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Continuous families of isospectral metrics
on simply connected manifolds

By Dorothee Schueth*

Abstract

We construct continuous families of Riemannian metrics on certain simply
connected manifolds with the property that the resulting Riemannian mani-
folds are pairwise isospectral for the Laplace operator acting on functions.
These are the first examples of simply connected Riemannian manifolds with-
out boundary which are isospectral, but not isometric. For example, we con-
struct continuous isospectral families of metrics on the product of spheres
S4 × S3 × S3. The metrics considered are not locally homogeneous. For a big
class of such families, the set of critical values of the scalar curvature function
changes during the deformation. Moreover, the manifolds are in general not
isospectral for the Laplace operator acting on 1-forms.

Introduction

Spectral geometry deals with the mutual influences between the geometry
of a Riemannian manifold and the spectrum of the associated Laplace oper-
ator acting on smooth functions. Until 1964 it was not known whether the
spectrum determines the geometry completely. Then J. Milnor constructed
the first counterexample, namely, a pair of isospectral, nonisometric flat tori
in dimension sixteen. Numerous other examples of isospectral manifolds fol-
lowed in the 1980’s and 1990’s. See, e.g., [Vi], [Ik], [GW2], [Su], [BT], [Gt1]
for examples of discrete families of isospectral manifolds, or [GW1], [DG1,2],
[BG], [Sch], [Gt2] for isospectral deformations, that is, continuous families of
isospectral manifolds.

In all the examples cited above, the isospectral manifolds arise as different
quotients (by discrete groups of isometries) of a common Riemannian covering
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manifold. In particular, such quotients can neither differ in their local geometry
nor be simply connected.

In 1993, C. Gordon [Go1], [Go2] constructed the first pairs of isospectral
closed Riemannian manifolds which are not locally isometric. S. Szabó [Sz]
had constructed the first such examples in the case of manifolds with boundary
even earlier, but did not publish them at that time. In 1996, even continuous
families of isospectral metrics with different local geometries were obtained
by C. Gordon and E. Wilson [GW3] in the case of manifolds with bound-
ary. More precisely, in their examples the underlying manifolds are products
of a ball with a torus. Recently it was discovered [GGSWW] that also the
boundaries of these manifolds are isospectral, which led to the first examples
of isospectral deformations with changing local geometry in the case of closed
manifolds, namely, on products of a sphere with a torus. Szabó [Sz] indepen-
dently gave finite families of isospectral manifolds which represent special cases
of the examples in [GW3] and [GGSWW].

However, there were still no examples known, not even pairs, of simply
connected, closed isospectral manifolds. Simply connected examples existed
until now only in the case of manifolds with (nonsmooth) boundary, most
notably the famous pairs of isospectral planar domains by Gordon, Webb, and
Wolpert [GWW].

In the present paper, we construct the first examples of simply connected,
closed Riemannian manifolds which are isospectral, but not isometric; we even
give continuous families of such manifolds. We will show:

Main Theorem. Let Sn be a sphere of dimension n ≥ 4, and let S be
a compact, simply connected Lie group whose maximal torus is of dimension
at least two (for example, S := SU(2) × SU(2) ∼= S3 × S3). Then there exist
continuous isospectral families of Riemannian metrics on Sn×S which are not
locally isometric; more precisely, the set of critical values of the corresponding
scalar curvature functions changes during the deformations.

In particular, we obtain such families of metrics on Sn×S3×S3 for every
n ≥ 4. These isospectral deformations can take place arbitrarily close to the
standard metric on Sn×S3×S3 (although none of our deformations is one of
the standard metric itself).

Our construction is related to, and motivated by, the isospectral examples
in [GGSWW], where the underlying manifolds are products of a sphere with a
torus. The idea is to embed the nonsimply connected factor, that is, the torus,
into a compact, simply connected Lie group and to extend the metrics to the
bigger manifolds in such a way that they remain isospectral.

Concerning the change in geometry during the deformations, it turns out
that in many cases, the isospectral manifolds can be distinguished by the set
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of critical values assumed by the scalar curvature function. Note that this
function is in general nonconstant here since the manifolds are not locally
homogeneous.

