Let H be a bipartite
graph with bipartition (A,B), let X ⊆ A, let k ≥ 1 be an integer, and let Hk

be an X-augmentation of H determined by a0, e1, e2, . . . , ek. We say that Hk

is reduced if Hk is weakly reduced, and for all i = 1, 2, . . . , k − 1, letting ui be
the unique end of ei that belongs to NH(X), the following conditions hold.

(R3) The vertex ui has degree at least three in H;

(R4) if u1 has degree three in H and is adjacent to a0 in H, then a0 is the only
neighbor of u1 in H that belongs to X;

(R5) ek ∈ B −N(X);

(R6) if k = 2, if a0 is adjacent to u1 in H and if e2 is a vertex of H adjacent to
a neighbor v of u1 in H, then either u1 has degree at least four in H, or v
has degree at least four in H, or v has degree three in H and the neighbor
of v in H not in {u1, e2} belongs to NH(X); and

(R7) if k ≥ 3, if a0 has degree two in H and u1 and u2 are its neighbors in H,
and if u2 has degree three in H, then a0 is the only neighbor of u2 in H

that belongs to X.

4.9. Let H be a bipartite graph with bipartition (A,B), let H be contained
in a brace G, and let X ⊆ A be a nonempty set such that |NH(X)| ≤ |X|+1 and
NH(X) 6= B. Then some reduced X-augmentation of H is weakly contained
in G.

Proof. By 4.3 we may choose the minimum integer k ≥ 1 and elements
a0, e1, e2, . . . , ek such that G weakly contains the X-augmentation Hk of H
determined by a0, e1, e2, . . . , ek, and subject to that, |V (Hk)| is minimum. It
follows that (R5) holds. The argument used in the proof of 4.7 shows that
Hk satisfies (R1) and (R2). For i = 1, 2, . . . , k − 1 let ui be the end of ei
that belongs to NH(X). To prove (R3) let i ∈ {1, 2, . . . , k − 1}. If ui does
not have degree at least three, then it has a unique neighbor in H, say x,
that belongs to X. It follows that the X-augmentation of H determined by
x, ei+1, ei+2, . . . , ek is weakly contained in G, contrary to the choice of k. This
proves that Hk satisfies (R3).

To prove that Hk satisfies (R4) suppose that u1 has degree three, and
that a0, x ∈ X are two distinct neighbors of u1. Let H ′ be obtained from Hk

by deleting the edge u1a0; then H ′ is weakly contained in G, and it weakly
contains the X-augmentation of H determined by x, e2, e3, . . . , ek, contrary to
the choice of k. This proves that Hk satisfies (R4).

To prove that Hk satisfies (R6) let k = 2, let a0 be adjacent to u1 in
H, and let e2 be a vertex of H adjacent to a neighbor v of u1. By (R3) we
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may assume that u1 has degree three in H. Let b1, a1 be the new vertices of
H1 = H + (a0, e1). From the symmetry between u1 and b1 we may assume
that v is an end of e1. If v has degree two in H, then H2 weakly contains
the X-augmentation of H determined by a0, e2, contrary to the choice of k.
We may therefore assume that v has degree three in H, and that y 6∈ NH(X),
where y is the neighbor of v in H not in {u1, e2}. By deleting the edge ve2 of
H2 we see that H2 weakly contains the X-augmentation of H determined by
a0, y, contrary to the choice of k. This proves that Hk satisfies (R6).

It remains to prove that Hk satisfies (R7). Let a0 have degree two in H,
let u1 and u2 be its neighbors in H, let u2 have degree three in H, and suppose
that u2 has a neighbor x ∈ X − {a0} in H. Then x is not incident with e2,
because e2 ∈ ΦH(X). Let b1, a1 be the new vertices of H1 = H + (a0, e1). Let
H ′ be obtained from Hk by deleting the edges a1b1 and a0u2; then H ′ is weakly
contained in G and weakly contains the X-augmentation of H determined by
x, e3, e4, . . . , ek, contrary to the choice of k. This proves that Hk satisfies (R7),
and hence completes the proof of the lemma.

For convenience we state the following corollary of 4.9. Let H be a bipar-
tite graph with bipartition (A,B), let w ∈ A have degree two, let u1, u2 be the
two neighbors of w. If v ∈ B−{u1, u2} we say that H+(w, v) is a w-extension
of H of the first kind. Let e ∈ E(H) be an edge of H incident with u1 but
not with w, let u1 have degree at least three, and let b, a be the new vertices
of H ′ = H + (w, e). Let v be a vertex in B − {u1, u2} with the property that
if v is adjacent in H to a neighbor v′ of u1, then u1 has degree at least four,
or v′ has degree at least four, or v′ has degree three and is adjacent to u2. We
say that H ′ + (a, v) is a w-extension of H of the second kind. Thirdly, let f
be an edge incident with u2 but not with w, let u1 and u2 have degree at least
three, and let H ′ be as above. We say that H ′ + (a, f) is a w-extension of H
of the third kind. Finally, we say that a graph is a w-extension of H if it is a
w-extension of the first, second or third kind.

4.10. Let H be a bipartite graph with bipartition (A,B) contained in a
brace G, and let w ∈ A be a vertex of H of degree two. If both neighbors of
w in H have degree at most three and |B| ≥ 3, then some w-extension of H is
weakly contained in G.

Proof. By 4.9 G weakly contains a reduced {w}-augmentation H ′ of H.
Let H ′ be determined by w, e1, e2, . . . , ek. If k = 1, then H ′ is a w-extension
of H of the first kind by (R5). If k = 2, then H ′ is a w-extension of H of
the second kind by (R3), (R5) and (R6). Finally, if k ≥ 3, then H ′ contains a
w-extension of H of the third kind by (R1), (R2) and (R3).
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4.11. Let G be a brace containing a stem. Then G contains K3,3 or Bud.

Proof. For k = 2, 3, . . . , let Sk denote the stem on 6k vertices, and let S1

denote Bud. For k ≥ 2 let the vertices of Sk be u1, u2, . . . , u4k, v1, v2, . . . , v2k

in such a way that u1, u2, . . . , u4k form a circuit in the order listed, and for
i = 1, 2, . . . , 2k, the neighbors of vi are ui and u2k+i. Let us say that a graph
is good if it contains K3,3 or Sj for some j = 1, 2, . . . , k − 1.

(1) If i ∈ {1, 2, . . . , k}, then Sk+(v1, v2i) is good. If i ∈ {2, 3, . . . , 2k}−{k+1},
then Sk + (v1, u2i−1) is good.

To prove (1) we first notice that Sk + (v1, v2) contains Sk−1 (if k = 2 delete
u1v1 and v2u6; otherwise delete u1v1, u2v2 and u2k+1u2k+2). So let x = v2i,
where i ∈ {2, . . . , k−1}, or x = u2i−1, where i ∈ {2, 3, . . . , 2k}−{k+1}. Then
the graph Sk + (v1, x) contains K3,3 (use the edges v1u1, v1u2k+1, u1u2, u2v2,
v2u2k+2, u2k+1u2k+2, u2ku2k+1, v2ku2k, v2ku4k, u1u4k, v1x, and a suitable path
between u2k and u2k+2 that contains x). This proves (1).

(2) If x = u2i for some i ∈ {2, 3, . . . , 2k − 1} − {k, k + 1}, or x = v2i−1 for
some i = 2, 3, . . . , k, then Sk + (u1, x) is good.

To prove (2) we may assume, by (1), that x = u2i for some i ∈ {2, 3, . . . ,
2k− 1}−{k, k+ 1}. Moreover, from the symmetry we may assume that i < k.
By deleting vj and uj for j = 2, 3, . . . , 2i− 1 we see that Sk + (u1, x) contains
Sk−i+1, as desired. This proves (2).

We are now ready to complete the proof. To this end let k ≥ 2 be
an integer, and let G contain Sk; we will show that G is good. By 4.10 G

weakly contains a {v1}-extension H of Sk. If H is of the first kind, then the
lemma holds by (1). Next assume that H is of the second kind. From the
symmetry we may assume that H = Sk + (v1, u1u2) + (a, x), where b, a are the
new vertices of Sk + (v1, u1u2), and x ∈ {u5, u7, . . . , u2k−1, v4, v6, . . . , v2k−2}.
(Notice that because of the symmetry between u1 and b we may assume that
x 6∈ {u2k+3, u2k+5, . . . , u4k−3}.) Then H weakly contains Sk + (u2, x), but the
latter graph is good by (2) because of symmetry. We may therefore assume
that H is of the third kind. From the symmetry between v1u1 and v1b we may
assume that H = Sk + (v1, u1u2) + (a, u2k+1u2k+2). But then H contains Bud
(delete the vertices uj and vj for j = 3, 4, . . . , 2k − 1 and the edge u1v1), and
hence so does G, as desired.

Let us introduce the following convention. If G is a bipartite graph with
V (G) = {1, 2, . . . , n}, v ∈ V (G) and e ∈ E(G), then the new vertices of
G + (v, e) are n + 1 and n + 2. Thus n + 2 has degree two in G + (v, e). We
define Superbud as Bud+(10, 5-6) + (9, 12). See Figure 2.
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4.12. Let G be a brace containing Bud. Then G contains K3,3 or Superbud.

