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Doubles of groups and hyperbolic
LERF 3-manifolds

By Rita Gitik*

Abstract

We show that the quasiconvex subgroups in doubles of certain negatively
curved groups are closed in the profinite topology. This allows us to construct
the first known large family of hyperbolic 3-manifolds such that any finitely
generated subgroup of the fundamental group of any member of the family is
closed in the profinite topology.

Introduction

The profinite topology on a group G is defined by proclaiming all finite
index subgroups of G to be the base open neighborhoods of the identity in
G. We denote it by PT(G). A group G is RF (residually finite) if the trivial
subgroup is closed in PT(G), which happens if and only if PT(G) is Hausdorff.
A group G is LERF (locally extended residually finite) if any finitely generated
subgroup of G is closed in PT(G). RF and LERF groups have been studied for
a long time, and they have various important properties. For example, finitely
generated RF groups have solvable word problem and finitely generated LERF
groups have solvable generalized word problem; see [A-G], [B-B-S], [Gi 2] and
[We] for various results and additional references. The class of RF groups is
very rich. It contains all finitely generated linear groups and all fundamental
groups of geometric 3-manifolds. However, few examples of LERF groups were
known.

We say that a 3-manifold is LERF if its fundamental group is LERF,
and we say that a 3-manifold with boundary is hyperbolic if its interior has
a complete hyperbolic structure. In this paper we construct the first known
large nontrivial class of hyperbolic LERF 3-manifolds with boundary, and a
new large class of closed hyperbolic 3-manifolds, which have all their surface
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subgroups and all their geometrically finite subgroups closed in the profinite
topology.

If the fundamental group of a compact orientable irreducible 3-manifold
M has a surface subgroup S which is closed in the profinite topology of π1(M),
then M is virtually Haken. Specifically, there exists a finite cover N of M such
that S is contained in π1(N) and is carried by a surface embedded in N . A
conjecture of Waldhausen asserts that any such closed 3-manifold M whose
fundamental group contains a surface subgroup is virtually Haken, hence the
importance of the LERF property in 3-manifolds.

It was conjectured that all finitely generated 3-manifold groups are LERF,
and P. Scott proved in [Sco 1, 2] that compact Seifert fibered spaces are LERF.
However, a non-LERF compact graph manifold was described in [B-K-S], and
it appears that most graph manifolds are not LERF, ([L-N], [R-W]). Still, lit-
tle was known about hyperbolic LERF 3-manifolds. M. Hall proved in [Hall]
that free groups are LERF, so that handlebodies are LERF. P. Scott proved in
[Sco 1] that surface groups are LERF, so that I-bundles over surfaces are
LERF. He also showed that all geometrically finite subgroups of certain closed
hyperbolic 3-manifolds are closed in the profinite topology. This limited infor-
mation about the profinite topology on the fundamental groups of hyperbolic
3-manifolds prompted W. Thurston to ask in [Thu] whether finitely generated
Kleinian groups are LERF or whether they have special subgroups closed in
the profinite topology.

Since then it was shown in [B-B-S] that a free product of two free groups
with cyclic amalgamation is LERF, so an annulus sum of two handlebodies is
LERF. Later the author showed in [Gi 2] that the free product of a LERF group
and a free group amalgamated over a cyclic group maximal in the free factor is
LERF; hence the sum of any LERF hyperbolic 3-manifold and a handlebody
along an annulus maximal in the handlebody is LERF.

The following theorem is the main topological result of this paper.

Theorem 1. Let M be a compact hyperbolic LERF 3-manifold with
boundary, which does not have boundary tori, let B be a connected submanifold
of the boundary of M , such that B is incompressible in M , and let D(M) be
the double of M along B. If D(M) is hyperbolic, has nonempty boundary, and
has no boundary tori, then D(M) is LERF. If the boundary of D(M) is empty,
then any geometrically finite subgroup and any freely indecomposable geometri-
cally infinite subgroup (hence any closed surface subgroup) of the fundamental
group of D(M) is closed in the profinite topology.

Theorem 1 is a corollary of Theorem 2, and its proof is given at the end
of Section 1. The ”no boundary tori” condition seems not to be essential, and
the author plans to remove it, at least in some cases, in a subsequent paper.
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Theorem 1 enables us to construct hyperbolic 3-manifolds with LERF fun-
damental group as follows. Let M be as in Theorem 1. Initial examples are
handlebodies or I-bundles over closed surfaces of negative Euler characteristic,
or annulus sums of several handlebodies with such an I-bundle. In general,
the boundary of M might be compressible (for example, if M is a handlebody)
or M might be not acylindrical (for example, if M is an I-bundle over a closed
surface). If M has incompressible boundary and is not acylindrical, we can
use the characteristic submanifold theorem of Jaco-Shalen and Johannson to
show that any boundary component of M carries many essential simple closed
curves C which separate this boundary component in two parts A and B, each
incompressible in M , such that π1(A) and π1(B) are malnormal subgroups of
π1(M). Then Theorem 1 implies that the double of M along either A or B is
LERF. As D(M) has nonempty boundary, we can apply the characteristic sub-
manifold theorem to a boundary component of D(M), and double D(M) along
a part of its boundary, creating a hyperbolic LERF manifold D(D(M)). Iter-
ation of this process produces a large family of hyperbolic LERF 3-manifolds
with boundary.

In order to construct a closed hyperbolic manifold N such that any geo-
metrically finite subgroup of π1(N) is closed in PT(π1(N)), we need to start
with M , as in Theorem 1, such that its boundary is connected and incom-
pressible. If the boundary of M is acylindrical (for example, totally geodesic),
then the double of M along the whole boundary will be hyperbolic and closed,
hence it will have the required properties.

If the boundary of M is not acylindrical, we still can carry the construc-
tion, but in two steps. We need to find a simple closed essential curve C

separating the boundary of M in two parts A and B satisfying much stricter
conditions, namely:

1) π1(A) is a malnormal subgroup of π1(M).

2) π1(D(B)) is a malnormal subgroup of π1(D(M)), where D(M) is the
double of M over A, and D(B) is the double of B over C .

Then the double N of D(M) over D(B) is a closed hyperbolic 3-manifold with
the required properties.

We can take M to be a twisted I-bundle over a nonorientable surface of
genus 2, because there exist separating curves C in its boundary such that the
groups π1(A) and π1(B) inject in π1(M), M has no essential cylinders with
both ends in A, M has no essential cylinders with both ends in B and M has
no cylinders connecting A and B, hence A and B have properties 1) and 2)
mentioned above.
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1. The profinite topology on doubles of groups

The main group-theoretical result of this paper is a combination theorem
for the profinite topology on a special class of groups. It is well-known that free
products preserve RF and LERF groups, but free products with amalgamation
usually do not (cf. [A-G], [L-N]). It is shown in [G-R 1] that adjunction of roots
need not preserve the property LERF, so one should not expect the profinite
topology on groups to behave reasonably even under free products with cyclic
amalgamation. In this paper we study the profinite topology on a special
class of amalgamated free products, called doubles. The graph-theoretical
techniques developed in this paper and in [Gi 2] allow the author to prove
new combination theorems (not only about doubles) for profinite topology on
groups. As these results are not connected with the main subject of this paper,
they will be described somewhere else.

Definition 1.1. Let G0 be a subgroup of a group G, let H be an isomor-
phic copy of G with a fixed isomorphism α : G → H and let H0 = α(G0).
The double of G along G0 is the amalgamated free product D = G ∗

G0=H0

H.

We call G and H “the factors of D”. When X is a generating set of G, then
Y = α(X) is a generating set of H.

The following example shows that a subgroup of G which is closed in
PT(G) does not have to be closed in PT(D).

Example 1.2. A double of an RF group need not be RF. Let G =
〈a, c|a−1cac−2〉 and let G0 = 〈c〉. The group G is RF, but it is shown in
[Hi] that the double D of G along G0 is not. Hence the trivial subgroup is
closed in PT(G), but it is not closed in PT(D). Note that G0 is not closed in
PT(G), because the element aca−1 belongs to the closure of G0 in PT(G).

This example is generic, as D. Long and G. Niblo proved in [L-N] that the
double of an RF group G along G0 is RF if and only if G0 is closed in PT(G).
The following more general statement is proved in [Gi 5].

Lemma 1.3. Let D be the double of G along G0. If G0 is closed in PT(G),
then any subgroup of G which is closed in PT(G) is closed in PT(D). If G0 is
not closed in PT(G), then no subgroup of G is closed in PT(D).

An obvious necessary condition for a subgroup S of D to be closed in
PT(D) is that the intersection of S with any conjugate of a factor of D must be
closed in the profinite topology of the conjugate. If G is LERF, this condition
holds if the intersection of S with any conjugate of a factor of D is finitely
generated or, equivalently, the intersection of S with any conjugate of G0 is
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finitely generated. Of course, there exist infinitely generated subgroups which
are closed in the profinite topology; however, detecting such subgroups seems
to be a very difficult problem.

Example 1.4. A double of a LERF group need not be LERF. Let Fn
denote the free group of rank n. Let G = F1 × F2 = 〈u〉 × 〈x, y〉, and let
G0 = F2 = 〈x, y〉. It is shown in [A-G] that G is LERF, but the double of G
along G0, which is isomorphic to F2 × F2, is not LERF, although it is RF.

Recall that a group D has fgip (finitely generated intersection property)
if the intersection of any pair of its finitely generated subgroups is finitely
generated, and a subgroup G0 of D has fgip in D if the intersection of G0

with any finitely generated subgroup of D is finitely generated. It is easy to
exhibit a finitely generated subgroup of F2 × F2 in Example 1.4 such that its
intersection with the amalgamating subgroup G0 is infinitely generated; hence
the failure of F2 × F2 to be LERF can be attributed to the failure of the
amalgamating subgroup G0 to have fgip in F2 × F2. However, the situation is
much more complicated, because there exists a double D of F2 along a finite
index subgroup of F2 such that D has a subgroup isomorphic to F2×F2. Such
a D cannot be LERF (cf. [Ge], [Rips]). As a finite index subgroup has fgip in
any finitely generated group, the problem can be caused only by the way the
amalgamating subgroup G0 is embedded in G.

In this paper we give a condition on G0 which forces D to be LERF.
The main technical group-theoretical results of this paper are the following
theorems.

Theorem 4.4. Let S be a finitely generated subgroup of the double D

of a LERF group G along a finitely generated subgroup G0, such that the
intersection of S with any conjugate of G0 is finitely generated. If G0 is strongly
separable (see Definition 4.2) in G, then S is closed in PT(D). Hence if G0

is strongly separable in G and has fgip in D, then D is LERF.

Theorem 5.4. A finitely generated malnormal subgroup of a locally qua-
siconvex LERF negatively curved group is strongly separable.

Recall that a group is locally quasiconvex if all its finitely generated sub-
groups are quasiconvex, and a subgroup H is malnormal in G if for any g /∈ H
the intersection of H and gHg−1 is trivial.

Theorem 4.4 and Theorem 5.4 imply our main group-theoretical result.