Moreover, our isospectral deformations are in general not isospectral for
the Laplace operator acting on 1-forms. More precisely, the manifolds can be
distinguished already by the heat invariants of the Laplacian acting on 1-forms.
This is interesting in several respects: There are only few examples known of
manifolds which are isospectral on functions, but not on 1-forms. The only
known examples are those given in [Ik] (lens spaces), [Go3] (Heisenberg man-
ifolds), and [Gt1], [Gt2] (certain three-step nilmanifolds). Among these, only
Gornet’s examples include continuous families of such manifolds [Gt2]. In all
these examples, the isospectral manifolds arise as different quotients of some
common Riemannian covering. In particular, these isospectral manifolds, even
though they are not isospectral on 1-forms, always share the same heat invari-
ants of the Laplacian acting on 1-forms. The isospectral families constructed
in the present paper are the first ones where this is not the case.

We will construct a large class of continuous isospectral families in which
the manifolds can be distinguished by either of the two criteria mentioned
above (critical values of the scalar curvature, resp. spectrum on 1-forms).

The paper is organized as follows:
In Section one, we introduce the Laplace operator and a general isospec-

trality principle (Proposition 1.2) which was discovered by C. Gordon [Go2]
and is the key of the isospectrality proof in Section two, as it was the case also
for the manifolds constructed in [GW3] and [GGSWW]. We then prepare our
construction of isospectral manifolds by introducing a certain class of metrics gj
on Rn+1×S ⊃ Sn×S, where S is a compact, simply connected Lie group, and
discussing some of their properties. These metrics are related to left invariant
metrics on two-step nilpotent Lie groups diffeomorphic to Rn+1×H, where H is
a closed abelian subgroup of S. Each metric gj is associated with a linear map
j : Rr → so(n+ 1), where r is the dimension of H.

In Section two, we consider the submanifolds Sn×S of Rn+1×S, endowed
with the restricted metrics, and show that under a certain condition on j and j′

which was introduced in [GW3], the Riemannian manifolds (Sn × S, gj) and
(Sn × S, gj′) are isospectral (Theorem 2.2). We finish this section by giving a
class of examples of continuous families of isospectral metrics in the case n = 4.

In Section three, we study the geometry of the isospectral manifolds con-
structed in Section two. We establish a formula for the scalar curvature func-
tion on these manifolds (Lemma 3.3). This allows us to describe the sets of
critical points and critical values of the scalar curvature in terms of eigen-
vectors and eigenvalues of the Ricci tensor of the corresponding nilpotent Lie
group which we mentioned above (Corollary 3.4) and thus to obtain a suffi-
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cient condition for nonisometry of two isospectral manifolds (Sn × S, gj) and
(Sn × S, gj′).

In Section four, we show that for n ≥ 4, any generic linear map
j : R2 → so(n+ 1) is contained in a continuous family j(t) of such maps with
the property that the corresponding manifolds (Sn × S, gj(t)) are isospectral
and pairwise satisfy the nonisometry condition established in Section three.
More precisely, the manifolds have pairwise different sets of critical values of
the scalar curvature. The families j(t) are obtained as the flow lines of a certain
vector field on the space of all linear maps from R2 to so(n+ 1).

Section five is devoted to the spectrum on 1-forms. Using the heat in-
variants for the Laplace operator on 1-forms and on functions, we show that
in each of the special families constructed in Section four, the spectrum on
1-forms changes during the deformation.

The author wishes to thank Carolyn Gordon and Ruth Gornet for inter-
esting discussions. Concerning the 1-form spectrum, she also wishes to ac-
knowledge that Ruth Gornet was the originator of the idea to study the heat
invariants for the form spectra of the manifolds constructed in [GGSWW],
thereby also inspiring Section five of the present paper.

1. Preliminaries

1.1 Definition. Let (M, g) be a compact Riemannian manifold, and let ∆g

be the Laplacian acting on functions by

(∆gf)(p) := −
n∑
i=1

d2

dt2
∣∣
t = 0

f(ci(t)) for p ∈M ,

where the ci are geodesics starting in p such that {ċ1(0), . . . , ċn(0)} is an or-
thonormal basis for TpM . The discrete sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . . →∞
of the eigenvalues of ∆g , counted with the corresponding multiplicities, is
called the spectrum of (M, g); we will denote it by spec(M, g) or spec(∆g). If
H ⊆ L2(M, g) is a subspace of functions which is invariant under ∆g , we will
denote the corresponding spectrum of eigenvalues by spec(H). Two compact
Riemannian manifolds are said to be isospectral if their spectra coincide.

In the following proposition we formulate some version of a principle which
was observed by C. Gordon [Go2] and is the key of the isospectrality proofs
also for the manifolds constructed in [GW3] and [GGSWW].