Proof. Let G be a brace, let H be Bud with vertices numbered as in Figure
2, and let X = {7, 9}. By 4.9 G weakly contains a reduced X-augmentation
H ′ of H. Let H ′ be determined by a0, e1, e2, . . . , ek, where k ≥ 1 is an integer.
From the symmetry we may assume that a0 = 7. By (R5) ek ∈ {8, 10}. If
k = 1, then H ′ contains K3,3 (delete the edge 1-2), and so we may assume that
k > 1. Since e1 is not 1-1 by (R4), we may assume from the symmetry that e1

is either 3-4, or 4-5.
Assume first that e1 is the edge 3-4. If k = 2, then H ′ is isomorphic to

Superbud, and so we may assume in this case that k > 2. By (R1) e2 is not
3-4, by (R2) e2 is not 3-6, by (R7) e2 is not 1-2, and so we may assume from
the symmetry of H+(7, 3-4) that e2 is 4-5. (The symmetry fixes 1, 2, 5, 7, 9, 12
and exchanges the pairs (3, 11), (4, 6), and (8, 10)). But H+(7, 3-4)+(12, 4-5)
contains K3,3 (delete 1-2 and 4-13), which completes the analysis in the case
when e1 is 3-4.

We may therefore assume that e1 is the edge 4-5. Then e2 6= 5-6 by (R2).
If k = 2 and e2 = 8, then H ′ is isomorphic to Superbud; if e2 ∈ {3-4, 3-6}, or
k = 2 and e2 = 10, then H ′ contains K3,3. To see this when e2 = 10 delete
2-10 and 5-6; the case e2 = 3-6 is similar, and if e2 = 3-4 then delete the
vertices 6 and 10. We may therefore assume that k > 2 and that e2 is the edge
1-2. If k = 3, then either e3 = 8, in which case H ′ contains K3,3 (delete 2-8,
5-6 and 13-14), or e3 = 10, in which case H ′ contains Superbud (delete 2-10).
Thus we may assume that k > 3. If e3 is 3-4 or 3-6, then H ′ weakly contains
L = H + (7, 4-5) + (12, 1-2) + (14, 3), but the graph L contains K3,3 (delete
3-6, 5-12 and 2-13). If e3 is 4-5 then H ′ contains K3,3 (delete the vertices 6
and 10, and the “new” edge incident with 7). Thus we may assume that e3 is
5-6. If e4 = 10, then H ′ weakly contains the graph L (delete 6-10), and hence
H ′ contains K3,3. If e4 = 8 or e4 is 4-5, then H ′ contains K3,3. To see this
delete 3-4, 7-11, 6-15 and 5-16. If e4 is 3-6 or 3-4, then H ′ contains Superbud
(delete the vertices 6 and 10). Thus we may assume that e4 is 1-2, but then
H ′ contains K3,3 (delete vertices 11 and 12, and the edge 3-6).

4.13. Let G be a brace containing Superbud. Then G contains K3,3, the
Heawood graph or Rotunda.

Proof. LetH be Superbud with vertices numbered as in Figure 2. By 4.2 it
suffices to show that G weakly contains K3,3, the Heawood graph, or Rotunda.
By 4.10 and the symmetry of H, G weakly contains one of H+(7, 8), H+(7, 5),
H + (7, 12), or H + (7, 3-4) + (14, 1). The first two graphs contain K3,3 (in the
first case delete 1-7, 2-8 and 3-4, and in the second case delete the vertices 4
and 8 and the edge 1-7), and so does the last (delete 5, 9, 11, 12). Thus we may
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assume that G weakly contains H+(7, 12); that is, G contains H1 = H+(7, 12),
H2 = H + (7, 12-6), H3 = H + (7, 12-9), or H4 = H + (7, 12-11). By 4.10 there
is an integer i ∈ {1, 2, 3, 4} such that G weakly contains an 8-extension K of
Hi. If K is of the first kind, then by the previous containments and symmetry
between 7 and 8 we may assume that G weakly contains H+(7, 12)+(8, 11) or
H+(7, 12-11)+(8, 14). The first graph contains K3,3 (delete 1-9, 2-8, 5-11 and
11-12), and the second is isomorphic to the Heawood graph. This completes
the case when K is of the first kind.

Assume now that K is of the second or third kind. Then either K weakly
contains H + (8, 3-4) + (14, 2), or i > 1 and K = Hi + (8, 3-4) + (16, 14). Since
H+ (8, 3-4) + (14, 2) is isomorphic to H+ (7, 3-4) + (14, 1), and hence contains
K3,3, we may assume that i > 1 and that K = Hi+ (8, 3-4) + (16, 14). If i = 2,
then K contains K3,3 (delete 1-2, 5-11, 6-10, 7-13 and 9-12), if i = 3 then K is
isomorphic to Rotunda, and if i = 4 then K contains K3,3 (delete the vertices
1 and 7, and edges 8-15 and 12-14).

Theorem 1.5 now follows from 1.4, 4.5, 4.6, 4.8, 4.11, 4.12 and 4.13.

5. Rotunda

Let G be a brace not containing K3,3, let K be a model of Rotunda in
G, and let S be the set of four vertices of K corresponding to the center of
Rotunda. The objective of this section is to show that in those circumstances
each component of K\S belongs to a different component of G\S. We say that
a path P in G is a (K,S)-jump if P is a K-path in G such that its ends belong
to different components of K\S (and hence P is disjoint from S), and such
that G\V (K ∪ P ) has a perfect matching. We shall need to show that there
is no (K,S)-jump in G, but before that we need three lemmas, which require
some definitions.

Let H be a bipartite graph with bipartition (A,B), let u ∈ A be a vertex
of H of degree three, and let u1, u2, u3 be its neighbors. Let H ′ be obtained
from H by replacing, for i = 1, 2, the edge uui by a path with vertex-set
u, bi, ai, ui (in order), and let H ′′ = H ′ + (a1, b2) + (b1, a2). We say that H ′′

is a cross-extension of H at u. Assume now that H is contained in a brace
G. We say that H is G-flexible at u if there exists a vertex x ∈ A − {u} and
a set I ⊆ {1, 2, 3} of size two such that for every i ∈ I, H + (ui, x) is weakly
contained in G.

5.1. Let H be a connected bipartite graph on at least four vertices, let
u be a vertex of H of degree three, and let G be a brace. If G contains a
cross-extension of H at u, then H is G-flexible at u.
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Proof. Let (A,B) be a bipartition of H with u ∈ A, and let H ′, H ′′, u1, u2,

u3, a1, b1, a2, b2 be as in the definition of cross-extension. By 4.9 applied to
H ′′ there exists a reduced {b1, b2}-augmentation H ′′′ of H ′′ that is weakly
contained in G. From the symmetry we may assume that H ′′′ is determined
by b1, e1, e2, . . . , ek. From (R4) we deduce that k = 1. Thus e1 ∈ A − {u} by
(R5). It follows that H ′′′ weakly contains H + (u1, e1) and H + (u3, e1), as
desired.

Let H be a bipartite graph with bipartition (A,B), let u ∈ A have degree
three, and let u1, u2 and u3 be the neighbors of u. Let H ′ be obtained from H

by replacing, for i = 1, 2, 3, the edge uui by a path with vertex-set {u, bi, ai, ui}
(in order), and let H ′′ = H ′ + (b1, a2) + (b2, a3) + (b3, a1). We say that H ′′ is
a hexagonal extension of H at u.

5.2. Let H be a bipartite graph, let u be a vertex of H of degree three,
and let G be a brace. If G contains a hexagonal extension of H at u, then H

is G-flexible at u.

Proof. Let H ′, H ′′, a1, b1, a2, b2, a3 and b3 be as in the definition of hexag-
onal extension. Let X = {b1, b2, b3}. By 4.9 some reduced X-augmentation
H ′′′ of H ′′ is weakly contained in G. From the symmetry we may assume that
H ′′′ is determined by b1, e1, e2, . . . , ek. If e1 ∈ A (that is, k = 1), then e1 sat-
isfies the requirements for H to be G-flexible at u. We may therefore assume
that k > 1. By (R4) e1 6= a1u1 and e1 6= a2u2, and hence e1 = a3u3. It follows
that G contains a cross-extension of H at u, and hence H is G-flexible at u
by 5.1.

5.3. Let H be a connected bipartite graph with maximum degree three,
let u be a vertex of H of degree three, let u1, u2, u3 be the neighbors of u in H,
and let G be a brace. If G weakly contains H + (u1, uu2), then H is G-flexible
at u.

Proof. Let (A,B) be a bipartition of H chosen so that u ∈ A. Let H1 be
obtained from H by replacing the edge uu2 by a path with vertices u, b2, a2, u2

(in order). Then by 4.2 the graph G contains H ′1 = H1 + (a2, y), where y is
u1 or an edge of H incident with u1. If y is an edge, let b1, a1 be the new
vertices of H ′1; otherwise let a1 = b1 = y. In either case G weakly contains a
b2-extension H2 of H ′1 by 4.10. Suppose first that H2 is of the first kind. Then
H2 = H ′1 + (b2, x), where either x ∈ A − {u}, or y is an edge and x = a1. If
x 6= a1 then x satisfies the requirements for H to be G-flexible at u. This can
be seen by considering the graph obtained from H2 by deleting ub1 or uu1, and
the graph obtained by deleting b1a2. Thus we may assume that y is an edge
incident with u1, and that x = a1. If y = uu1 and x is as stated, then H2 is



    

PFAFFIAN ORIENTATIONS 955

a cross-extension of H at u, and hence H is G-flexible at u by 5.1. Finally, if
y = vu1, where v 6= u is a neighbor of u1, then H2 weakly contains H+(u2, v),
and since H = H + (u1, v) we see that v is as desired. Thus if H2 is of the first
kind the lemma holds.