Theorem 2. Let G be a finitely generated locally quasiconvex negatively
curved LERF group, and let D be the double of G along a finitely generated
subgroup G0. If G0 is malnormal in G, then any quasiconvex subgroup of D
is closed in PT(D). Hence if D is locally quasiconvex, then D is LERF.
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Proof. Let G be a finitely generated locally quasiconvex negatively curved
group, and let G0 be a finitely generated malnormal subgroup of G. Theorem
5.4 implies that G0 is strongly separable in G. As G0 is finitely generated, it
is quasiconvex in G; hence D is negatively curved ([B-F], [Gi 6]). Then it is
shown in [Gi 3] that all conjugates of G0 in D are quasiconvex in D.

Let S be a quasiconvex subgroup of D. As quasiconvex subgroups of
finitely generated groups are finitely generated, and as the intersection of two
quasiconvex subgroups is a quasiconvex subgroup ([Gre], [Gi 3]), it follows that
the intersection of S with any conjugate of G0 is finitely generated. Therefore
Theorem 4.4 implies that S is closed in PT(D).

Theorem 2 easily implies Theorem 1, as follows.

Proof of Theorem 1. As M is compact, its fundamental group is finitely
generated. As M is hyperbolic and has no boundary tori, its fundamental
group is negatively curved. If D(M) is hyperbolic, then M does not contain
essential cylinders with both ends in B, so π1(B) is a malnormal subgroup of
π1(M). A theorem of W. Thurston states that if a hyperbolic 3-manifold with
finitely generated fundamental group has at least one boundary component
which is not a torus, then its fundamental group is locally quasiconvex. As M
has nonempty boundary and no boundary tori, π1(M) is locally quasiconvex.

If D(M) has nonempty boundary and no boundary tori, then π1(D(M))
is also locally quasiconvex and negatively curved; hence Theorem 2 implies
that D(M) is LERF.

If the boundary of D(M) is empty, then Theorem 2 implies that any
quasiconvex subgroup of D(M) is closed in the profinite topology. A theorem
of F. Bonahon ([Bo]) implies that any nonquasiconvex freely indecomposable
subgroup of π1(D(M)) is closed in the profinite topology. Hence any subgroup
of π1(D(M)) which is isomorphic to the fundamental group of a closed surface
is closed in PT(π1(D(M))).

It is shown in [Gi 3] that a double of a locally quasiconvex negatively
curved group along a malnormal cyclic subgroup is locally quasiconvex. As fun-
damental groups of closed surfaces of genus greater than 1 are locally quasicon-
vex, negatively curved and LERF, the following statement is a special case of
Theorem 2.

Corollary 1.5. A double of a locally quasiconvex negatively curved
LERF group (for example, a double of a fundamental group of a closed surface
of genus greater than 1) along a malnormal cyclic subgroup is LERF.
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Note that there exist examples of non-LERF groups which are doubles
of LERF groups over cyclic subgroups ([L-N], [G-R 1], [A-D]). As a cyclic
subgroup has fgip in any group, this phenomenon is caused by the way the
amalgamating subgroup G0 is embedded in G. Niblo in [Ni] proved that if D
is a LERF group which is a double of a LERF group G along G0, then for
any finitely generated subgroup S of G the set G0S is closed in PT(G). He
also showed that this condition on G0 is not sufficient for D to be LERF, even
when G0 is cyclic.

2. Preliminaries

This section contains a summary of graph-theoretical methods developed
by the author in [Gi 1] and in [Gi 2]. The detailed proofs of the quoted results
appeared in [Gi 2].

Definition 2.1. Let X be a set, let X∗ = {x, x−1|x ∈ X}, and for x ∈ X
define (x−1)−1 = x. Consider a group G generated by the set X. Let G0

be a subgroup of G, and let {G0g} denote the set of right cosets of G0 in G.
The relative Cayley graph of G with respect to G0 (or the coset graph) is an
oriented graph whose vertices are the right cosets {G0g} and the set of edges
is {G0g} ×X∗, such that an edge (G0g, x) begins at the vertex G0g and ends
at the vertex G0gx. We denote it Cayley(G,G0). Note that G0 acts on the
Cayley graph of G by left multiplication, and Cayley(G,G0) can be defined as
the quotient of the Cayley graph of G by this action.

Let K be the standard 2-complex representing the group G = 〈X|R〉,
i.e. K has one vertex, |X| oriented edges and |R| 2-cells. We call the relative
Cayley graphs of G “the covers of G”, because their geometric realizations are
the 1-skeletons of the topological covers of K. Then Cayley(G,G0) is a finite-
sheeted cover (of the 1-skeleton of K) if and only if it has a finite number of
vertices, which happens if and only if G0 has finite index in G. However, the
generating set X of G might be infinite, and then the finite-sheeted cover of G
is an infinite graph. To avoid possible conflicting terminology, we will not use
the term “finite cover”, and we say that a graph is finite if and only if it has
finitely many vertices and edges.

Definition 2.2. Let E(Γ) denote the set of edges of a graph Γ. A labeling
of Γ by a set X∗ is a function Lab : E(Γ) → X∗ such that for any e ∈ E(Γ),
Lab(ē) = (Lab(e))−1, where ē denotes the inverse of the edge e.

A graph with a labeling function is called a labeled graph. Denote the
set of all words in X by W (X), and denote the equality of two words by
“≡”. The label of a path p = e1e2 · · · en in Γ, where ei ∈ E(Γ), is the word
Lab(p) ≡ Lab(e1) · · ·Lab(en) ∈W (X).
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Definition 2.3. Let G be a group generated by a set X, let Γ be a graph
labeled with X∗, and let p be a path in Γ. In this case, as usual, we identify the
word Lab(p) with the corresponding element in G. Let G0 be a subgroup of
G. For any edge (G0g, x) in Cayley(G,G0) define Lab(G0g, x) = x. Then for
any path p = (G0g, x1)(G0gx1, x2) · · · (G0gx1x2 · · ·xn−1, xn) in Cayley(G,G0),
Lab(p) ≡ x1 · · ·xn ∈ W (X). Let v0 be a vertex in Γ. Define Lab(Γ, v0) =
{Lab(p)|p is a loop in Γ beginning at v0}.

Remark 2.4. It is easy to see that Lab(Γ, v0) is a subgroup of G, and
that Lab(Cayley(G,G0), G0 · 1) = G0.

Definition 2.5. We say that a connected subgraph Γ of Cayley(G,S)
represents S and g, if Γ contains S · 1 and S · g, and if Lab(Γ, S · 1) = S. We
say that Γ represents S, if Γ contains S · 1 and if Lab(Γ, S · 1) = S.

The following result from [Gi 1] shows a connection between the profinite
topology and relative Cayley graphs.

Theorem 2.6. A finitely generated subgroup S of G is closed in PT(G)
if and only if for any g /∈ S there exists a finite subgraph Γ of Cayley(G,S)
representing S and g, which can be embedded in a cover of G with finitely many
vertices.

In this paper we apply Theorem 2.6 to amalgamated free products of
groups.

Definition 2.7. We denote the initial and the terminal vertices of p by
ι(p) and by τ(p) respectively, and the inverse of p by p̄.

Definition 2.8. Let X∗ and Y ∗ be disjoint sets, and let Γ be a graph
labeled with X∗ ∪Y ∗. We say that a vertex v in Γ is bichromatic if there exist
edges e1 and e2 in Γ with ι(e1) = ι(e2) = v,Lab(e1) ∈ X∗ and Lab(e2) ∈ Y ∗;
otherwise we say that v is monochromatic. We say that Γ is monochromatic
if the labels of all its edges are only in X∗ or only in Y ∗. An X∗-component
of Γ is a maximal connected subgraph of Γ labeled with X∗, which contains at
least one edge. A Y ∗-component of Γ is a maximal connected subgraph of Γ
labeled with Y ∗, which contains at least one edge.

Definition 2.9. Let X be a generating set of a group G and let Y be a
generating set of a group H, such that X∗ ∩Y ∗ = ∅. Let φ be an isomorphism
between the subgroups G0 of G and H0 of H, and let A = G ∗

G0=H0

H be the
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amalgamated free product of G and H defined by φ. We say that a subgraph
Γ of a relative Cayley graph of A is a precover of A, if each X∗-component of
Γ is a cover of G and each Y ∗-component of Γ is a cover of H.

In order to show that a finitely generated subgroup S of A is closed in
PT(A), for any a /∈ S we choose a finite subgraph Γ of Cayley(A,S) repre-
senting S and a, and try to embed it in a precover of A with finitely many
vertices (if S is finitely generated, then a finite graph representing S and a can
be easily constructed; cf. [Gi 2]). Then we try to embed such a precover in a
cover of A with finitely many vertices.

If G and H are LERF, then any monochromatic component of such Γ
can be embedded in a cover of G or of H with finitely many vertices; so
we can embed Γ in a graph Γ′ with finitely many vertices such that each
monochromatic component of Γ′ is a cover of G or of H. We would like to
know when such Γ′ is a precover or a cover of A.

Definition 2.10. Let Γ be a graph labeled with a set S∗ and let S0 ⊂ S∗.
Following [G-T] we say that Γ is S0-saturated at a vertex v, if for any s ∈ S0

there exists e ∈ E(Γ) with ι(e) = v and Lab(e) = s. We say that Γ is S0-
saturated, if it is S0-saturated at any v ∈ V (Γ).

Definition 2.11. Let A = G ∗
G0=H0

H be as in Definition 2.9. We say that

a graph Γ labeled with X∗ ∪ Y ∗ is A-compatible at a bichromatic vertex v, if
for any pair of monochromatic paths of different colors p and q in Γ such that
ι(p) = v = ι(q), if Lab(p) = Lab(q) ∈ G0, then τ(q) = τ(p). We say that Γ is
A-compatible, if it is A-compatible at all bichromatic vertices.

The following result from [Gi 2] gives a characterization of covers and
precovers of A.

Lemma 2.12. Let Γ be a graph labeled with X∗ ∪ Y ∗ such that each X∗-
component of Γ is a cover of G and each Y ∗-component of Γ is a cover of H.
Then Γ is a precover of A if and only if Γ is A-compatible, and Γ is a cover
of A if and only if, in addition, Γ is (X∗ ∪ Y ∗)-saturated.

In the special case when the amalgamated free product is a double, i.e.
the map φ in Definition 2.9 is the restriction of an isomorphism α from G to H
(see Definition 1.1), the following result from [Gi 1] emphasizes the importance
of precovers. We include the proof, as [Gi 1] is not easily available.

Theorem 2.13 (the doubling theorem). Let D be the double of a group
G along a subgroup G0. Then any precover Γ of D with finitely many vertices
can be embedded in a cover of D with finitely many vertices.
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Proof. Define a new precover Γ̄ of D as follows. Let Γ̄ be an abstract
unlabeled graph isomorphic to Γ and let β : Γ̄ → Γ be an isomorphism. For
any edge e of Γ̄ define Lab(e) = α(Lab(β(e))) if Lab(β(e)) ∈ X∗, and Lab(e) =
α−1(Lab(β(e))) if Lab(β(e)) ∈ Y ∗, where α,X and Y are as in Definition 1.1.
Then Γ̄ is labeled with X∗ ∪ Y ∗, and Lemma 2.12 implies that Γ̄ is a precover
of D. Indeed, as α and β are isomorphisms, each monochromatic component
of Γ̄ is a cover of G or of H. Let v be a bichromatic vertex in Γ̄, and let p and
q be monochromatic paths of different colors in Γ̄ such that ι(p) = v = ι(q)
and Lab(p) = Lab(q) ∈ G0. Then β(v) is a bichromatic vertex in Γ, and
β(p) and β(q) are monochromatic paths of different colors in Γ such that
ι(β(p)) = β(v) = ι(β(q)) and Lab(β(p)) = Lab(β(q)) ∈ G0. As Γ is a precover,
it is D-compatible at β(v); hence τ(β(q)) = τ(β(p)), but then τ(q) = τ(p) and
therefore Γ̄ is D-compatible.