Let T be a compact abelian Lie group, i.e., a torus, and let L : T×M →M

be a smooth free action of T on a compact Riemannian manifold (M, g) by
isometries. There is a unique Riemannian metric, denoted gT , on the quotient
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manifold T\M such that the canonical projection πT : (M, g) → (T\M, gT )
becomes a Riemannian submersion.

1.2 Proposition. Let (M, g) and (M ′, g′) be two closed Riemannian man-
ifolds, and let L : T ×M →M and L′ : T ×M ′ →M ′ be smooth free actions of
a torus T by isometries. Assume that for every closed subgroup W of T which
is either T itself or a subtorus of codimension 1 in T , the following holds:

(i) The fibers of the projections πW : M →W\M and π′W : M ′ →W\M ′ are
totally geodesic submanifolds of (M, g) and (M ′, g′), respectively.

(ii) The Riemannian manifolds (W\M, gW ) and (W\M ′, g′W ) are isospectral.

Then (M, g) and (M ′, g′) are isospectral.

Proof. Write T = Rr/L, where L is a lattice of full rank in Rr. For every z̄
in T choose z ∈ Rr such that z̄ = z+L. Consider the unitary representation ρ
of T on L2(M, g) defined by ρz̄f = f ◦Lz̄ for all z̄ ∈ T , f ∈ L2(M, g). Since T
is abelian, L2(M, g) decomposes as an orthogonal sum

⊕
µ∈L∗ Hµ , where L∗

is the dual lattice of L, and

Hµ = {f ∈ L2(M, g) | ρz̄f = e2πiµ(z)f for all z̄ ∈ T}.

The spaces Hµ are invariant under ∆ := ∆g because T acts by isometries.
Note that π∗T is a linear bijection from L2(T\M, gT ) to H0 . Since πT is a
Riemannian submersion with totally geodesic fibers by (i), π∗T intertwines the
corresponding Laplacians. Thus spec(H0) = spec(T\M, gT ). Assumption (ii)
for W = T implies, with the obvious analogous notations for (M ′, g′), that
spec(H0) = spec(H′0).

Now let W be a closed subgroup of codimension 1 in T . Denote by W̃ the
corresponding subspace of Rr. Then π∗W is a linear bijection from L2(W\M, gW )
to
⊕

µ∈L∗
µ|W̃=0

Hµ = H0 ⊕
⊕

µ∈L∗
kerµ=W̃

Hµ . From assumptions (i) and (ii) for W

and the fact that spec(H0) = spec(H′0) we conclude, using the same argument
as before, that

spec (
⊕
µ∈L∗

kerµ=W̃

Hµ) = spec (
⊕
µ∈L∗

kerµ=W̃

H′µ).

Since L∗ \ {0} is the disjoint union of the sets {µ ∈ L∗ | kerµ = W̃}, where
W runs through the set of all subtori of codimension 1 in T , we conclude
spec(M, g) = spec(M ′, g′).

1.3 Definitions and Notation. (i) For positive integers m and r let v

:= Rm and z := Rr. Throughout this paper, we will assume that v and z

are equipped with the euclidean standard metric. Moreover, j will always



292 DOROTHEE SCHUETH

denote a linear map from z to so(v). With every such map j we associate
a two-step nilpotent Lie algebra gj = v ⊕ z whose Lie bracket is defined by
〈z, [x, y]〉 = 〈jzx, y〉 for all x, y ∈ v, z ∈ z. Every two-step nilpotent Lie algebra
arises in this way. Let Gj be the simply connected Lie group with Lie algebra
gj . The Lie group exponential map exp : gj → Gj is a diffeomorphsim. We
write the elements of Gj as (x, z) := exp(x + z) with x ∈ v and z ∈ z. With
this notation, multiplication in Gj is given by

(1) (x, z) · (y, w) = (x+ y, z + w + 1
2 [x, y]).

(ii) Let S be a simply connected compact Lie group whose maximal torus
is of dimension not less than r. Denote the Lie algebra of S by s. Let H ⊂ S

be an r-dimensional closed abelian subgroup with Lie algebra h ⊂ s. Let S be
equipped with some fixed biinvariant metric k, and consider the corresponding
scalar product on s. Choose a linear bijection f : z → h which is an isometry
with respect to the induced metric on h and the standard metric on z. Define

E := v× S,
and define actions of Gj on E from the left and of S on E from the right by

(2) L(x,z)(v, s) :=
(
x+ v, exp(f(z + 1

2 [x, v])) · s
)
, Rt(v, s) := (v, st).