Suppose now that H2 is of the second kind. Let H ′2 = H ′1 + (b2, uu3) and
H ′′2 = H ′1 + (b2, a2u2), and in either case let a3, b3 be the new vertices. Then
either H2 = H ′2 + (b3, x) or H2 = H ′′2 + (b3, x), where either x ∈ A− {u}, or y
is an edge and x = a1. From the symmetry between u and a2 we may assume
that H2 = H ′2+(b3, x). If y = uu1 and x = a1 then H2 is a hexagonal extension
of H at u, and thus H is G-flexible at u by 5.2. Thus we may assume that if
x = a1, then y has ends u1 and x′, where x′ 6= u. If x 6= a1 let x′ = x. Now
H2 weakly contains H + (x′, u1) (delete a2b1 and ub2) and H + (x′, u3) (delete
a2b1 and a3b2), and hence H is G-flexible at u.

Finally, suppose that H2 is of the third kind, and let H ′2, H
′′
2 , a3, b3 be as

in the previous paragraph. Again, from the symmetry we may assume that H2

is H ′2 +(b3, a2u2) or H ′2 +(b3, a2b1). We claim that both of these graphs contain
a cross-extension of H at u. Indeed, in the first case delete b1a2, and in the
second case delete b1a4, where a4, b4 are the new vertices of H ′2 + (b3, a2b1).

5.4. Let G be Rotunda with its vertex -set numbered as in Figure 3. Then
G+ (5, 10) and G+ (5, 3) both contain K3,3.

Proof. To see the first containment delete the vertices 15 and 16, and the
edges 2-10, 7-8 and 1-5. To see the second delete the vertices 1, 9, 13, 14,
15, 16.

5.5. Let G be a brace not containing K3,3, let K be a model of Rotunda
in G, and let S be the set of four vertices of K corresponding to the center of
Rotunda. Then G has no (K,S)-jump.

Proof. Let H be Rotunda with vertices numbered as in Figure 3. Let
H ′1 be obtained from H by replacing the edge 1-9 by a path with vertex set
1, 18, 17, 9 (in order), and let H1 = H ′1 + (17, 2-6). Let us recall our earlier
convention according to which the new vertices of H1 are 19 and 20 in such a
way that 20 has degree two.

Suppose for a contradiction that G has a (K,S)-jump. Then G weakly
contains H1, H2 = H + (5, 10), H3 = H + (5, 3), or H4 = H + (5, 1-9). But
it does not weakly contain H2 or H3 by 5.4, and it does not weakly contain
H4 by 5.3, because it follows from 5.4 that H is not G-flexible at 1. Thus G
weakly contains H1, and hence by 4.2 it contains H1.

By 4.10G weakly contains an 18-extensionH5 ofH1. Suppose first thatH5

is of the first kind. Then H5 =H1+(18, x), where x ∈ {3, 6, 8, 10, 12, 14, 16, 20}.
If x = 10, then H5 weakly contains H3 (delete 9-10), if x = 12 then H5 weakly
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contains H4 (delete 9-12), if x = 3 then H5 weakly contains H3 (delete 17-19),
and the same argument shows that in the remaining cases H5 weakly contains
H2. Thus we may assume that H5 is of the second or third kind. Since
H1 + (18, 1-5) and H1 + (18, 1-13) weakly contain H4 (delete 17-19), we may
assume that H5 = H1 + (18, 17-19) + (21, x), where x ∈ {3, 8, 14, 16, 1-5, 1-13}.
It follows that H5 weakly contains H2, H3 or H4 (delete 17-22 and 19-21).
Thus in each case H5, and hence G, contains K3,3, a contradiction.

5.6. Let G be a brace, let H be a subgraph of G on at least four vertices,
let M be a perfect matching of G\V (H), and let e ∈ M have ends u and v.
Then there exist two M -alternating paths P1 and P2 not containing e with one
end u, the other end in H and with V (P1) ∩ V (P2) = {u}.

Proof. Let (A,B) be a bipartition of G with u ∈ A, and let D be the
digraph obtained from G by directing every edge toward B and contracting
the edges of M . Since G is 2-extendable it follows that D has two directed
paths from u to V (H), vertex-disjoint except for u. These paths give rise to
the desired M -alternating paths in G in the natural way.

By a walk in a graph G we mean a sequence v1, v2, . . . , vn of vertices of
G such that vi and vi+1 are adjacent for every i = 1, 2, . . . , n − 1. We say
that v1 and vn are the ends of the walk. We say that a walk v1, v2, . . . , vn is
M -alternating, where M is a matching in G, if the edge joining vi and vi+1

belongs to M for every i ∈ I, where I is either the set of all odd or the set
of all even integers in {1, 2, . . . , n− 1}. We need the following easy but useful
lemma.

5.7. Let M be a matching in a bipartite graph G, and let u, v ∈ V (G). If
there exists an M -alternating walk in G with ends u and v, then there exists
an M -alternating path in G with ends u and v.

Let G be a bipartite graph with bipartition (A,B). Let v, v1, v2, v3 be
distinct vertices of G such that v1, v2 and v3 belong to the same color class,
and v belongs to the opposite color class, and for i = 1, 2, 3 let Pi be a path
in G with ends v and vi. If P1, P2 and P3 pairwise intersect only in v we say
that F = P1∪P2∪P3 is a fork in G. The vertices v1, v2, v3 are called the ends
of F .

Let P be a path in G with distinct ends v0 and v2k+1, and let v0, v1, v2, . . . ,

v2k, v2k+1 be some of the vertices of P occurring on P in the order listed and
such that for i = 0, 1, 2, . . . , k, v2i and v2i+1 belong to opposite color classes,
and for i = 1, 2, . . . , k, v2i−1 and v2i belong to the same color class (possibly
v2i−1 = v2i). For i = 1, 2, . . . , k let Fi be a subgraph of G with the following
properties. If v2i−1 = v2i, then Fi is a fork with one end v2i, and otherwise
disjoint from P . If v2i−1 6= v2i, then Fi = F ′i ∪ F ′′i , where F ′i and F ′′i are
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vertex-disjoint, F ′i is a fork with two of its ends v2i−1 and v2i, and otherwise
disjoint from P , and F ′′i is a path with ends v ∈ V (P ) and w 6∈ V (P ) and
otherwise disjoint from P in such a way that v2i−1, v, v2i occur on P in the
order listed, and v, v2i belong to opposite color classes and v, w belong to
opposite color classes. The vertices of Fi of degree one in Fi are called the
ends of Fi. Assume moreover that the graphs Fi are pairwise disjoint except
possibly for their ends. In those circumstances we call K = P ∪F1∪F2∪. . .∪Fk
a hook. We say that K has strength k, that v0 and v2k+1 are the ends of K,
and that the ends of the graphs Fi that do not belong to P are the anchors of
K. Let H be a subgraph of G. We say that a hook K is an H-hook if K has
and only has its ends and its anchors in common with H. Thus an H-path
with ends in opposite color classes is an H-hook of strength 0.

5.8. Let G be a brace, let H be a subgraph of G such that G\V (H) has
a perfect matching, let S ⊆ V (H), and assume that there exists an H-path in
G between different components of H\S. Then there exists an H-hook K in
G with ends in different components of H\S and with all anchors in S, such
that G\V (H ∪K) has a perfect matching.

Proof. Let G,H, S be as stated, and let M be a perfect matching
of G\V (H). We proceed by induction on |V (G)| − |V (H)|. Let P be an
H-path in G with ends in different components of H\S; let one end of P
belong to V (H1), where H1 is a component of H\S. If |V (P )| = 2 then P

satisfies the conclusion of the theorem, and so we assume that |V (P )| > 2. Let
D be the set of all vertices of G\V (H) that can be reached from V (H1) by an
M -alternating path. Then D 6= ∅ since |V (P )| > 2, and |D ∩ A| = |D ∩ B|,
where (A,B) is a bipartition of G. Let H ′ be the subgraph of G induced by
V (H) ∪D; then G\V (H ′) has a perfect matching (namely a subset of M).