Let Γ′ be a graph constructed from the disjoint union of Γ and Γ̄ by
identifying every monochromatic vertex v ∈ V (Γ̄) with β(v) ∈ V (Γ). Then Γ′

has finitely many vertices and Γ is embedded in Γ′. As Γ and Γ̄ are precovers,
each monochromatic component of Γ′ is a cover of G or of H. Let v′ be a
bichromatic vertex in Γ′, and let p′ and q′ be monochromatic paths of different
colors in Γ′ such that ι(p′) = v′ = ι(q′) and Lab(p′) = Lab(q′) ∈ G0. If v′

has a preimage in Γ which is bichromatic in Γ, then as each monochromatic
component of Γ is a cover of G or of H, p′ and q′ have unique preimages in Γ. As
Γ is D-compatible at the preimage of v′, the preimages of p′ and q′ in Γ have the
same terminal vertex, but then p′ and q′ have the same terminal vertex in Γ′.
The same argument shows that Γ′ is D-compatible at v′ if v′ has a preimage in
Γ̄ which is bichromatic in Γ̄. If the preimage of v′ in Γ is monochromatic, then
v′ also has a monochromatic preimage in Γ̄, so one path, say p′, has a unique
preimage p in Γ and the other, q′, has a unique preimage q in Γ̄. Note that the
path β(q) belongs to Γ, Lab(β(q)) = Lab(q) = Lab(q′) = Lab(p′) = Lab(p)
and ι(β(q)) = β(ι(q)) = ι(p). Hence as Γ is a precover, τ(β(q)) = τ(p). As
β(τ(q)) = τ(β(q)), the definition of Γ′ implies that τ(p′) = τ(q′), so that Γ′ is
D-compatible at v′. As Γ′ is X∗ ∪ Y ∗-saturated, Lemma 2.12 implies that Γ′

is a cover of D.

Let MG and MH be topological manifolds of the same dimension, and let
MG0 and MH0 be isomorphic boundary components of MG and MH , respec-
tively. Let MA be the manifold constructed from the disjoint union of MG and
MH by identifying MG0 and MH0 via the fixed isomorphism. The concept of
a precover can be restated in this category, and then the proof of the doubling
theorem has an obvious geometrical interpretation. In fact, the concept of a
precover and the doubling theorem can be restated for any pair TG and TH of
topological spaces and their isomorphic subspaces TG0 and TH0 .
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Theorems 2.6 and 2.13 provide an important characterization of subgroups
closed in the profinite topology on doubles.

Corollary 2.14. A finitely generated subgroup S is closed in PT(D)
if and only if for any d /∈ S there exists a finite subgraph of Cayley(D,S),
representing S and d, which can be embedded in a precover of D with finitely
many vertices.

Definition 2.15. A labeled graph is called well-labeled if for any e1 and
e2 in E(Γ) with ι(e1) = ι(e2), if Lab(e1) = Lab(e2), then τ(e1) = τ(e2).

The following result from [Gi 2] will be used in the proof of Theorem 5.4.

Lemma 2.16. A graph Γ, well -labeled with the set X∗, can be embedded
in a cover of G if and only if any path p in Γ with Lab(p) = 1 is a loop, i.e.
ι(p) = τ(p).

In this paper we use the special case of the amalgamation of graphs ([Sta],
[Gi 2]), which we call ”grafting”.

Definition 2.17. Let G0 be a subgroup of G. Choose generating sets X∗

for G and X∗1 for G0 such that X∗1 ⊂ X∗. Let Γ be a graph well-labeled with
X∗, and let βv be the X∗1 -component of the vertex v in Γ. Let α be a graph
well-labeled with X∗1 such that (β, v) embeds in (α,w). The graft of (α, v) on
(Γ, w) is constructed by taking the disjoint union of α and Γ, identifying the
vertices v and w, and then identifying two copies of (β, v).

Lemma 2.18. The graft ∆ of α on Γ is well -labeled with X∗, and α and
Γ imbed in ∆.

Proof. Let e1 and e2 be edges in ∆ with Lab(e1) = Lab(e2) and ι(e1) =
ι(e2). If both e1 and e2 are in α, then e1 = e2, because α is well-labeled with
X∗1 . If both e1 and e2 are in Γ, then e1 = e2, because Γ is well-labeled with X∗.
If one edge, say e1, is in α, and another is in Γ, then Lab(e1) = Lab(e2) ∈ X∗1
and ι(e1) ∈ Γ ∩ α. Hence ι(e1) ∈ β, but then, as β is an X∗1 -component in
Γ, e1 ∈ β ⊂ Γ and e2 ∈ β ⊂ α. Therefore by construction of ∆, e1 = e2, so
that ∆ is well-labeled with X∗. By definition of grafting, we do not identify
edges of Γ with each other or edges of α with each other; hence Γ and α are
embedded in ∆.

Note that, in general, graphs do not embed in their amalgams ([Sta],
[Gi 2]).
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3. Constructions of precovers

All the results in this section are valid for any amalgamated free product
A = G ∗

G0=H0

H (and not only for a double of G), and Lemma 3.1 holds for

any groups G and H (they do not have to be LERF or negatively curved).

Lemma 3.1. Let Γ be a graph with finitely many vertices which has the
following properties.

1) All monochromatic components of Γ are covers of G or of H;

2) For any bichromatic vertex v of Γ, Lab(ΓX
∗
, v)∩G0 = Lab(ΓY

∗
, v) ∩ G0,

where ΓX
∗

and ΓY
∗

are, respectively, the X∗-component and the Y ∗-com-
ponent of Γ containing v;

3) For any pair of bichromatic vertices in Γ connected by a monochromatic
path p labeled by an element in G0, there exists a pair p′ and q′ of
monochromatic paths of different colors with the same endpoints as p,
such that Lab(p′) = Lab(q′) ∈ G0.

Then Γ can be mapped onto a precover Π of A with finitely many vertices,
by identifying certain pairs of monochromatic vertices of different color. This
mapping restricts to an embedding on the union of all monochromatic compo-
nents of the same color.

Proof. If Γ is A-compatible, then Lemma 2.12 implies that Γ is a precover.
Otherwise, there exists a bichromatic vertex v in Γ and monochromatic paths p
and q of different colors in Γ which begin at v, such that Lab(p) = Lab(q) ∈ G0,
but τ(p) 6= τ(q). This might happen only if τ(p) and τ(q) are monochromatic
vertices of different colors. Indeed, without loss of generality assume that τ(p)
is bichromatic, then property 3 of Γ implies that there exist a monochromatic
path p′ of the same color as p and a monochromatic path q′ of a different color,
such that p, p′ and q′ have the same endpoints and Lab(p′) = Lab(q′) ∈ G0.
Then the path pp̄′ is monochromatic and Lab(pp̄′) ∈ G0; hence property 2
of Γ implies that there exists a closed monochromatic path q′′ of the same
color as q with ι(q′′) = ι(p) and Lab(q′′) = Lab(pp̄′). Then Lab(q̄q′′q′) =
Lab(q̄)Lab(pp̄′)Lab(q′) = 1; hence property 1 of Γ implies that q̄q′′q′ is a
closed loop, and so q has the same endpoints as q′. Hence τ(p) = τ(q), a
contradiction.

Also for any vertex u in Γ there exists at most one vertex w 6= u with
the following property: there exists a pair of monochromatic paths t and
s of different colors in Γ such that τ(t) = u, τ(s) = w, ι(t) = ι(s) and
Lab(t) = Lab(s) ∈ G0. Indeed, assume that there exists a vertex w′ 6= w

and corresponding paths t′ and s′. If Lab(t) = Lab(t′), then property 1 of Γ
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implies that t′t̄ is a closed path. Then ι(s′) = ι(s) and Lab(s) = Lab(s′); so
property 1 of Γ implies that s′s̄ is a closed path, hence w = w′.

If Lab(t) 6= Lab(t′), then t′t̄ is a monochromatic path labeled with an
element in G0 which joins the initial vertices of t′ and t. Hence property 3 of
Γ implies that there exist monochromatic paths t′′ and s′′ of different colors in
Γ joining ι(t′) to ι(t) such that Lab(t′′) = Lab(s′′) ∈ G0, and such that t′′ has
the same color as t.

But then t′′tt̄′ is a monochromatic closed loop with Lab(t′′tt̄′) ∈ G0; hence
property 2 of Γ implies that there exists a monochromatic loop s0 of the same
color as s, with the same initial vertex and the same label as t′′tt̄′. But then
Lab(s̄s̄′′s0s

′) = Lab(t̄)Lab(t̄′′)Lab(t′′tt̄′)Lab(t′) = 1; so property 1 of Γ implies
that s̄s̄′′s0s

′ is a closed path, and thus w = w′.
We construct the mapping of Γ onto a precover as follows. For any pair of

monochromatic paths of different colors in Γ which have the same label and the
same initial vertex, but distinct terminal vertices, we identify their terminal
vertices. As Γ has finitely many vertices, after repeating this procedure a finite
number of times, we obtain an A-compatible graph Π. The monochromatic
components of Γ coincide with the monochromatic components of Π, because
the above discussion shows that we identify any monochromatic vertex in Γ
with at most one monochromatic vertex of different color, and the identifica-
tions do not involve bichromatic vertices. Hence property 1 of Γ and Lemma
2.12 imply that Π is a precover of A.

Let φ be as in Definition 2.9. To make the rest of the exposition easier to
follow, we assume that the generating set X1 of G0 is a subset of X and its
image Y1 = φ(X1), which is a generating set of H0 = φ(G0), is a subset of Y .