If there is no H ′-path between different components of H ′\S (for instance,
this happens when H ′\S is connected), then some vertex of D is adjacent to
a vertex in V (H) − V (H1) − S, and otherwise we may apply the induction
hypothesis to G, H ′ and S. Thus in either case there exists an H ′-hook K ′ in
G with anchors in S, either with ends in different components of H ′\S, or one
end in D and the other end in V (H)−V (H1)−S, and such that G\V (H ′∪K ′)
has a perfect matching. If K ′ has ends in different components of H, then K ′

satisfies the conclusion of 5.8, and so we may assume that one end of K ′, say
u, belongs to D and the other to V (H) − V (H1) − S. Let e ∈ M be the
unique member of M incident with u, and let v be the other end of e. Let Q
be an M -alternating path with one end u and the other end in V (H1). Then
V (Q) ∩ V (K ′) = {u}, because V (Q) ⊆ D ∪ V (H1). If v ∈ V (Q), then Q ∪K ′
satisfies the conclusion of the lemma, and so we may assume that v 6∈ V (Q).
By 5.6 there exist two M -alternating paths Q1, Q2 not containing e with one
end v and the other end in V (H), disjoint except for v. Let i ∈ {1, 2} and let
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vi ∈ V (H) be the other end of Qi. Since Qi is M -alternating and e 6∈ E(Qi),
it follows that u 6∈ V (Qi). Moreover, Qi is a subgraph of H ′ by 5.7, because
v ∈ V (H ′). Thus V (Qi) ∩ V (K ′) = ∅. Let L be the graph with V (L) = {u, v}
and E(L) = {e}. If vi ∈ V (H1), then K ′∪Qi∪L satisfies the conclusion of the
lemma; if vi ∈ V (H)−V (H1)−S, then by 5.7 Qi∪Q includes an M -alternating
path between different components of H\S, which satisfies the conclusion of
the lemma. Thus we may assume that v1, v2 ∈ S. Then L ∪Q1 ∪Q2 is a fork
with ends u, v1, v2 such that G\V (H ∪ L ∪ Q1 ∪ Q2) has a perfect matching.
Thus we have shown that given G,H, S,M,H1,K

′, u, v, e as above we may
assume that there exist an M -alternating path Q, distinct vertices v1, v2 ∈ S
and a fork F with ends u, v1, v2 such that v 6∈ V (Q), one end of Q is u and
the other end belongs to H1, the three paths comprising F are M -alternating,
V (F ) ⊆ D∪{v1, v2} and e ∈ E(F ). Let us choose M,Q and F satisfying these
requirements and, subject to that, with F ∪Q minimum.

Let P , P1 and P2 be the three paths comprising F in such a way that
u is an end of P , v1 is an end of P1 and v2 is an end of P2, and let w be
the common end of P , P1 and P2. If V (Q) ∩ V (F ) = {u}, then K ′ ∪ Q ∪ F
is an H-hook satisfying the conclusion of the lemma, and so we may assume
that V (Q) ∩ V (F ) − {u} 6= ∅. Let x be the vertex of V (Q) ∩ V (F ) − {u}
chosen so that the subpath Q′ of Q with one end x and the other in V (H) is as
short as possible. Since Q, P , P1 and P2 are M -alternating and e 6∈ E(Q) we
deduce that x and u belong to the same color class. Thus if x ∈ V (P ), then
K ′ ∪Q′ ∪F satisfies the conclusion of the theorem. By the symmetry between
P1 and P2 we may therefore assume that x ∈ V (P1). Let y ∈ V (Q) be chosen
so that the subpath of Q between x and y is a subgraph of F , and subject
to that, the path has maximum length. Since P1 is M -alternating and w and
v1 belong to different color classes, it follows that y belongs to the subpath
of P1 with ends v1 and x. Thus Q includes an F -path Q′′ with one end y;
let z be the other end of Q′′. Since Q is M -alternating it follows that z and
u belong to the same color class. If z belongs to the subpath of P1 between
y and v1, then replacing the path of F with ends y and z by Q′′ results in a
fork F ′ that contradicts the minimality of F ∪Q. If z belongs to the subpath
of P1 between w and y, then let F ′ be defined as above, let C be the unique
circuit of F ∪Q′′, and let M ′ = (M −E(C))∪ (E(C)−M). Also, the union of
Q\V (Q′′) and the subpath of P1 with ends x and z includes an M ′-alternating
walk with the same ends as Q, and hence it includes an M ′-alternating path
Q1 with the same ends by 5.7. It follows that the triple M ′, Q1, F ′ contradicts
the minimality of F ∪ Q. Thus z 6∈ V (P1). If z ∈ V (P2) − {w}, then F ∪ Q′′
includes a fork that contradicts the minimality of F ∪Q (with M replaced by
a suitable matching). Thus z ∈ V (P ), and it follows that K ′ ∪Q′ ∪Q′′ ∪ F is
a hook of strength one and that it satisfies the conclusion of the lemma.
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5.9. Let G be a brace, let H be a model of Rotunda in G, and let S be
the set of vertices of H corresponding to the center of Rotunda. If there exists
an H-path in G\S with ends in different components of H\S, then G contains
K3,3.

Proof. By 5.8 there exists an H-hook K in G with ends in different compo-
nents of H\S and with anchors in S, and such that G\V (H ∪K) has a perfect
matching. From 5.5 K has strength at least one. Let us assume the notation
introduced prior to 5.8. If K has strength at least two, then using F1, F2 and
the subpath of P between them it is easy to establish that G contains K3,3. (To
see this notice that the anchors of K that belong to F1 and F2 are distinct, and
hence are equal to 1, 2, 3, 4.) Thus we may assume that K has strength one.
Let R be Rotunda with vertices numbered as in Figure 3. From the symmetry
we may assume that the anchors of K are the vertices of H that correspond to
the vertices 1 and 3 of R. We deduce (using symmetry of R) that G weakly con-
tains R+ (3, 5) + (1, 3-5) + (18, 1-17) + (20, x), or R+ (3, 5) + (1, 3-5) + (18, x),
or G contains R1 = R + (3, 2-6) + (1, 3-17) + (20, 1-19) + (22, f), or R2 =
R+ (3, 2-6) + (1, 3-17) + (20, f), where x is a suitable vertex or edge of R, and
f is 2-10 or 4-12. (Notice that if f is the edge 1-9, then by bicontracting we
may assume that f = 9, which is a case already covered, and similarly if f
is the edge 3-11.) The first two graphs contain K3,3 by 5.4, and so we may
assume that G contains R1 or R2.

We assume first that G contains R1. By 4.10 G weakly contains an
18-extension R′1 of R1. By 5.5 we may assume that G has no (H,S)-jump,
and so by the symmetry of R we may assume that R′1 = R1 + (7, 18), R′1 =
R1 + (4, 18), R′1 = R1 + (18, 19), or R′1 = R1 + (18, 17-20) + (4, 26). The
first two and the fourth graph contain K3,3 by 5.4. In more detail, the first
weakly contains R + (3, 5) by deleting 21, 22 and 6-7, the second weakly con-
tains R + (4, 6) by deleting 19, 20, 21 and 22, and the fourth weakly contains
R+ (4, 6) by deleting 19, 20, 21, 22 and 17-26. If G weakly contains the third
graph, then G contains K3,3 by 5.5 (delete the vertices 20 and 21 and the edge
3-19). Thus if G contains R1 then G contains K3,3.

We may therefore assume that G contains R2. By 4.10 G weakly
contains an 18-extension R′2 of R2. By 5.5 we may assume that G has
no (H,S)-jump, and so by the symmetry of R we may assume that
R′2 = R2 + (7, 18), R′2 = R2 + (18, 4), R′2 = R2 + (18, 19), or R2 = R1 +
(18, 17-20) + (4, 24). The first graph weakly contains R + (3, 5) (delete 6-7,
20-21 and 1-19), and the second and fourth graphs weakly contain R + (6, 4).
In those cases G contains K3,3 by 5.4 and the symmetry of Rotunda. Finally,
if G weakly contains the third graph, then G contains K3,3 by 5.5 (delete 1-19,
3-19 and 17-20).
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6. Proof of the main result

We start with six lemmas. The first is a theorem of Kasteleyn [6].

6.1. Every planar graph admits a Pfaffian orientation.

6.2. The graph K3,3 does not admit a Pfaffian orientation.

Proof. Let (A,B) be a bipartition of K3,3, and let C be the set of all
circuits of K3,3 of length four. Then |C| = 9. Suppose for a contradiction that
D is a Pfaffian orientation of K3,3, let ε be the number of edges directed in D
from A to B, and for C ∈ C let εC be the number of edges of C directed in
D from A to B. Then εC is odd, because C is central. Since every edge of
K3,3 belongs to four members of C, we have 4ε =

∑
C∈C εC , a contradiction,

because the right-hand side is odd.

6.3. The Heawood graph admits a Pfaffian orientation.

Proof. Let H be the Heawood graph and let (A,B) be a bipartition of
H. Orienting every edge of H from A to B gives a Pfaffian orientation of H,
because no circuit of H of length eight or twelve is central.

6.4. Let a bipartite graph G contain a bipartite graph H. If G admits a
Pfaffian orientation then so does H.

Proof. Let D be a Pfaffian orientation of G, and let φ be an embedding
of H into G. Let e be an edge of H with ends u and v. Then φ(e) is a path
with an odd number of edges; if an odd number of those edges are directed
from φ(u) to φ(v) we direct e from u to v, and otherwise we direct e from v

to u. This defines a Pfaffian orientation of H, because the image under φ of a
central circuit in H is a central circuit in G.

If G, G1, G2 and C are as in the definition of 4-sum, we say that G is a
4-sum of G1 and G2 along C.

6.5. Let G be a bipartite graph such that G is a 4-sum of G1 and G2

along C.

(i) If M is a perfect matching of G, then E(G1) ∩M is a subset of a perfect
matching of G1.

(ii) If G1 and G2 admit Pfaffian orientations, then so does G.