Remark 3.2. Let S be a finitely generated subgroup of A, let a be an
element in A, but not in S, and let Γ′ be a finite subgraph of Cayley(A,S)
representing S and a. Let x1 be an element in X1, and let y1 = φ(x1). For any
vertex v in Γ′, let ev,x and ev,y be edges in Cayley(A,S) which begin at v and
are labeled with x1 and y1, respectively. Define Γ′′ to be the union of Γ′ and
all the edges ev,x and ev,y. Note that the edges ev,x and ev,y have the same
terminal vertex; hence Γ′′ is a finite subgraph of Cayley(D,S) representing S
and a, and all the vertices of Γ′′ are bichromatic in Γ′′. If we can embed Γ′′ in
a graph Γ which has properties 1–3 of Lemma 3.1, then we can map Γ onto a
precover Π, as in Lemma 3.1 and, as all the vertices of Γ′′ are bichromatic in Γ,
this map of Γ restricts to an embedding on Γ′′. However, examples discussed
in Section 2 show that such embeddings do not exist for arbitrary groups S
and A; otherwise any double of a LERF group would be LERF. The following
result shows that under certain assumptions on S, we can almost achieve this
goal.
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Lemma 3.3. Let S be a finitely generated subgroup of A = G ∗
G0=H0

H,

such that the intersection of S with any conjugate of G0 in A is finitely
generated, and let φ be as in Definition 2.9. Then any finite subgraph Γ0

of Cayley(A,S) representing S, is contained in a finite subgraph Γ1 of
Cayley(A,S) with the following properties:

4) For any bichromatic vertex w of Γ1, Lab(ΓX
∗
1

1 , w) ∩ G0 = Lab(ΓY
∗
1

1 , w) ∩
G0 = Lab(Cayley(A,S), w)∩G0, where ΓX

∗
1

1 and ΓY
∗
1

1 are, respectively, the
X∗1 -component and the Y ∗1 -component of Γ1 containing w.

5) If two distinct bichromatic vertices in Γ1 are connected by a path in
Cayley(A,S) labeled with an element of G0, then they are connected by
a pair of monochromatic paths p′ and q′ in Γ1 labeled with X∗1 and Y ∗1 ,
respectively, such that φ(Lab(p′)) ≡ Lab(q′) ∈ G0.

Therefore Γ1 has properties 2 and 3 of Lemma 3.1.

Proof. Let Γ0 be any finite subgraph of Cayley(A,S) representing S. If
Γ0 already has properties 4 and 5, take Γ1 = Γ0. Otherwise, let W be the set
of all bichromatic vertices of Γ0. For each pair of distinct vertices in W which
are connected by a path in Cayley(A,S) labeled with an element of G0, choose
a pair of paths p0 and q0 in Cayley(A,S) connecting these vertices, labeled
with X∗1 and Y ∗1 respectively, such that Lab(q0) ≡ φ(Lab(p0)).

For any w ∈ W , the group Lab(Cayley(A,S), w) is a conjugate of
Lab(Cayley(A,S), S ·1) = S; hence the subgroup Lab(Cayley(A,S), w)∩G0 is
finitely generated (because it is a conjugate of the intersection of a conjugate
of G0 with S). Therefore we can choose a finite number of loops pw,i and qw,i
in Cayley(A,S) labeled with X∗1 and Y ∗1 respectively, which begin at w such
that Lab(qw,i) ≡ φ(Lab(pw,i)), and such that the set {Lab(pw,i)} (hence the
set {Lab(qw,i)}) generates the subgroup Lab(Cayley(A,S), w) ∩G0.

Let Γ1 be the union of Γ0 and all the paths p0, q0, pw,i and qw,i. Then
Γ1 is a finite graph, and we will show that it has properties 4 and 5. By
construction, Γ1 has the required properties for all vertices in W . However,
the set of bichromatic vertices of Γ1 is bigger than W , as all the new vertices
which were added to Γ0 to construct Γ1 are bichromatic in Γ1. Hence for any
bichromatic vertex u /∈ W in Γ1 there exists a vertex w ∈ W and paths c
and d in Γ1, labeled with X∗1 and Y ∗1 , respectively, joining u to w such that
Lab(d) ≡ φ(Lab(c)) ∈ G0.

Consider a path p in Cayley(A,S) joining distinct bichromatic vertices
v1 and v2 of Γ1, such that Lab(p) ∈ G0. As was mentioned above, there
exist paths ci and di in Γ1, labeled with X∗1 and Y ∗1 , respectively, such that
Lab(di) ≡ φ(Lab(ci)) ∈ G0, and ci and di join vi to some wi ∈ W, i = 1, 2.
Then c̄1pc2 is a path in Cayley(A,S) labeled with an element in G0 joining w1
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to w2. As Γ1 has property 5 for all vertices in W , there exists a pair of paths
c0 and d0 labeled with X∗1 and Y ∗1 , respectively, in Γ1 joining w1 to w2 such
that φ(Lab(c0)) ≡ Lab(d0). Then c1c0c̄2 and d1d0d̄2 are paths in Γ1 labeled by
X∗1 and Y ∗1 , respectively, joining v1 to v2, and φ(Lab(c̄1c0c2)) ≡ Lab(d1d0d̄2);
hence Γ1 has property 5 for any pair of bichromatic vertices.

Consider a bichromatic vertex v in Γ1, and let c and d be paths labeled
with X∗1 and Y ∗1 , respectively, in Γ1 with Lab(d) ≡ φ(Lab(c)) ∈ G0, which join
v to some w ∈W . Then v and w belong to the same X∗1 -component of Γ1, say
ΓX
∗
1 , and to the same Y ∗1 -component of Γ1, say ΓY

∗
1 . Hence Lab(ΓX

∗
1 , v)∩G0 =

(Lab(c)Lab(ΓX
∗
1 , w)Lab(c̄)) ∩ G0 = Lab(c)(Lab(ΓX

∗
1 , w) ∩ G0)Lab(c̄). But Γ1

has property 4 for any w ∈W ; hence Lab(ΓX
∗
1 , w)∩G0 = Lab(ΓY

∗
1 , w)∩G0 =

Lab(Cayley(A,S), w) ∩G0. Therefore,

Lab(ΓX
∗
1 , v) ∩G0 = Lab(c)(Lab(Cayley(A,S), w) ∩G0)Lab(c̄)

= Lab(Cayley(A,S), v) ∩G0

= Lab(d)(Lab(ΓY
∗
1 , w) ∩G0)Lab(d̄) = Lab(ΓY

∗
1 , v) ∩G0.

So Γ1 has property 4 for any bichromatic vertex.

Lemma 3.3 shows that under certain assumptions we can embed the graph
Γ′′ described in Remark 3.2 in a graph Γ1 which has properties 2 and 3 of
Lemma 3.1. However, our goal is to embed Γ′′ in a graph Γ which has properties
1–3 of Lemma 3.1. Unlike Γ1, generically, such Γ cannot be a subgraph of
Cayley(A,S). It will be constructed using ”grafting”. The following lemma
shows that a construction of a graph which has property 1 of Lemma 3.1 can
be reduced to a construction of a graph which has two additional properties,
which are easier to verify.

Definition 3.4. Let G0 be a subgroup of G. We say that a subgraph Γ
of a cover of G is G0-complete at a vertex v, if for any g ∈ G0 there exists a
path pg in Γ beginning at v with Lab(pg) = g.

Lemma 3.5 (the grafting lemma). Let G and H be LERF groups. Let Σ0

be a finite graph with the following properties.

6) All monochromatic components of Σ0 are subgraphs of covers of G or of H;

7) For any bichromatic vertex w of Σ0, the monochromatic components
ΣX∗

0 and ΣY ∗
0 of Σ0 containing w are, respectively, G0-complete and

H0-complete at w.

If Σ0 has properties 2 and 3 of Lemma 3.1, then it can be embedded in a graph
Σ which has properties 1–3 of Lemma 3.1.
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Proof. As each monochromatic component of Σ0 is a finite subgraph of
a cover of G or of H, and as G is LERF, each monochromatic component
of Σ0 can be embedded in a cover of G or of H with finitely many vertices.
Let Σ be the graph constructed from the disjoint union of Σ0 and all these
covers by identifying each monochromatic component of Σ0 with its image in
the corresponding cover. (Here we use ”grafting”). Then, by construction, Σ
has property 1 of Lemma 3.1.

Let w be a bichromatic vertex in Σ, let ΣX∗ be the X∗-component of
Σ containing w, and let l be a loop in ΣX∗ which begins at w such that
Lab(l) ∈ G0. As Σ and Σ0 have the same sets of bichromatic vertices,
w is bichromatic in Σ0. As the X∗-component ΣX∗

0 of Σ0 containing w is
G0-complete at w, there exists a path l′ in ΣX∗

0 which begins at w with
Lab(l′) = Lab(l). As ΣX∗

0 is embedded in ΣX∗ , and as ΣX∗ is a cover of G,
the paths l and l′ have the same terminal vertex (because they have the same
initial vertex and the same label). Therefore l′ is a loop in ΣX∗

0 . As Σ0 has
property 2 of Lemma 3.1, the Y ∗-component ΣY ∗

0 of Σ0 containing w contains
a loop l′′ which begins at w with Lab(l′′) = Lab(l′); hence Lab(ΣX∗ , w) ∩ G0

is contained in Lab(ΣY ∗ , w) ∩G0. Similarly, Lab(ΣY ∗ , w) ∩G0 is contained in
Lab(ΣX∗ , w) ∩G0; therefore Σ has property 2 of Lemma 3.1.

Consider bichromatic vertices w1 and w2 in Σ connected by a monochro-
matic path p with Lab(p) ∈ G0. As Σ and Σ0 have the same sets of bichromatic
vertices, w1 and w2 are bichromatic in Σ0. As each monochromatic compo-
nent of Σ0 is G0-complete at w1, there exists a monochromatic path p1 in Σ0

beginning at w1, which has the same color and the same label as p. As each
monochromatic component of Σ is a cover, τ(p) = τ(p1) = w2. As Σ0 has
property 3 of Lemma 3.1, there exist monochromatic paths p0 and q0 in Σ0

of different colors connecting w1 and w2 such that Lab(p0) = Lab(q0) ∈ G0.
As p0 and q0 lie in Σ, it follows that Σ also has property 3 of Lemma 3.1, as
required.

Our next goal is to construct a graph which has property 7 of Lemma 3.5.
The following lemma shows that we can easily do it in a very special case. The
general case is considered in Theorem 4.4.

Lemma 3.6. If G0 is finitely generated, then the graph Γ1, constructed
in the proof of Lemma 3.3 is contained in a finite subgraph Γ2 of Cayley(A,S)
which has properties 4 and 5 of Lemma 3.3 and, in addition, is (X∗1 ∪ Y ∗1 )-
saturated at any bichromatic vertex u such that Lab(Cayley(A,S), u)∩G0 has
finite index in G0.

Hence Γ2 has property 7 of Lemma 3.5 for any bichromatic vertex u such
that Lab(Cayley(A,S), u) ∩G0 has finite index in G0.
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Proof. Note that the definition of the sets X1 and Y1 implies that the X∗1 -
component and Y ∗1 -component of any vertex u in Cayley(A,S) are isomorphic
covers of G0, hence they areG0-complete at any vertex. Also the sets of vertices
of these components coincide, so that the union of the X∗1 -component and
the Y ∗1 -component of any vertex in Cayley(A,S) consists entirely of vertices
bichromatic in this union.

Let U = {u1, · · · , uk} be the set of all bichromatic vertices of Γ1, such that
Lab(Cayley(A,S), ui) ∩ G0 is of finite index in G0. Then the X∗1 -component
and Y ∗1 -component of any ui ∈ U in Cayley(A,S) are finite. Define Γ2 to be
the union of Γ1 and the X∗1 -components and the Y ∗1 -components of all ui ∈ U
in Cayley(A,S). Then Γ2 is a finite graph, which has property 7 of Lemma
3.5 at any vertex ui. By construction of Γ2, if u is a bichromatic vertex in Γ2

such that Lab(Cayley(A,S), u) ∩G0 has finite index in G0, then u belongs to
the X∗1 -component (and to the Y ∗1 -component) of some ui ∈ U ; hence Γ2 has
property 7 of Lemma 3.5 at any such u. It is easy to see that Γ2 has properties
4 and 5 of Lemma 3.3, because Γ1 has them.