(iii) If G is a brace, then so are G1 and G2.
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Proof. To prove (i) let M be a perfect matching of G. Let us say that a
vertex v ∈ V (C) is exposed if the unique edge of M incident with v does not
belong to G1. Since C is central we deduce that C has a matching M ′ such
that the set of exposed vertices of G1 is precisely the set of vertices incident
with an edge in M ′. It follows that (E(G1) ∩M) ∪M ′ is a perfect matching
in G1. This proves (i).

If D is a Pfaffian orientation of a graph G, v is a vertex of G, and D′

is obtained from D by reversing the directions of all edges incident with v,
then D′ is a Pfaffian orientation of G. Thus to prove (ii) we may choose
Pfaffian orientations D1 and D2 of G1 and G2, respectively, such that the two
orientations agree on C. Let D be an orientation of G defined by giving an
edge of Gi its orientation in Di (i = 1, 2). We claim that D is a Pfaffian
orientation of G. To prove this let C0 be a central circuit in G; we must
show that C0 is oddly oriented in D. We proceed by induction on |V (C0)|. If
V (C0) ⊆ V (G1), let M1 be a perfect matching of C0 and let M2 be a perfect
matching of G\V (C0). By (i) applied to M1 ∪M2 we see that C0 is a central
circuit in G1, and so is oddly oriented in D1, and hence it is oddly oriented in
D. A similar argument works when V (C0) ⊆ V (G2), and so we may assume
that V (C0) − V (G1) 6= ∅ 6= V (C0) − V (G2). Assume first that it is not the
case that V (C)∩V (C0) consists of two diagonally opposite vertices of C. Then
there exist circuits C1 and C2 of G such that C0 = C1∪C2\e for some edge e of
C. For i = 1, 2 the graph G\V (Ci) has a perfect matching (namely the union
of a perfect matching of G\V (C0) and a perfect matching of V (C3−i)\V (Ci)),
and hence both C1 and C2 are oddly oriented in D by the induction hypothesis.
It follows that C0 is oddly oriented, as desired. We may therefore assume that
V (C) ∩ V (C0) = {u1, u3}, where u1, u2, u3, u4 are the vertices of C in order.
As before, let M2 be a perfect matching of G\V (C0). We may assume without
loss of generality that the edge of M2 incident with u2 belongs to G1, and
hence the edge of M2 incident with u4 belongs to G2. Let P1, P2 be the two
subpaths of C0 with ends u1 and u3 and union C0, and let Q1, Q2 be defined
similarly with C replacing C0. We may assume that u4 ∈ V (Q1), u2 ∈ V (Q2),
and that Pi is a subgraph of Gi for i = 1, 2. Then the circuits P1 ∪ Q1 and
P2 ∪Q2 are central in G1 and G2, respectively, and hence they are both oddly
oriented in D by the induction hypothesis. It follows that C0 is oddly oriented,
as desired. This proves (ii).

To prove (iii) let us assume that G is a brace. By 3.1 every bipartite
graph obtained from G by adding edges is a brace, and so we may assume
that C is a subgraph of G. Let e, f be edges of G1 with no common end; then
e, f ∈ E(G), and so there exists a perfect matching M of G containing e and f .
By (i) E(G1) ∩M is a subset of a perfect matching M ′ of G1; then e, f ∈M ′,
as desired.
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6.6. Let H be a connected graph contained in a connected brace G. Let
every vertex of H have degree three and let H have no circuit of length four.
Then either H is isomorphic to G, or there exist nonadjacent vertices u and
v of H belonging to different color classes of H such that H + (u, v) is weakly
contained in G.

Proof. Let us assume that H is not isomorphic to G, and let K be a
model of H in G with |V (K)| maximum. Assume first that K has no vertex
of degree two; then K 6= G. Let M be a perfect matching of G\V (K). There
exists an edge e ∈ E(G) − E(K) incident with a vertex of K. Let M ′ be a
perfect matching of G containing e. Then M 4M ′ includes the edge-set of
a K-path P such that G\V (K ∪ P ) has a perfect matching. Let u′ and v′

be the ends of P ; since K has no vertex of degree two the vertices u′ and v′

correspond to vertices u and v of H, respectively. If u and v are not adjacent
in H, then G contains H + (u, v), and the lemma holds. Thus we may assume
that u and v are adjacent in H, and hence u′ and v′ are adjacent in K. Let
K ′ = (K\u′v′) ∪ P ; then K ′ is a model of H in G, and hence contradicts the
choice of K.

We may therefore assume that K has a vertex of degree two. Thus there
exists an edge e of H such that the corresponding path of K has at least two
internal vertices. Let (A,B) be a bipartition of H, let the ends of e be u ∈ A
and v ∈ B, and let H1 be obtained from H by replacing the edge e by a path
with vertices u, v′, u′, v (in order). By 4.10 G contains either H1 + (u′, w) or
H1 + (u′, e), where w ∈ B − {v} and e is an edge of H1 incident with v but
not with u′. We deduce that either the lemma holds, or G weakly contains
H + (x, uv) or H + (u, vy), where x 6= v is a neighbor of u in H and y 6= u is a
neighbor of v in H. In the last two cases H is G-flexible at u or v by 5.3. From
the symmetry we may assume that H is G-flexible at u; that is, there exists a
vertex x ∈ V (H)− {u} and two distinct neighbors u1 and u2 of u such that x
and u belong to the same color class and G weakly contains both H + (u1, x)
and H + (u2, x). Since H has no circuit of length four it follows that x is not
adjacent to both u1 and u2. Say it is not adjacent to u1; then u1 and x satisfy
the conclusion of the lemma.

6.7. Let G be a brace containing the Heawood graph and not containing
K3,3. Then G is isomorphic to the Heawood graph.

Proof. Let H be the Heawood graph. If G is not isomorphic to H, then
by 6.6 it weakly contains H + (u, v) for some pair u, v of nonadjacent vertices
of H belonging to different color classes. But each such graph contains K3,3,
as is easily verified (in fact, they are all isomorphic, and so it suffices to check
one graph), and hence so does G, a contradiction.
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Let G0 be a graph, let C be a central circuit of G0 of length four, and let
G1, G2, G3 be three subgraphs of G0 such that G1 ∪ G2 ∪ G3 = G0, and for
distinct integers i, j ∈ {1, 2, 3}, Gi ∩Gj = C and V (Gi)−V (C) 6= ∅. Let G be
obtained from G0 by deleting some (possibly none) of the edges of C. In these
circumstances we say that G is a trisum of G1, G2 and G3. We are now ready
to prove our main theorem, which we restate in a slightly stronger form. The
equivalence of (i) and (ii) is due to Little [9].

6.8. For a brace G the following conditions are equivalent :

(i) G does not contain K3,3.

(ii) G has a Pfaffian orientation.

(iii) Either G is isomorphic to the Heawood graph, or G can be obtained from
planar braces by repeated application of the 4-sum operation.

(iv) Either G is isomorphic to the Heawood graph, or G can be obtained from
planar braces by repeated application of the trisum operation.

Proof. From 6.4 and 6.2 we deduce that (ii) implies (i), from 6.1, 6.3 and
6.5(ii) we deduce that (iii) implies (ii), and clearly (iv) implies (iii). To prove
that (i) implies (iv) let G be a brace not containing K3,3. We may assume that
G is not isomorphic to the Heawood graph.

We prove by induction on |V (G)| that G can be obtained by repeated
application of the trisum operation as stated in the theorem. If G is planar
then the claim holds, and so we may assume that G is not planar. By 1.5
G contains the Heawood graph or Rotunda. By 6.7 it does not contain the
Heawood graph, and hence it contains Rotunda. Let H be a model of Rotunda
in G, let S be the set of four vertices of H that correspond to the center of
Rotunda, and let G0 be obtained from G by adding an edge with ends u and
v, for every pair of vertices u, v ∈ S that are not adjacent in G and belong to
different color classes of G. Thus S induces a circuit C in G0. Moreover, C is
central in G0, because G is a brace. By 5.9 there exist graphs G1, G2 and G3

such that G1 ∪G2 ∪G3 = G0, for distinct integers i, j ∈ {1, 2, 3} Gi ∩Gj = C

and for i = 1, 2, 3 exactly one component of H\S is a subgraph of Gi. We
claim that each Gi is contained in G. From the symmetry it suffices to argue
for i = 1. We have E(G1)−E(C) ⊆ E(G), and so it remains to account for the
edges of C. One perfect matching of C may be represented in G2 (using two
disjoint paths of H\S) and the complementary matching may be represented in
G3 similarly. This proves that each Gi is contained in G. Thus no Gi contains
K3,3, and by 6.5(iii) each Gi is a brace. Since the Heawood graph has no circuit
of length four, it follows from the induction hypothesis that G1, G2, G3 can be
obtained from planar braces by repeated application of the trisum operation.
Since G is a trisum of G1, G2 and G3, the theorem follows.
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7. Applications

Let G be a bipartite graph with a perfect matching, let (A,B) be a biparti-
tion of G, and let X be a nonempty proper subset of A such that |N(X)| = |X|.
Let G2 = G\(X ∪ N(X)) and G1 = G\V (G2). We say that G is a 0-sum of
G1 and G2. We define 2-sum as follows. Let G be a connected 1-extendable
bipartite graph with bipartition (A,B) that is not 2-extendable. Then G has
an edge e with ends u1 ∈ A and u2 ∈ B such that G\u1\u2 is not 1-extendable.
By 3.1 applied to every component of G\u1\u2 there exists a nonempty proper
subset X of A − {u1} such that |Y1| = |X|, where Y1 = NG(X) − {u2}. Let
Y2 = A−X − {u1}, let G′2 = G\(X ∪ Y1) and let G′1 = G\(V (G′2)− {u1, u2}).
For i = 1, 2 let Y ′i be the set of all vertices of Yi that are not adjacent to ui
but are adjacent to a vertex of G\V (G′i), and let Gi be obtained from G′i by
joining each vertex of Y ′i by an edge to ui. We say that G is a 2-sum of G1

and G2. The following lemma follows from [10].