Corollary 3.7. Let G0 be finitely generated. A special case of Lemma
3.6 with H = H0 states that for any finitely generated subgroup S of G, such
that the intersection of S with any conjugate of G0 in G is finitely generated,
and for any finite subgraph Γ of Cayley(G,S) representing S, there exists a
finite subgraph Γ′ of Cayley(G,S) containing Γ with the following properties:
4′) For any vertex w of Γ′ and for any g ∈ Lab(Cayley(G,S), w) ∩ G0 there

exists a loop lg in the X∗1 -component of w in Γ′ which begins at w, such
that Lab(lg) = g.

5′) Any two vertices in Γ′ are joined by a path in Cayley(G,S) labeled by an
element in G0 if and only if they belong to the same X∗1 -component in Γ′.
(The “if ” direction always holds.)

7′) Γ′ is X∗1 -saturated (hence, it is G0-complete) at any vertex v such that
Lab(Cayley(G,S), v) ∩G0 has finite index in G0.

4. Strongly separable subgroups

We will use the following fact proved in [Gi 2].

Lemma 4.1. If (∆, u) is a subgraph of a cover of a group G, then
(∆, u) can be isomorphically embedded in the relative Cayley graph
(Cayley(G,Lab(∆, u)),Lab(∆, u) · 1). To avoid awkward notation, we denote
this relative Cayley graph by (∆̃, u).

The notation (Cayley(G,Lab(∆, u)),Lab(∆, u) · 1) = (∆̃, u) will be used
through the rest of the paper.
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Let G0 be a finitely generated subgroup of a group G. We choose gener-
ating sets X1 of G0 and X of G, such that X1 is a finite subset of X.

Definition 4.2. We use the notation of Lemma 4.1. We say that a finitely
generated subgroupG0 of a groupG is strongly separable inG, if for any finitely
generated subgroups S1 and S2 ofG such that the subgroups S1∩G0 and S2∩G0

are equal and have infinite index inG0, and for any finite subgraphs (Γ1, v1) and
(Γ2, v2) of covers of G with Lab(Γ1, v1) = S1 and Lab(Γ2, v2) = S2, there exist
finite subgraphs Γ′i, (i = 1, 2) of Γ̃i which contain Γi and have properties 4′, 5′

and 7′ of Corollary 3.7 in Γ̃i, and there exist embeddings (Γ′i, vi) → (∆i, vi)
with the following properties.

a) ∆i is a finite subgraph of a cover of G, such that the X∗1 -component of
vi in ∆i is a cover of G0; hence ∆i is G0-complete at vi. If an edge e of
∆i does not belong to Γ′i, then e belongs to the X∗1 -component of vi in
∆i, i = 1, 2.

b) Lab(∆1, v1) ∩G0 = Lab(∆2, v2) ∩G0.

c) If ui ∈ V (Γ′i) does not belong to the X∗1 -component of vi in (Γ̃i, vi), then
Lab(Γ̃i, ui) ∩G0 = Lab(∆̃i, ui) ∩G0, i = 1, 2.

d) A pair of vertices in the image of Γ′i belongs to the same X∗1 -component
in ∆̃i if and only if they belong to the same X∗1 -component in Γ̃i.

Let S be a subgroup of a group G. Note that the vertices Sg1 and Sg2 of
Cayley(G,S) belong to the same X∗1 -component in Cayley(G,S) if and only if
g1 ∈ Sg2G0; hence Definition 4.2 can be equivalently restated in pure group-
theoretical language, but such a change of language would greatly complicate
the proof of Theorem 5.4. Definition 4.2 looks very complicated, but it defines
a nontrivial class of objects. Corollary 3.7 implies that a finite subgroup is
strongly separable in any group, and Theorem 5.4 shows that certain groups
have rich families of infinite strongly separable subgroups.

The following lemma demonstrates why the strong separability is useful
in constructing embeddings of graphs.

Lemma 4.3. Let D be a double of a LERF group G along a finitely gen-
erated subgroup G0, which is strongly separable in G. Let Γ be a finite graph
which has properties 2 and 3 of Lemma 3.1, and property 6 of Lemma 3.5.
Assume that each monochromatic component Γi of Γ has properties 4′, 5′ and
7′ of Corollary 3.7 in Γ̃i. If Γ does not have property 7 of Lemma 3.5, then
Γ can be embedded in a finite graph Ω which has the same set of bichromatic
vertices and the same properties as Γ, and in addition, the set of all bichro-
matic vertices of Ω, where Ω does not have property 7, is strictly smaller then
the corresponding set in Γ.
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Proof. Let u be a bichromatic vertex in Γ and let ΓX
∗

and ΓY
∗

be,
respectively, the X∗-component and the Y ∗-component of Γ containing u.
If ΓX

∗
is G0-complete at u then, as ΓX

∗
is a finite graph, it follows that

Lab(ΓX
∗
, u) ∩ G0 is of finite index in G0. Property 2 of Lemma 3.1 states

that Lab(ΓX
∗
, u) ∩ G0 = Lab(ΓY

∗
, u) ∩ G0; hence Lab(ΓY

∗
, u) ∩ G0 is of fi-

nite index in G0. As ΓY
∗

has property 4′ of Corollary 3.7, it follows that
Lab(Γ̃Y

∗
, u) ∩G0 is of finite index in G0. As ΓY

∗
has property 7′ of Corollary

3.7, it follows that ΓY
∗

is G0-complete at u. Therefore, if Γ does not have
property 7 of Lemma 3.5 at u, then both ΓX

∗
and ΓY

∗
are not G0-complete at

u, and Lab(ΓX
∗
, u) ∩G0 = Lab(ΓY

∗
, u) ∩G0 is of infinite index in G0.

Then the strong separability of G0 in G implies the existence of a finite
subgraph Γ

′X∗ of Γ̃X
∗

which contains ΓX
∗

and has properties 4′, 5′ and 7′ of
Corollary 4.3 in Γ̃X

∗
, a finite subgraph Γ

′Y ∗ of Γ̃Y
∗

which contains ΓY
∗

and
has properties 4′, 5′ and 7′ in Γ̃Y

∗
, and the embeddings (Γ

′X∗ , u) → (∆X∗ , u)
and (Γ

′Y ∗ , u)→ (∆Y ∗ , u), which have properties a–d of Definition 4.2.
Let Ω be the graph constructed from the disjoint union of Γ,∆X∗ and

∆Y ∗ , by identifying Γ
′X∗ with its image in ∆X∗ , and Γ

′Y ∗ with its image in
∆Y ∗ . (Here we use ”grafting” again.) As ∆X∗ and ∆Y ∗ are finite graphs, so
is Ω. Lemma 2.18 states that the inclusion of Γ into Ω is an embedding. By
construction, the monochromatic components of Ω containing u are ∆X∗ and
∆Y ∗ , and the remaining monochromatic components of Ω are isomorphic to
the corresponding monochromatic components of Γ; hence Ω has property 6
of Lemma 3.5. As the X∗1 component of u in ∆X∗ and the Y ∗1 component of
u in ∆Y ∗ are covers of G0, the same is true in Ω; hence both monochromatic
components of Ω which contain u are G0-complete at u. As ∆X∗ and ∆Y ∗ are
monochromatic, Γ and Ω have the same set of bichromatic vertices.

Ω has property 3 of Lemma 3.1. Indeed, consider a monochromatic path p
in Ω with Lab(p) ∈ G0 joining bichromatic vertices v and w. If p belongs to Γ,
the result follows because Γ has property 3 of Lemma 3.1. So we may assume,
without loss of generality, that p belongs to ∆X∗ . The definition of X∗1 implies
that v and w belong to the same X∗1 -component in ∆̃X∗ . Then property d of
Definition 4.1 implies that v and w belong to the same X∗1 -component in Γ̃X

∗
,

and property 5′ of ΓX
∗

implies that v and w belong to the same X∗1 -component
in ΓX

1
. But then property 3 of Γ implies that Γ contains paths p′ and q′ labeled

with X∗ and Y ∗, respectively, with Lab(p′) = Lab(q′) ∈ G0. As Γ is embedded
in Ω, the paths p′ and q′ belong to Ω, Hence Ω has property 3 of Lemma 3.1.

Any monochromatic component Ωi of Ω has property 5′ of Corollary 3.7
in Ω̃i. Indeed, without loss of generality, it is enough to show that ∆X∗ has
property 5′ in ∆̃X∗ . Let v and w be a pair of vertices in ∆X∗ which belong to
the same X∗1 -component in ∆̃X∗ . Then property d of Definition 4.2 implies that
they belong to the same X∗1 -component in Γ̃X

∗
, and property 5′ of ΓX

∗
implies
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that they belong to the same X∗1 -component in ΓX
∗
. As ΓX

∗
is embedded in

∆X∗ , it follows that ∆X∗ has property 5′.
Any monochromatic component Ωi of Ω has property 4′ of Corollary 3.7

in Ω̃i. Indeed, without loss of generality, it is enough to show that ∆X∗ has
property 4′ in ∆̃X∗ . Let ∆X∗1 be the X∗1 -component of u in ∆X∗ , and let w be
a vertex in ∆X∗ . Consider two cases.

i) If w belongs to ∆X∗1 , then as ∆X∗1 is a cover of G0, it is G0-complete at
w. So for any g ∈ Lab(∆̃X∗ , w) ∩G0 there exists a path lg in ∆X∗1 which
begins at w such that Lab(lg) = g. But as ∆̃X∗ is a cover of G, the path
lg should be a loop; hence property 4′ holds at w.

ii) If w does not belong to ∆X∗1 , then property a of Definition 4.2 implies
that the X∗1 -components of w in ∆X∗ and in Γ

′X∗ coincide. Property c
of Definition 4.2 states that Lab(∆̃X∗ , w) ∩G0 = Lab(Γ̃X

∗
, w) ∩G0. But

then, as Γ
′X∗ has property 4′ at w, so does ∆X∗ .

Any monochromatic component Ωi of Ω has property 7′ of Corollary 3.7
in Ω̃i. Indeed, without loss of generality, it is enough to show that ∆X∗ has
property 7′. So let w be a vertex in ∆X∗ such that Lab(∆̃X∗ , w) ∩ G0 has
finite index in G0. If w belongs to ∆X∗1 , then as ∆X∗1 is a cover of G0, it is
X∗1 -saturated at w.

If w does not belong to ∆X∗1 , then property c of Definition 4.2 implies
that Lab(Γ̃X

∗
, w) ∩G0 has finite index in G0. But then, as Γ

′X∗ has property
7′, it is X∗1 -saturated at w, so is ∆X∗ .

Ω has property 2 of Lemma 3.1. Indeed, consider a bichromatic vertex
v in Ω. If v does not belong to either ∆X∗ or ∆Y ∗ , then Ω has property 2
of Lemma 3.1 at v, because all the monochromatic components of Γ and Ω,
except for ∆X∗ and ∆Y ∗ , coincide, and Γ has property 2 at any bichromatic
vertex by assumption. Now assume, without loss of generality, that v belongs
to ∆X∗ . Property b of Definition 4.2 implies that Ω has property 2 of Lemma
3.1 at u.

Consider two cases.

i) If v belongs to ∆X∗1 , then there exists a path labeled with X∗1 joining
v and u in ∆X∗ . As Ω has property 3 of Lemma 3.1, it follows that
Ω contains paths p′ and q′ labeled with X∗ and Y ∗, respectively, with
Lab(p′) = Lab(q′) ∈ G0, which join u to v. But then conjugation by
Lab(p′) and by Lab(q′) shows that Ω has property 2 at v, because it has
property 2 at u.

ii) If v does not belong to ∆X∗1 then, as was shown above, v does not belong
to ∆Y ∗1 . Then property a of Definition 4.2 implies that the X∗1 -components
of w in ∆X∗ and in Γ

′X∗ coincide, and the Y ∗1 -components of w in ∆Y ∗
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and in Γ
′Y ∗ coincide. As

(Lab(ΓX
∗
1 , v) ∩G0) < (Lab(Γ

′X∗1 , v) ∩G0) < (Lab(Γ
′X∗ , v) ∩G0)

< (Lab(Γ̃X
∗
, v) ∩G0),

property 4′ of ΓX
∗

implies that

Lab(Γ
′X∗1 , v) ∩G0 = Lab(ΓX

∗
, v) ∩G0.

Similarly, property 4′ of ∆X∗ implies that

Lab(∆X∗1 , v) ∩G0 = Lab(∆X∗ , v) ∩G0.

Hence Lab(ΓX
∗
, v)∩G0 = Lab(∆X∗ , v)∩G0. The corresponding equality

holds for the Y ∗-components; hence Ω has property 2 of Lemma 3.1 at v,
because Γ has it.

Lemma 4.3 provides the inductive step in the proof of our first group-
theoretical result.

Theorem 4.4. Let S be a finitely generated subgroup of a double D of
a LERF group G along a finitely generated subgroup G0, such that the inter-
section of S with any conjugate of G0 is finitely generated. If G0 is strongly
separable in G, then S is closed in PT(D). Hence if G0 is strongly separable
in G and if G0 has fgip in D, then D is LERF.

Proof. Consider an element d ∈ D such that d /∈ S. Remark 3.2 shows
that there exists a finite connected subgraph Γ′′ of Cayley(D,S) representing
S and d, such that all the vertices of Γ′′ are bichromatic. According to Lemma
3.3 and Lemma 3.6, Γ′′ is contained in a finite subgraph Γ2 of Cayley(D,S)
which has properties 4 and 5 of Lemma 3.3, and has property 7 of Lemma
3.5 at any vertex v, where Lab(Cayley(D,S), v) ∩ G0 is of finite index in G0.
Then each monochromatic component of Γ2 has properties 4′, 5′ and 7′ of
Corollary 3.7, and Γ2 has properties 2 and 3 of Lemma 3.1; hence Γ2 satisfies
all the assumptions of Lemma 4.3. Let U = {u3, · · · , un} be the set of all
bichromatic vertices of Γ2, where Γ2 does not have property 7 of Lemma 3.5.
Applying Lemma 4.3, we construct a sequence of finite graphs Γ2,Γ3, · · · ,Γn,
such that each Γi is embedded in Γi+1, each Γi has all the properties of Lemma
4.3, and each monochromatic component of Γi is G0-complete at uj ∈ U for
3 ≤ j ≤ i. It follows that Γn has properties 2 and 3 of Lemma 3.1, property 6 of
Lemma 3.5, and each monochromatic component of Γn is G0-complete at any
bichromatic vertex of Γn; hence Γn has property 7 of Lemma 3.5. Therefore
Lemma 3.5 and Lemma 3.1 imply that Γ′′ can be embedded in a precover of
D with finitely many vertices, and Theorem 4.4 follows from Corollary 2.14.
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5. Negatively curved groups

A geodesic in a Cayley graph is a shortest path joining two vertices. A
group G is δ-negatively curved if any side of any geodesic triangle in Cayley(G)
belongs to the δ-neighborhood of the union of the two other sides (see [Gr] and
[C-D-P]). We consider only finitely generated negatively curved groups.

Let λ ≤ 1 and ε > 0. A path p in the Cayley graph is a (λ, ε)-quasigeodesic
if for any subpath p′ of p and for any geodesic γ with the same endpoints as
p′, |γ| > λ|p′| − ε. One of the most important properties of quasigeodesics
in negatively curved groups is that for any δ-negatively curved group G and
for any pair of numbers (λ, ε), as above, there exists a positive constant ρ
which depends only on (λ, ε) and on δ such that any (λ, ε)-quasigeodesic p

in Cayley(G) and any geodesic γ with the same endpoints as p belong to the
ρ-neighborhoods of each other (cf. [C-D-P, p. 24].

We use the following property of malnormal quasiconvex subgroups of
negatively curved groups proven in [Gi 3]. The original proof of this result for
the special case when G is a free group is due to E. Rips ([G-R 2]).

Lemma 5.1 (the squooshed 4-gon lemma). Let G0 be a malnormal qua-
siconvex subgroup of a finitely generated group G. Let γ1tγ2 be a path in
Cayley(G) such that γ1 and γ2 are geodesics in Cayley(G), Lab(γ1) ∈ G0,
Lab(γ2) ∈ G0 and Lab(t) /∈ G0. Then for any L ≥ 0, there exists a posi-
tive constant M(L) which depends only on L, on G and on G0 such that if
γ1 ⊂ NL(γ2), then |γ1| < M(L).

We need the following definitions.

Definition 5.2. Let A = G ∗
G0=H0

H be as in Definition 2.9. A word

a ≡ a1a2 · · · an ∈ A is in normal form if:

1) ai lies in one factor of A,

2) ai and ai+1 are in different factors of A,

3) if n > 1, then ai /∈ G0.

Any a ∈ A has a representative in normal form. If a ≡ a1a2 · · · an is in
normal form and n > 1, then the Normal Form Theorem ([L-S], p.187) implies
that a is not equal to 1A.

Definition 5.3. Let p be a path in a graph labeled with X∗ ∪Y ∗, and let
p1p2 · · · pn be its decomposition into maximal monochromatic subpaths. We
say that p is in normal form if Lab(p) ≡ Lab(p1) · · ·Lab(pn) is in normal form.

Now we will prove our second group-theoretical result.



      

DOUBLES OF GROUPS AND HYPERBOLIC LERF 3-MANIFOLDS 797

Theorem 5.4. A finitely generated malnormal subgroup G0 of a locally
quasiconvex LERF negatively curved group G is strongly separable.

Proof. LetG0 be a finitely generated malnormal subgroup of a δ-negatively
curved, locally quasiconvex LERF group G, let S1 and S2 be finitely generated
subgroups of G such that the subgroups S1∩G0 and S2∩G0 are equal and have
infinite index in G0, and let (Γ1, v1) and (Γ2, v2) be finite subgraphs of covers
of G such that Lab(Γ1, v1) = S1 and Lab(Γ2, v2) = S2 As S1 and S2 are finitely
generated subgroups of a locally quasiconvex group G, they are quasiconvex
in G. As the intersection of two quasiconvex subgroups is quasiconvex, the
subgroup S1 ∩G0 = S2 ∩G0, which we denote S0, is quasiconvex in G, hence
it is finitely generated. Choose K > 0 such that all the subgroups G0, S1 and
S2 are K-quasiconvex. As was mentioned in Lemma 4.1, we consider (Γi, vi)
as a subgraph of (Cayley(G,Si), Si · 1), i = 1, 2. Enlarging Γi, if needed, we
can assume that it contains the K-neighborhood of Si · 1 in Cayley(G,Si). As
a locally quasiconvex group has fgip, Γi is contained in a finite subgraph Γ′i
of Cayley(G,Si) which has properties 4′, 5′ and 7′ of Corollary 3.7. We will
construct embeddings of (Γ′i, vi) in (∆i, vi) with properties a–d of Definition
4.2. We will use Lemma 6.1 (the ping-pong lemma) proven in Section 6.

Note that as S1 and S2 are K-quasiconvex, the constant C described in
Lemma 6.1 works for both S1 and S2.

The construction of ∆i

As was mentioned at the beginning of this section, there exists a posi-
tive constant ρ such that any (λ, ε)-quasigeodesic q, as in Lemma 6.1, and
any geodesic with the same endpoints, as q, in Cayley(G) belong to the ρ-
neighborhoods of each other.

Let X1 be a finite generating set for G0. Choose a finite generating set X
for G such that X1 is a subset of X. Using these generating sets, Cayley(G0)
is a subgraph of Cayley(G). For any two vertices g′0 and g′′0 in G0 ⊂ Cayley(G)
consider a geodesic γ in G (i.e. a shortest path in Cayley(G)) joining them.
Let γ0 be a geodesic in G0 (i.e. a shortest path in Cayley(G) labeled with X∗1 )
joining g′0 to g′′0 . As G is locally quasiconvex, G0 is quasiconvex in G; hence
the embedding of Cayley(G0) in Cayley(G) is a quasi-isometry, and so there
exist constants λ0 ≤ 1 and ε0 > 0 such that any geodesic γ0 in G0, as above,
is a (λ0, ε0)-quasigeodesic in G. Thus for any γ, as above, |γ| > λ0|γ0| − ε0.

Let βi be the X∗1 -component of Si · 1 in Γ′i. As the X∗1 -component of Si · 1
in Cayley(G,Si) is isomorphic to (Cayley(G0, S0), S0 · 1), we can consider β1

and β2 as subgraphs of Cayley(G0, S0). Let Bn be the n-neighborhood of S0 ·1
in Cayley(G0, S0). There exists a constant N0 > 0 such that for any n > N0,
β1 and β2 are contained in Bn, and Lab(Bn, S0 · 1) = S0.



      

798 RITA GITIK

Choose a constant d > 0 such that diam(Γ′i) < d, i = 1, 2. Let λ0, ε0

and ρ be the constants, defined above, let L = 2δ + ρ + d, let M(L) be as in
Lemma 5.1, and let C be as in Lemma 6.1. Choose a constant N > N0 such
that λ0 ·N > C+ ε0, λ0 ·N > 2(ρ+d) + ε0, and such that λ0 ·N > M(L) + ε0.

As G0 is LERF, and as S0 is finitely generated, there exists an embedding
of (BN , S0 ·1) in a finite cover (αN , v) of G0. Let (∆i, vi), i = 1, 2 be the graph
constructed from the disjoint union of (αN , v) and Γ′i, with the two copies of
βi identified. (Here we use ”grafting” again.) Then, by construction, ∆i is a
finite graph, and the X∗1 -component of vi in ∆i is αN , which is a cover of G0.
As αN and Γ′i are isomorphically embedded in ∆i, we identify αN and Γ′i with
their images in ∆i.