7.1. Let G1 and G2 be bipartite graphs, let i ∈ {0, 2}, and let G be an
i-sum of G1 and G2. Then G has a Pfaffian orientation if and only if both G1

and G2 have Pfaffian orientations.

We deduce the following refinement of our main theorem.

7.2. A bipartite graph has a Pfaffian orientation if and only if it either
has no perfect matching, or it can be obtained by repeatedly applying the 0-,
2- and 4-sum operations, starting from connected planar bipartite graphs with
perfect matchings and the Heawood graph.

As a corollary of our main theorem we get the following extremal result.

7.3. Every brace with n ≥ 3 vertices and more than 2n−4 edges contains
K3,3, and hence does not have a Pfaffian orientation.

Proof. Every planar bipartite graph on n ≥ 3 vertices has at most 2n− 4
edges. The result follows from 1.3 by induction.

Let us turn to directed graphs now. A directed graph D (or digraph for
short) consists of a finite set V (D) of vertices, a finite set E(D) of edges, and
an incidence relation that assigns to each edge of D an ordered pair of distinct
vertices of D in such a way that different edges are assigned different ordered
pairs. If (u, v) is the ordered pair assigned to the edge e, we say that u is the
tail of e, and that v is the head of e, and we denote the edge e by uv. Circuits
in digraphs are directed, and have no “repeated” vertices. A digraph D is even
if for every weight function w : E(D) → {0, 1} there exists a circuit in D of
even total weight. It was shown in [19] and is not difficult to see that testing
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evenness is polynomial-time equivalent to testing whether a digraph has an
even directed circuit. Let G be a bipartite graph with bipartition (A,B), and
let M be a perfect matching in G. Let D = D(G,M) be obtained from G by
directing every edge from A to B, and contracting every edge of M . Little [9]
has shown the following.

7.4. Let G be a bipartite graph, and let M be a perfect matching in G.
Then G has a Pfaffian orientation if and only if D(G,M) is not even.

Since every digraph is isomorphic to D(G,M) for some G and M , 7.2 gives
a characterization of even directed graphs. Let us state the characterization
explicitly, but first let us point out a relation between extendability and strong
connectivity. A digraph D is strongly connected if for every two vertices u and
v it has a directed path from u to v. It is strongly k-connected, where k ≥ 1 is
an integer, if for every set X ⊆ V (D) of size less than k, the digraph D\X is
strongly connected. The following is straightforward.

7.5. Let G be a connected bipartite graph, let M be a perfect matching in
G, and let k ≥ 1 be an integer. Then G is k-extendable if and only if D(G,M)
is strongly k-connected.

Let D be a digraph, and let (X,Y ) be a partition of V (G) into two
nonempty sets in such a way that no edge of G has tail in X and head in Y . Let
D1 = D\Y and D2 = D\X. We say that D is a 0-sum of D1 and D2. Now let
v ∈ V (D), and let (X,Y ) be a partition of V (D)−{v} into two nonempty sets
such that no edge of D has tail in X and head in Y . Let D1 be obtained from
D by deleting all edges with both ends in Y ∪{v} and identifying all vertices of
Y ∪{v}, and let D2 be obtained by deleting all edges with both ends in X∪{v}
and identifying all vertices of X∪{v}. We say that D is a 1-sum of D1 and D2.
Let D0 be a directed graph, let u, v ∈ V (D0), and let uv, vu ∈ E(D0). Let D1

and D2 be such that D1∪D2 = D0, V (D1)∩V (D2) = {u, v}, V (D1)−V (D2) 6=
∅ 6= V (D2)− V (D1) and E(D1) ∩ E(D2) = {uv, vu}. Let D be obtained from
D0 by deleting some (possibly neither) of the edges uv, vu. We say that D is a
2-sum of D1 and D2. Now let D0 be a directed graph, let u, v, w ∈ V (D0), let
uv,wv,wu ∈ E(D0), and assume that D0 has a directed circuit containing the
edge wv, but not the vertex u. Let D1 and D′2 be such that D1 ∪ D′2 = D0,
V (D1) ∩ V (D′2) = {u, v, w}, V (D1) − V (D′2) 6= ∅ 6= V (D′2) − V (D1) and
E(D1) ∩ E(D′2) = {uv,wv,wu}, let D′2 have no edge with tail v, and no edge
with head w. Let D be obtained from D0 by deleting some (possibly none) of
the edges uv,wv,wu, and let D2 be obtained from D′2 by contracting the edge
wv. We say that D is a 3-sum of D1 and D2. Finally let D0 be a directed
graph, let x, y, u, v ∈ V (D0), let xy, xv, uy, uv ∈ E(D0), and assume that
D0 has a directed circuit containing precisely two of the edges xy, xv, uy, uv.
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Let D1 and D′2 be such that D1 ∪ D′2 = D0, V (D1) ∩ V (D′2) = {x, y, u, v},
V (D1)−V (D′2) 6= ∅ 6= V (D′2)−V (D1) and E(D1)∩E(D′2) = {xy, xv, uy, uv},
let D′2 have no edge with tail y or v, and no edge with head x or u. Let D be
obtained from D0 by deleting some (possibly none) of the edges xy, xv, uy, uv,
and let D2 be obtained from D′2 by contracting the edges xy and uv. We say
that D is a 4-sum of D1 and D2. We say that a digraph is strongly planar if it
has a planar drawing such that for every vertex v ∈ V (D), the edges of D with
head v form an interval in the cyclic ordering of edges incident with v deter-
mined by the planar drawing. Let F7 be the directed graph D(H,M), where
H is the Heawood graph, and M is a perfect matching of H. This defines F7

uniquely up to isomorphism, irrespective of the choice of the bipartition of H
or the choice of M . Theorems 6.8 and 7.4 imply the following.

7.6. A digraph D is not even if and only if it can be obtained from
strongly planar digraphs and F7 by means of 0-, 1-, 2-, 3- and 4-sums.

The proof is fairly straightforward, and we omit it. Let us point out,
however, that it requires the equivalence of 6.8(ii) and 6.8(iv), as opposed to
merely 1.3.

From 7.3, 7.4 and 7.5 we deduce the following extremal result.

7.7. Let D be a strongly 2-connected directed graph on n ≥ 2 vertices. If
D has more than 3n− 4 edges, then D is even.

Corollary 7.7 does not hold for strongly connected digraphs. However,
Thomassen [22] has shown that every strongly connected directed graph with
minimum in- and out-degree at least three is even. This is equivalent to the
following.

7.8. Let G be a 1-extendable bipartite graph such that every vertex has
degree at least four. Then G contains K3,3, and hence does not have Pfaffian
orientation.

Proof. Let G be as stated. We may assume that G is connected. Since G
has at least 2|V (G)| edges, we see that if G is a brace the corollary follows from
7.3. We may therefore assume that G is a 2-sum of G1 and G2, and we may
choose G1 and G2 so that |V (G1)| is minimum. Clearly |V (G1)| ≥ 4. We claim
that G1 is a brace. Indeed, suppose for a contradiction that G1 is not a brace.
Let (A,B) be a bipartition of G, and let u1 ∈ A, u2 ∈ B, X ⊆ A−{u1}, Y1 and
Y2 be as in the definition of 2-sum. Since G1 is not a brace, it has a nonempty
set X ′ ⊆ A∩V (G1) such that |NG1(X ′)| ≤ |X ′|+1 and NG1(X ′) 6= B∩V (G1).
Let Y ′ = B−NG1(X ′). Then |NG1(Y ′)| ≤ |Y ′|+ 1 and NG1(Y ′) 6= A∩V (G1),
and either u1 6∈ X ′ or u2 6∈ Y ′. Using X ′ (if u1 6∈ X ′) or Y ′ (if u2 6∈ Y ′) the
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graph G can be expressed as a 2-sum of G′1 and G′2, where |V (G′1)| < |V (G1)|,
contrary to the choice of G1. This proves that G1 is a brace. Since all vertices
in X have degree in G1 at least four, and u1 has degree in G1 at least two,
we see that |E(G1)| ≥ 2|V (G1)| − 2, and so G1 contains K3,3 by 7.3. Since G
weakly contains G1 we deduce from 4.2 that G contains K3,3, as desired.

8. Toward an algorithm

Let G be a brace, and let G be a trisum of G1, G2 and G3. By 6.5(ii), if
G1, G2 and G3 have Pfaffian orientations, then so does G. We now prove the
converse. By Cube we mean the graph of (the 1-skeleton of) the 3-dimensional
cube. Let G be a graph, and let C be a circuit in G of length four. We say
that G is C-fat if C is a circuit of some model of Cube in G. We say that G
has a C-cross if C is a circuit of some model of K3,3 in G. Our first objective
is the following.