Denote GN = Lab(αN , v). As G0 ∩ Si = S0 < GN < G0, it follows that
GN ∩ S1 = GN ∩ S2 = S0. Also, by construction,

Lab(∆i, vi) = 〈Lab(Γ′i, vi),Lab(αN , v)〉 = 〈Si, GN 〉, i = 1, 2.

Claim 1. Let C be a constant described in Lemma 6.1. Then all the
elements in GN which are shorter than either C or 2(ρ+ d), or M(L) (in G)
belong to S0.

Proof. Consider an element g ∈ GN such that g is shorter than C or
2(ρ + d), or M(L) (in G). Let γ0 be a geodesic in αN which begins at v
labeled with g. As Lab(αN , v) = GN , it follows that γ0 ends at v. Let γ̃0 be
a lift of γ0 in Cayley(G0). As γ̃0 is a (λ0, ε0)-quasigeodesic in Cayley(G), and
as the projection map preserves the length of any path, it follows that either
C > |g| > λ0|γ̃0|− ε0 = λ0|γ0|− ε0 or, similarly, 2(ρ+d) > |g| > λ0|γ0|− ε0 or,
similarly, M(L) > |g| > λ0|γ0| − ε0. In the first case |γ0| < C+ε0

λ0
< N , in the

second case |γ0| < 2(ρ+d)+ε0
λ0

< N and in the third case |γ0| < M(L)+ε0
λ0

< N .
Hence in all cases γ0 ⊂ BN , so that Lab(γ0) ∈ S0 = Lab(BN , v), proving the
claim.

In particular, GN satisfies the assumptions of Lemma 6.1, and so Lemma
6.1 implies that Lab(∆i, vi) = 〈GN , Si〉 = GN ∗S0 Si.

We will prove that ∆1 and ∆2 have all the properties of Definition 4.2. As
these properties can be verified for ∆1 and ∆2 separately, we will prove that
∆1 has them and, to avoid awkward notation, we will write (∆, v) for (∆1, v1),
and we will drop the subscript i = 1, 2 everywhere else.

Let u and w be vertices in ∆, and let t be a path in ∆ joining u to w.
There exists a path in ∆ with the same endpoints and the same label as t
of the form: r1pr2, where r1 and r2 are paths in ∆ joining u to v, and v to
w respectively, to be specified later, and the path p is a loop beginning at v.
Hence Lab(p) ∈ Lab(∆, v).
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Lemma 6.1 implies that there exists a (λ, ε)-quasigeodesic q = q1 · · · qn in
normal form with Lab(p) = Lab(q), such that all qi are geodesics in G.

As Lab(r1)Lab(q)Lab(r2)Lab(t̄) = 1, it follows that there exists a closed
path R1QR2T̄ in Cayley(G) which begins at 1, such that Lab(ri) ≡ Lab(Ri) for
i = 1, 2, Lab(t) ≡ Lab(T ) and Lab(q) ≡ Lab(Q), where “≡” means the equality
of words. letQ = Q1 · · ·Qn be the decomposition ofQ with Lab(Qi) ≡ Lab(qi).
Note that if Lab(Qi) ≡ Lab(qi) ∈ S, then there exists a loop l in Cayley(G,S)
which begins (and ends) at S · 1 with Lab(l) ≡ Lab(qi). As qi is a geodesic in
G, and as S is K-quasiconvex in G, the path l belongs to the K-neighborhood
of S · 1 in Cayley(G,S); thus l belongs to Γ′. If Lab(Qi) ≡ Lab(qi) ∈ GN ,
then as αN is a cover of G0, αN contains a loop lα which begins at v with
Lab(lα) = Lab(qi). (As αN is labeled with X∗1 , and qi might not be labeled
with X∗1 , αN does not have to contain a loop l with Lab(l) ≡ Lab(qi).) Let
γ be a geodesic in G with the same endpoints as Q. Then Q and γ belong
to the ρ-neighborhood of each other, where ρ is defined after the statement of
Lemma 6.1. Hence all Qi belong to the ρ-neighborhood of Γ.

Claim 2. ∆ has property a of Definition 4.2.

Proof. It was mentioned already that ∆ is a finite graph, and that the
X∗1 -component of v in ∆ is αN , which is a cover of G0. Also, by construction,
if an edge e of ∆ does not belong to Γ′, then e belongs to the X∗1 -component
of v in ∆. It remains to prove that ∆ can be embedded in a relative Cayley
graph of G. As ∆ is well-labeled, Lemma 2.16 implies that it is sufficient to
show that if vertices u and w in ∆ are joined by a path t with Lab(t) = 1, then
u = w. Note that if Lab(t) = 1, then Lab(p) = Lab(q) = Lab(r−1

1 r−1
2 ), where

p, q and ri are as defined above. Also the path T is a closed loop beginning at
1 in Cayley(G), so that R1QR2 and R1γR2 are closed paths, beginning at 1 in
Cayley(G).

Consider three cases.

1) Both u and w do not belong to the X∗1 -component of v, so they belong to
Γ′. In this case, let r1 and r2 be the shortest paths in Γ′ joining u to v

and v to w respectively. As Γ′ has property 5′, the labels of r1 and r2 are
not in G0. As diam(Γ′) < d, it follows that r1 and r2 are shorter than d,
and so are R1 and R2. Hence |γ| ≤ |R1| + |R2| < 2d. Let Q = Q1 · · ·Qn
be the decomposition of Q, as above. As was mentioned, all Qi belong to
the ρ-neighborhood of γ. As each Qi is a geodesic in Cayley(G), it follows
that |Qi| < 2ρ+ |γ| < 2ρ+ 2d. If there exists Qi with Lab(Qi) ∈ GN then
Claim 1 implies that Lab(Qi) ∈ S0. As Lab(Q) ≡ Lab(Q1) · · ·Lab(Qn)
is in normal form, it follows that n = 1 and Lab(Q) ≡ Lab(Q1) ∈ S.
Then, as was mentioned above, Γ′ contains a loop l which begins at v
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with Lab(l) ≡ Lab(Q1); hence the path r1lr2 lies in Γ′. As r1lr2 is labeled
with 1 and joins u to w, and as Γ′ is a subgraph of a relative Cayley graph,
it follows that u = w.

2) If u does not belong to the X∗1 -component of v, but w does, let r1 be
as in case 1, and let r2 be a geodesic in G0 joining v to w; hence
Lab(r2) ∈ G0. As Γ′ has property 5′, any path in Γ′ joining u to v

is labeled by an element not in G0; in particular, Lab(r1) /∈ G0. Let
R′2 be a geodesic in Cayley(G) with the same endpoints as R2. As
|r1| = |R1| < d, it follows that γ belongs to the (δ + d)-neighborhood
of R′2; hence Q belongs to the (δ + ρ + d)-neighborhood of R′2. Let
Q = Q1 · · ·Qn be the decomposition of Q, as above. If Q has a sub-
path Qi with i < n such that Lab(Qi) ∈ GN as (δ + ρ + d) < L,
Lemma 5.1 implies that |Qi| < M(L). But then, as in the proof of case
1, Lab(Qi) ∈ S0, hence, as Lab(Q) ≡ Lab(Q1) · · ·Lab(Qn) is in normal
form, it follows that either Q = Q1 or Q = Q1Q2 and Lab(Q2) ∈ GN . If
Q = Q1Q2 and Lab(Q2) ≡ Lab(q2) ∈ GN , then Lab(q1) ≡ Lab(Q1) ∈ S,
Lab(r1)Lab(q1)Lab(q2)Lab(r2) = 1 and Lab(r1)Lab(q1) ∈ G0. As was
mentioned above, Γ′ contains a loop l which begins at v with Lab(l) ≡
Lab(q1), so that r1l is a path in Γ′, which joins u to v, and is labeled
by an element in G0, contradicting the choice of u. If Q = Q1 and
Lab(Q1) ∈ S, then Lab(r1)Lab(q1)Lab(r2) = 1 and Lab(r2) ∈ G0; hence
Lab(r1)Lab(q1) ∈ G0. Then, as above, Γ′ contains a path which joins u
to v and is labeled by an element in G0, contradicting the choice of u. If
Q = Q1 and Lab(Q) ∈ GN , then Lab(r1) ∈ G0, contradicting the choice
of r1. Hence case 2 cannot occur.

3) Both u and w belong to the X∗1 -component of v; hence u and w are in
αN . Let r1 and r2 be geodesics in αN joining u to v and v to w respec-
tively. Then Lab(r1) ≡ Lab(R1) ∈ G0, and Lab(r2) ≡ Lab(R2) ∈ G0.
Now Lab(γ) ∈ G0. Let Q = Q1 · · ·Qn be the decomposition of Q, as
above. If Q has a subpath Qi with 1 < i < n such that Lab(Qi) ∈ GN
then, as Qi belongs to the ρ-neighborhood of γ, and ρ < L, Lemma
5.1 implies that |Qi| < M(L). But then Claim 1 implies that Lab(Qi)
∈ S0; hence, as Lab(Q) ≡ Lab(Q1) · · ·Lab(Qn) is in normal form, it fol-
lows that either Q = Q1 or Q = Q1Q2. If Q = Q1Q2, assume, with-
out loss of generality, that Lab(Q2) ∈ GN , and Lab(Q1) ∈ S. Then
Lab(R1)Lab(Q1)Lab(Q2)Lab(R2) = 1. As Lab(Q2)Lab(R2)Lab(R1)
∈ G0, it follows that Lab(Q1) ∈ G0. Then Lab(Q1) ∈ G0 ∩ S = S0,
contradicting the definition of the normal form.

If Q = Q1 and Lab(Q1) ∈ S, then as Lab(R2)Lab(R1) ∈ G0, it
follows that Lab(Q1) ∈ G0 ∩ S = S0 < GN . Hence, Q should have the
form Q = Q1 with Lab(Q1) ∈ GN . Then, as was mentioned above, αN
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contains a loop lα which begins at v with Lab(lα) = Lab(Q1), and so
r1lαr2 is a path in αN . As r1lαr2 is labeled with 1 and joins u to w, and
as αN is a cover, it follows that u = w.

Claim 3. Lab(∆, v) ∩ G0 = GN , hence Lab(∆1, v1) ∩ G0 = Lab(∆2, v2)
∩G0, therefore ∆1 and ∆2 have property b of Definition 4.2.

Proof. Claim 2 demonstrated that ∆ can be considered as a subgraph of
Cayley(G,GN ∗S0 S). As Lab(∆, v) = GN ∗S0 S, it follows that Lab(∆, v)∩G0

contains GN . Consider a loop a in ∆ which begins at v with Lab(a) ∈ G0.
As αN is a subgraph of ∆, and αN is G0-complete at v, there exists a path
a′ in αN which begins at v with Lab(a) = Lab(a′). As ∆ is a subgraph of a
relative Cayley graph, it follows that a and a′ should have the same terminal
vertex, namely v. Thus a′ is a loop in αN beginning at v and Lab(a) = Lab(a′)
∈ Lab(αN , v) = GN . Therefore Lab(∆, v) ∩ G0 is contained in GN , proving
Claim 3.

Claim 4. ∆ has property d of Definition 4.2.

Proof. Let u and w be vertices in the image of Γ′ in Cayley(G,GN ∗S0 S),
and let t be a path in Cayley(G,GN ∗S0 S) joining u and w, such that
Lab(t) ∈ G0. Let T ′ be a geodesic in Cayley(G) with the same endpoints
as T , where T is as above. Consider three cases listed in the proof of Claim 2.

1) In this case |ri| = |Ri| < d; hence Q belongs to the (2δ + ρ + d)-
neighborhood of T ′. Let Q = Q1 · · ·Qn be the decomposition of Q, as
above. If there exists Qi with Lab(Qi) ∈ GN then, as (2δ + ρ + d) < L,
Lemma 5.1 implies that |Qi| < M(L). Then, as in the proof of Claim 2, it
follows that Q = Q1, and Lab(Q1) ∈ S. Then, as was mentioned above, Γ′

contains a loop l which begins at v with Lab(l) ≡ Lab(Q1); hence the path
r1lr2 lies in Γ′. As r1lr2 joins u and w and as Lab(r1lr2) = Lab(t) ∈ G0,
property d holds.

2) In this case we can assume that w = v and r2 is a trivial path. As
|R1| < d, it follows that Q belongs to the (ρ + δ + d)-neighborhood of
T ′. Let Q = Q1 · · ·Qn be the decomposition of Q, as above. If there
exists i < n such that Lab(Qi) ∈ G0, then as in the proof of Claim 1,
Lab(Qi) ∈ S0. Hence either Q = Q1 or Q = Q1Q2 and Lab(Q2) ∈ GN .
But then, as in the proof of Claim 2, Γ′ should contain a path labeled
with G0 which joins u to v, contradicting the choice of u. Hence case 2
cannot occur.

3) Let r1 and r2 be as in case 3 of Claim 2. Then the path r1r2 joins u to w,
and its label is in G0, and therefore property d holds.

Claim 5. ∆ has property c of Definition 4.2.
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Proof. Let u be a vertex in the image of Γ′ in ∆ which does not belong
to the X∗1 -component of S · 1 in Cayley(G,S). Let r1 be a shortest path in Γ′

joining u to v. Let t be a loop in ∆ beginning at u with Lab(t) ∈ G0. Let
r2 = r̄1, let R1, R2, Q and T be as in the proof of case 1 of Claim 4 with u = w.
Then, as in the proof of Claim 4, it follows that Q = Q1, and Lab(Q1) ∈ S;
hence Γ′ contains a loop l which begins at v with Lab(l) ≡ Lab(Q1); so the
path r1lr2 = r1lr̄1 lies in Γ′. Then r1lr̄1 is a loop in Γ′ which begins at u
with Lab(r1lr̄1) = Lab(t) ∈ G0. As Γ′ has property 4′, it follows that ∆ has
property c of Definition 4.2.

6. The Ping-Pong Lemma

Let λ ≤ 1, µ > 0 and ε > 0. A path p is a local (λ, ε, µ)-quasigeodesic if
for any subpath p′ of p which is shorter than µ and for any geodesic γ with
the same endpoints as p′, |γ| > λ|p′| − ε (cf. [C-D-P, p. 24].

Theorem 1.4 (p. 25) of [C-D-P] (see also [Gr, p. 187]) states that for any
λ′ ≤ 1 and for any ε′ > 0 there exist constants (µ, λ, ε) which depend only
on (λ′, ε′) and δ, such that any local (λ′, ε′, µ)-quasigeodesic in G is a global
(λ, ε)-quasigeodesic in G.

Lemma 6.1. Let S and G0 be K-quasiconvex subgroups of a δ-negatively
curved group G, and let S0 = S ∩ G0. If G0 is malnormal in G, then there
exists a constant C > 0 which depends only on G, δ and K, such that for any
subgroup GN of G0 with G0 ∩ S = GN ∩ S = S0, if all the elements in GN
which are shorter than C (in G) belong to S0, then the following hold :

1) 〈GN , S〉 = GN ∗S0 S, where 〈GN , S〉 denotes the minimal subgroup of G,
containing GN and S.

2) There exist constants λ ≤ 1 and ε > 0 such that for any element in 〈GN , S〉
there exists a (λ, ε)-quasigeodesic representative (in G) q = q1q2 · · · qm in
normal form, where all qj are geodesics in G.

Proof. Let GN be a subgroup of G0 such that GN ∩ S = G0 ∩ S = S0.
Let l be an element of 〈GN , S〉 such that l /∈ S0. Then l can be written as a
product l = g1s1 · · · sm−1gm, where gi ∈ GN , si ∈ S, gi and si do not belong
to S0, gi and si are geodesics in G, g1 is a shortest representative of the coset
g1S0, gm is a shortest representative of the coset S0gm, and for 1 < i < m, gi
is a shortest representative of the double coset S0giS0. (The elements g1 or gm
might be trivial.) Let p be the path in Cayley(G) beginning at 1 which has
the form p = p1q1 · · · qm−1pm, where Lab(pi) ≡ gi and Lab(qi) ≡ si.

Let A be the number of words in G which are shorter than 2K + δ and
let M(2δ) be as in Lemma 5.1. Let λ′ = 1/6 and ε′ = 4K ·A+ δ +M(2δ).
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As mentioned above, there exist constants (µ, λ, ε) which depend only on
λ′, ε′ and on δ such that any local (λ′, ε′, µ)-quasigeodesic in G is a global
(λ, ε)-quasigeodesic in G. (In this case (µ, λ, ε) depend only on the constants
1/6,K,A,M(2δ) and δ.)

Let C = max(µ, ελ). We claim that if all elements in GN which are shorter
than C belong to S0, then any path p, as above, is a (λ, ε)-quasigeodesic in G.
Indeed, it is enough to show that p is a local (1/6, (4K · A + δ + M(2δ)), µ)-
quasigeodesic in G.

As gi /∈ S0, it follows that |pi| > C. As µ < C, any subpath t of p with
|t| < µ has a (unique) decomposition t1t2t3, where t1 and t3 are subpaths
of some pi and pi+1, and t2 is a subpath of qi (some of ti might be empty).
Let t4 be a geodesic in G connecting the endpoints of t. By definition, p
is a local (1/6, (4K · A + δ + M(2δ)), µ)-quasigeodesic in G if and only if
|t4| ≥ |t|6 − (M(2δ) + δ + 4K ·A).

If 2 out of the 3 subpaths ti are empty, then the remaining one, say t2, is
a geodesic; therefore |t| = |t2| = |t4|, and t4 satisfies the above inequality. If at
least 2 out of the 3 subpaths ti are nonempty, then t2 is nonempty. Considering
l−1 instead of l, if needed, we can assume that t1 is nonempty.

If |t2| > 2|t|
3 , then |t1| + |t3| ≤ |t|

3 , so that |t4| ≥ |t2| − (|t1| + |t3|) ≥
2|t|
3 −

|t|
3 = |t|

3 > |t|
6 − (M(2δ) + δ + 4K ·A).

If |t2| ≤ 2|t|
3 , assume, without loss of generality, that |t1| ≥ |t3|; then

|t1| > |t|
6 . As t1t2t3t4 is a geodesic 4-gon in a δ-negatively curved group G,

there exists a decomposition t1 = t′2t
′
3t
′
4 such that t′2 belongs to the

δ-neighborhood of t2, t′3 belongs to the 2δ-neighborhood of t3 and t′4 belongs
to the δ-neighborhood of t4. According to Lemma 5.1, |t′3| < M(2δ) and
according to Lemma 6.2 (below), |t′2| ≤ 4K · A. But then |t4| + δ ≥ |t′4| =
|t1| − |t′2| − |t′3| ≥ |t1| − 4K · A − M(2δ) ≥ |t|

6 − 4K · A − M(2δ). Hence
|t4| ≥ |t|6 − (M(2δ) + δ + 4K ·A), so the path p is a (λ, ε)-quasigeodesic in G.

As C ≥ ε
λ , it follows that if a (λ, ε)-quasigeodesic p in Cayley(G) with

ι(p) = 1 is longer than C, then |1,Lab(p)| ≥ λ|p| − ε > λC − ε > 0. Hence
Lab(p) is not equal to 1. As any element l ∈ 〈GN , S〉 which is not in S0 has
a representative Lab(p) in G, as above, with |p| > C, it follows that l is not
equal to 1; hence 〈GN , S〉 = GN ∗S0 S.

Lemma 6.2. When the notation of the proof of Lemma 6.1 is used, |t′2| ≤
A · 4K.

Proof. To simplify notation, we drop the subscript i on the paths pi and
qi and on their labels, so t1 is a subpath of p, t2 is a subpath of q, Lab(p) = g

and Lab(q) = s. As GN < G0, we consider g as an element of G0. Without
loss of generality, assume that q begins at 1 (so it ends at s); then p begins
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at g−1 and ends at 1. As G0 and S are K-quasiconvex in G, any vertex vi
on p is in the K-neighborhood of G0, and any vertex wi on q is in the K-
neighborhood of S. Hence we can find vertices v1 and v2 in t′2, w1 and w2 in
t2, g′ and g′′ in G0, and s′ and s′′ in S such that |vi, wi| < δ, |v1, (g′)(−1)| <
K, |v2, (g′′)(−1)| < K, |w1, s

′| < K and |w2, s
′′| < K. We choose v1 between 1

and v2, and we choose w1 between 1 and w2. Let γ′ be a geodesic in Cayley(G)
joining (g′)−1 to s′, and let γ′′ be a geodesic in Cayley(G) joining (g′′)−1 to s′′.
Then Lab(γ′) = g′s′,Lab(γ′′) = g′′s′′, |γ′| < 2K + δ and |γ′′| < 2K + δ.

Assume that |t′2| > A · 4K. Then we can find vertices, as above, which,
in addition, satisfy: |v2, v1| > 4K and Lab(γ′) = Lab(γ′′); hence g′s′ = g′′s′′.
It follows that (g′′)(−1)g′ = s′′(s′)(−1), so both products are in S0. As g is a
shortest element in the double coset S0gS0, it follows that |g| ≤ |g(g′′)(−1)g′|.
Let r be a geodesic joining (g′′)(−1) to v2, let b′ be a subpath of p joining v2 to
1 and let b′′ be a subpath of p joining g−1 to v2. Then |g| = |p| = |b′| + |b′′|,
and |g(g′′)(−1)g′| ≤ |b′′| + |r| + |g′|; hence |b′| + |b′′| ≤ |b′′| + |r| + |g′|, so that
|b′| + |r| ≤ 2|r| + |g′|. As |g′′| ≤ |b′| + |r|, and as |r| ≤ K, it follows that
|g′′| ≤ 2K + |g′|.

As |v2, v1| > 4K, the triangle inequality implies that |g′′| = |(g′′)−1| ≥
|b′| − |r| = |1, v1|+ |v1, v2| − |r| ≥ |1, v1|+ 4K −K = |1, v1|+ 3K.

Let a be a geodesic joining (g′)−1 to v1. As |a| < K, the triangle inequality
implies that |g′| = |(g′)−1| ≤ |1, v1|+ |a| < |1, v1|+K. Hence, |g′′| > |g′|+ 2K,
a contradiction. Therefore |t′2| ≤ A · 4K.
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