8.1. Let G be a connected brace, and let C be a circuit in G of length
four. If C 6= G, then either G is C-fat, or G has a C-cross.

Proof. Let (A,B) be a bipartition ofG, and let u1, u2, u3, u4 be the vertices
of C in order. We may assume that u1, u3 ∈ A and u2, u4 ∈ B. Since G is a
brace, G\V (C) has a perfect matching M , and by 3.2 u1 is incident with at
least one edge e 6∈ E(C). Let M ′ be a perfect matching of G containing e,
and let P1 be the component of the subgraph of G with vertex-set V (G) and
edge-set M4M ′ that contains e. It follows that P1 is a path with one end u1

and the other end u2 or u4. From the symmetry we may assume that the other
end is u2. Moreover, G\V (C∪P1) has a perfect matching, namely M −E(P1).
Let X = V (P1) ∩ A − {u1}. Then |NC∪P1(X)| ≤ |X| + 1 and NC∪P1(X) 6=
B∩V (C∪P1). By 4.1 there exists a (C∪P1)-path P2 in G with one end v2 ∈ X,
the other end u4 and such that G\V (C ∪P1 ∪P2) has a perfect matching. Let
P ′1 be the subpath of P1 with ends v2 and u2. We may assume that P1 and
P2 are chosen so that |V (P ′1)| is minimum. Let Y = V (P1) ∩B − V (P ′1); then
|NC∪P1∪P2(Y )| ≤ |Y | + 1 and NC∪P1∪P2(Y ) 6= A ∩ V (C ∪ P1 ∪ P2). By 4.1
there exists a (C ∪ P1 ∪ P2)-path P3 with one end v1 ∈ Y and the other end
v4 ∈ A−NC∪P1∪P2(Y ) such that G\V (C∪P1∪P2∪P3) has a perfect matching.
If v4 = u3, then C ∪ P1 ∪ P2 ∪ P3 is isomorphic to K3,3, and hence G has a
C-cross. If v4 ∈ V (P ′1), then the graph obtained from P1 ∪P2 ∪P3 by deleting
the interior of the subpath of P1 with ends v1 and v2 contradicts the choice of
P1 and P2. We may therefore assume that v4 ∈ A ∩ V (P2)− {v2}.

The graph C ∪ P1 ∪ P2 ∪ P3 proves that there exists a graph H = C ∪ C ′
∪Q1 ∪Q2 ∪Q4 such that
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(1) G\V (H) has a perfect matching,

(2) C ′ is a circuit of G disjoint from C, and

(3) for i = 1, 2, 4, Qi is a path in G with an odd number of edges with one
end ui, the other end say vi ∈ V (C ′), and otherwise disjoint from C ∪C ′.

We may assume that H is chosen so that, subject to (1), (2) and (3),

(4) Q2 ∪Q4 is minimal.

Let Z = V (C ′∪Q1)∩B. Then |NH(Z)| ≤ |Z|+ 1, and hence by 4.1 there
exists an H-path P with one end u ∈ Z and the other v ∈ A−NH(Z) such that
G\V (H ∪P ) has a perfect matching. If v ∈ A∩V (Q2∪Q4), then by deleting a
suitable subpath of C ′ from H ∪ P we obtain a graph contradicting (4). Thus
v 6∈ V (Q2 ∪ Q4), and hence v = u3 (notice that u1 ∈ NH(Z)). Let P0 be the
subpath of C ′ with ends v2, v4 that contains v1. If u 6∈ V (P0), then H ∪ P is
isomorphic to an even subdivision of Cube, and hence G is C-fat. Thus we may
assume that u ∈ V (P0 ∪ Q1). Then H ∪ P contains K3,3 (delete the subpath
of C ′ with ends v1, v4 or v1, v2, depending on which does not include u), and
hence G has a C-cross.

8.2. Let G be a connected brace that has a Pfaffian orientation, and let
G be a trisum of G1, G2 and G3 along C. Then for i = 1, 2, 3, the graph Gi is
C-fat and does not have a C-cross.

Proof. By 6.5(iii) each Gi is a brace, and by 8.1 it is C-fat or has a
C-cross. If some Gi has a C-cross, then G contains one of the graphs depicted
in Figure 5. However, each of those graphs contains K3,3 (the edges to be
deleted are drawn thicker), contrary to 6.2 and 6.4. Thus no Gi has a C-cross,
and hence is C-fat by 8.1.

Figure 5
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8.3. Let G be a connected brace that has a Pfaffian orientation, and let G
be a trisum of G1, G2 and G3 along C. Then G1, G2 and G3 have a Pfaffian
orientation.

Proof. We claim that each Gi is contained in G. It suffices to prove this
for i = 1. Let the vertices of C be u1, u2, u3, u4 in order. By 8.2 G2 has two
vertex-disjoint paths P1, P3 with ends u1, u2 and u3, u4, respectively, such that
G2\V (P1 ∪ P3) has a perfect matching. Similarly, G3 has such paths P2, P4

with ends u2, u3 and u1, u4, respectively. Then (G1\E(C))∪P1 ∪P2 ∪P3 ∪P4

is a model of G1 in G, as required. Thus each Gi is contained in G, and hence
has a Pfaffian orientation by 6.4.

If G is a graph, we say that a set X ⊆ V (G) is a trisector in G if |X| = 4
and G\X has at least three components. The next lemma explains the signif-
icance of trisectors.

8.4. Let G be a connected brace, and let X ⊆ V (G) with |X| = 4. Then
X is a trisector in G if and only if G can be expressed as a trisum of G1, G2

and G3 along C, where V (C) = X.

Proof. The “if” part follows immediately. For the “only if” part let X
be a trisector. It suffices to notice that 3.1 implies that G\X has a perfect
matching, and hence X contains two vertices from each color class.

Theorems 6.5, 6.8, 8.2 and 8.4 imply an O(|V (G)|5) algorithm to test if a
bipartite graph G has a Pfaffian orientation. To improve its running time we
need a few lemmas about trisectors.

8.5. Let G be a connected brace, and let X be a set of vertices of G.
Assume that |NG(X)| ≤ 3 and that V (G) − X − NG(X) contains vertices of
both color classes of G. Then |X| ≤ 1.

Proof. Let (A,B) be a bipartition of G. We may assume that X ∩A 6= ∅;
then by 3.1 and the inclusion NG(X ∩A) ⊆ (X ∪NG(X)) ∩B,

(∗) |X ∩A|+ 2 ≤ |NG(X ∩A)| ≤ |X ∩B|+ |NG(X) ∩B|.
Similarly, if X ∩ B 6= ∅, then |X ∩ B| + 2 ≤ |X ∩ A| + |NG(X) ∩ A|, and it
follows that |NG(X)| ≥ 4, a contradiction. Thus X ∩ B = ∅, and (∗) implies
that |X| = |X ∩A| ≤ |NG(X)| − 2 ≤ 1, as required.

8.6. Let G be a connected brace that has a Pfaffian orientation, and let
X,Y be trisectors in G. Then there exists a component J of G\X such that
Y ⊆ V (J) ∪X.

Proof. Suppose for a contradiction that there exist two distinct compo-
nents J1 and J2 of G\X and vertices y1 ∈ V (J1) ∩ Y and y2 ∈ V (J2) ∩ Y .
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We first show that |V (Ji) ∩ Y | = 1 for i = 1 or i = 2. To this end sup-
pose for a contradiction that |V (Ji) ∩ Y | > 1 for i = 1, 2; then both those
sets have cardinality two. By 8.2 there exist, for every component L of G\Y ,
two vertex-disjoint paths between V (J1) ∩ Y and V (J2) ∩ Y such that their
vertex-sets except for their ends are contained in V (L). Each of these paths
intersects X, which is impossible, because |X| = 4 and yet G\Y has at least
three components. This proves our claim that |V (Ji) ∩ Y | = 1 for i = 1 or 2.

We may therefore assume that V (J1) ∩ Y = {y1}. Let L1, L2, . . . , Ll
be the components of G\Y ; then l ≥ 3. By 8.2, for each i = 1, 2, . . . , l,
V (Li) ∪ {y1, y2} includes the vertex-set of a path with ends y1 and y2. Thus
each V (Li) intersects X, and hence l ≤ 4, |X ∩ Y | ≤ 1, and |X ∩ V (Li)| ≤ 2
with equality possible only if X ∩ Y = ∅. Since for i = 1, 2, . . . , l

NG(V (Li ∩ J1)) ⊆ (Y ∩ V (J1)) ∪ (X ∩ Y ) ∪ (X ∩ V (Li)),

it follows that |NG(V (Li ∩ J1))| ≤ 3, and hence |V (Li ∩ J1)| ≤ 1 by 8.5. Since

V (J1) = {y1}∪
l⋃

i=1
V (Li∩J1) we deduce that |V (J1)| ≤ 5, and so J1 is a circuit

of length four by 8.2. On the other hand J1\y1 has no edges, a contradiction.

8.7. Let G be a brace that has a Pfaffian orientation. Then G has no
subgraph isomorphic to K2,3.

Proof. Suppose for a contradiction that K is a subgraph of G that is
isomorphic to K2,3, and that D is a Pfaffian orientation of G. Each of the
three circuits of K are central in G, and yet it follows (by considering the
three paths of K joining the vertices of K of degree three) that at least one of
them is not oddly oriented in D, a contradiction.

8.8. Let G be a connected brace that has a Pfaffian orientation, let G
be a trisum of G1, G2 and G3 along C, and let X ⊆ V (G) with X 6= V (C).
Then X is a trisector in G if and only if it is a trisector in G1, G2 or G3.

Proof. Let X be a trisector in G1, say. We claim that the vertices of
V (C) −X belong to the same component of G1\X. To prove this claim sup-
pose to the contrary that some two vertices of V (C) − X belong to different
components of G1\X. Then V (C) ∩ X consists of two diagonally opposite
vertices of C. Let G′1 be obtained from G1 by joining nonadjacent pairs of
vertices in X that belong to opposite color classes. Thus X induces a circuit
in G′1, and it follows from 8.2 and 6.5(ii) that G′1 has a Pfaffian orientation.
On the other hand, let u ∈ V (C) − X. Then X ∪ {u} is the vertex-set of a
subgraph of G′1 isomorphic to K2,3, contrary to 8.8. This proves our claim that
the vertices of V (C) −X belong to the same component of G1\X. It follows
that X is a trisector of G, as desired.
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Conversely, suppose that X is a trisector of G. Then X ⊆ V (Gi) for
some i ∈ {1, 2, 3} by 8.6. By 8.2 the vertices of V (C)−X belong to the same
component of G\X, and hence X is a trisector in Gi, as required.

8.9. Let G be a connected brace on n ≥ 5 vertices that has a Pfaffian
orientation. Then G has at most n− 5 trisectors.

Proof. . We proceed by induction on n. If G has no trisectors, then the
result holds, and so we may assume that G is a trisum of G1, G2 and G3. By
8.2 each of G1, G2 and G3 has a Pfaffian orientation, and hence Gi has at most
|V (Gi)| − 5 trisectors. By 8.9 G has at most

|V (G1)| − 5 + |V (G2)| − 5 + |V (G3)| − 5 + 1 ≤ n− 5

trisectors, as required.

9. An algorithm for Pfaffian orientations

We begin with the following easy algorithm.

9.1. Algorithm.
Input. A bipartite graph G with m edges and a perfect matching M of G.
Output. The set of all edges of G that belong to no perfect matching of G.
Running time. O(m).

Description. Let (A,B) be a bipartition of G, and let D be the directed
graph obtained from G by directing every edge from A to B, and contracting
every edge in M . The problem is equivalent to finding the strongly connected
components of D, which is well-known, and is described, for instance, in [2].

9.2. Algorithm.
Input. A connected brace G on n vertices, and a list L of all trisectors

of G.
Output. Either a Pfaffian orientation of G, or a valid statement that G

has no Pfaffian orientation.
Running time. O(n3).

Description. If |L| > n − 5, then we output the statement that G has
no Pfaffian orientation, and stop. By 8.9 this statement is correct. We now
assume that L is empty. In this case we use a linear planarity algorithm such
as [26] to either find a planar drawing of G, or determine that G is nonplanar.
If we find a planar drawing of G we use Kasteleyn’s algorithm [6], [7] (see also
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[13]) to output a Pfaffian orientation of G and stop. If G is nonplanar, then
we check if G is isomorphic to the Heawood graph. If it is, then we output
a Pfaffian orientation of G as in 6.3. If G is not isomorphic to the Heawood
graph, then by 6.8 and 8.4 it has no Pfaffian orientation. We output that
information and stop. This completes the case when L is empty.

Thus we may pick a trisector X ∈ L, and, by 8.4, express G as a trisum of
G1, G2 and G3 along C, where V (C) = X. By 8.8 every member of L − {X}
is a trisector in one of G1, G2, G3, and all trisectors of G1, G2, G3 belong to L.
Further, G1, G2, G3 are braces by 6.5(iii), and G has a Pfaffian orientation if
and only if each of G1, G2, G3 does by 6.5(ii) and 8.2. We apply 9.2 to each
G1, G2, G3 and an appropriate subset of L. If eachGi has a Pfaffian orientation,
then we combine them as in the proof of 6.5(ii) to yield a Pfaffian orientation
of G and stop. If one of G1, G2, G3 does not have a Pfaffian orientation, then
neither does G. We output that information and stop.

9.3. Algorithm.
Input. A connected brace G on n vertices.
Output. Either a Pfaffian orientation of G, or a valid statement that G

has no Pfaffian orientation.
Running time. O(n3).

Description. If G has more than 2n − 4 edges, then it does not have a
Pfaffian orientation by 7.3. We output that information and stop. Thus we
may assume that G has at most 2n − 4 edges. For every u, v ∈ V (G) we use
the algorithm of Hopcroft and Tarjan [5] to find all trisectors X of G with
u, v ∈ X. Thus we find all trisectors of G in time O(n3), and apply 9.2.

Let G be a connected 1-extendable bipartite graph. Let C0 = {G}, and
assume that the sets C0, C1, . . . , Ci−1 of 1-extendable graphs have already been
defined. If every member of Ci−1 is a brace we stop; otherwise we choose
H ∈ Ci−1 that is not a brace. Then H can be expressed as a 2-sum of two
smaller connected 1-extendable bipartite graphs H1 and H2, and we put Ci =
(Ci−1−{H})∪{H1, H2}. Let k be the integer such that this process terminates
with C0, C1, . . . , Ck. We say that Ck is a decomposition of G into braces. Lovász
[12] has shown that Ck is independent of the order in which individual graphs
are decomposed, but we will not need that here. All we need is the following,
which follows from 7.1.

9.4. Let G be a 1-extendable bipartite graph, and let C be a decomposition
of G into braces. Then G has a Pfaffian orientation if and only if each member
of C does.
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Let G be a 1-extendable bipartite graph, and let e be an edge of G with
ends u1, u2. We say that e is reducing if G\u1\u2 is not 1-extendable. If G1,
G2 and e are as in the definition of 2-sum, we say that G is a 2-sum of G1 and
G2 along e.

9.5. Let G be a 1-extendable bipartite graph, and let M be a perfect
matching of G.

(i) If G is not a brace, then M contains a reducing edge.

(ii) If G is a 2-sum of G1 and G2 along f ∈M and e ∈M − {f} is reducing
in G1, then e is reducing in G.

Proof. To prove (i) let e, Y1, Y2, u1 and u2 be as in the definition of 2-sum,
and let F be the set of all edges with one end in Y1 ∪ {u2} and the other in
Y2∪{u1}. Then M ∩F 6= ∅, and every edge of F is reducing. Thus (i) follows.

To prove (ii) let e have ends u1, u2, and let (A,B) be a bipartition of
G. Since e is reducing in G1, there exists a nonempty proper subset X of
A ∩ V (G1) − {u1} such that |Y1| = |X|, where Y1 = NG1(X) − {u2}. By
replacing X by B∩V (G1)−Y1−{u2} we may assume that no end of f belongs
to X. Then Y1 = NG(X)− {u2}, and hence e is reducing in G, as desired.

9.6. Algorithm.
Input. A connected 1-extendable bipartite graph G with 2n vertices and m

edges, and a perfect matching M of G.
Output. A decomposition of G into braces.
Running time. O(nm).

Description. Let C0 = {G}, and let M = {e1, e2, . . . , en}. We repeat the
following step for i = 1, 2, . . . , n and for every H ∈ Ci−1. If ei 6∈ E(H) we put
H into Ci; otherwise letting u1 and u2 be the ends of ei we find all subsets
X as in the definition of 2-sum. This is equivalent to finding the strongly
connected components of D(H\u1\u2, E(H) ∩M − {ei}), and hence can be
done in time O(m), as pointed out earlier. Using ⊕ to denote 2-sum along ei,
this gives a way to express H as (· · · ((H1 ⊕ H2) ⊕ H3) ⊕ · · ·) ⊕ Hk for some
graphs H1, H2, . . . , Hk such that for all j = 1, 2, . . . , k, the graph Hj\u1\u2 is
1-extendable. We put H1, H2, . . . , Hk into Ci.

After the last iteration the set Cn is a desired decomposition by 9.5.

9.7. Algorithm.
Input. A bipartite graph G on n vertices.
Output. Either a Pfaffian orientation of G, or a valid statement that G

has no Pfaffian orientation.
Running time. O(n3).
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Description. We use the algorithm of Hopcroft and Karp [4] to find a
perfect matching M in G. If G has no perfect matching, then every orientation
of G is Pfaffian. In that case we output an arbitrary orientation of G and stop.
Otherwise we use 9.1 to delete edges of G that belong to no perfect matching
of G. (Those edges may be directed arbitrarily in a Pfaffian orientation of the
original graph.)

Now G is 1-extendable. For every component H of G we proceed as
follows. We find a decomposition C of H into braces using 9.6, and apply 9.3
to every member of C; if every member of C has a Pfaffian orientation, then
those can be combined to give a Pfaffian orientation of H. If some member of
C has no Pfaffian orientation, then neither does H.

If some component H of G has no Pfaffian orientation, then neither does
G; otherwise the Pfaffian orientations of components of G can be combined to
yield a Pfaffian orientation of G.
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