Here exp denotes the Lie group exponential map from s to S. Using the
multiplication law (1), one easily verifies that L is indeed a group action. Note
that these actions of Gj and S commute. Let Dj := LGj · RS . Then Dj is a
transitive group of diffeomorphisms of E.

1.4 Lemma. If ϕ ∈ Dj fixes (0, e) ∈ v×S = E, then ϕ∗ (0,e) is of the form
(Id, ψ), where ψ = Adh for some h ∈ H.

Proof. Let ϕ = L(x,z)·Rs . If ϕ fixes (0, e) then x = 0 and exp(f(z)) = s−1.
Thus s ∈ H, and ϕ acts on E by (x, t) 7→ (x, s−1ts). Therefore ϕ∗ (0,e) =
(Id,Ad−1

s ).

1.5 Definition. Define a metric g on T(0,e)E = v ⊕ s by letting v and s

be orthogonal and requiring that the induced metric on v, resp. s, be the
standard metric on v, resp. the scalar product corresponding to the biinvariant
metric k. Let gj be the Riemannian metric on E which is invariant under Dj

and coincides with g on T(0,e)E.

Remark. Since k corresponds to a biinvariant metric on S, inner automor-
phisms of s are orthogonal with respect to k. Thus Lemma 1.4 implies that gj
is well-defined.

1.6 Lemma. For all x ∈ v and s ∈ S, the submanifolds {x} × S and
{x}×Hs are totally geodesic in (E, gj). The same holds for {x}×Ws, where
W is any closed subgroup of H.
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Proof. Consider the involution σ : E → E given by σ(x, s) = (−x, s).
Obviously σ∗ (0,e) is an isometry of the metric g on T(0,e)E. Moreover, σ ◦Rs =
Rs ◦ σ for all s ∈ S, and one easily checks by (2) that σ ◦ L(x,z) = L(−x,z) ◦ σ
for all (x, z) ∈ Gj . These equations imply that σ∗gj is invariant under Dj and
therefore equal to gj . Thus σ is an isometry of (E, gj); hence its fixed point
set {0} × S is totally geodesic. Note that the metric induced on {0} × S by
gj corresponds to the metric k on S under the canonical bijection. Since H
is totally geodesic in S with respect to this metric, the set {0} ×H is totally
geodesic in (E, gj). Moreover, {0} × H is a flat torus. Hence any subtorus
{0} × W corresponding to a closed subgroup W of H is totally geodesic in
{0}×H and thus also in (E, gj). For x ∈ v and s ∈ S, the isometry L(x,0) ◦Rs
carries {0} × S, {0} ×H, and {0} ×W to {x} × S, {x} ×Hs, and {x} ×Ws,
respectively, whence the statement follows.

The following lemma is immediate from (2). Part (i) describes the gj-
orthogonal splitting of the tangent space T(x,s)E at an arbitrary point (x, s) ∈
E into horizontal and vertical parts with respect to the projection E = v× S
→ v.

1.7 Lemma. (i) For every (x, s) ∈ E, the gj-isometry (L(x,0) ◦ Rs)∗ :
T(0,e)E = v ⊕ s → T(x,s)E maps v ∈ v to vj(x,s) := (v, rs∗f(1

2 [x, v])) and u ∈ s

to uj(x,s) := (0, rs∗u), where rs denotes right multiplication by s in S.
(ii) For v ∈ v and h ∈ h ⊂ s, the vector fields vj and hj are invariant

under the group Dj = LGj ·RS . For a vector u in the orthogonal complement u

of h in s, the vector field uj is invariant under RS , but in general not under
LGj . However, the distribution u(x,s) = {uj(x,s) | u ∈ u} is invariant under both
actions.

Note that for v ∈ v, the vector field vj on E depends on j since [ , ] does
so, while uj is actually independent of j for u ∈ s. We use the superscript just
to distinguish between the vector field uj on E and the vector u ∈ s.

1.8 Definition. Let C := S1(v) × S ⊂ E, where S1(v) is the unit sphere
in v. By gj we will in the following denote the above metric on E as well as
its restriction to C.

1.9 Remark. Concerning the geometry of the manifolds (C, gj), note that
the canonical projection from (C, gj) to its first factor S1(v), endowed with the
round sphere metric, is a Riemannian submersion with totally geodesic fibers
which are isometric to the compact Lie group (S, k). However, the inclusion
S1(v)→ S1(v)× {e} ⊂ (C, gj) is not isometric, nor is its image orthogonal to
the fibers {x} × S of the above submersion.
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2. The isospectral metrics

2.1 Definition ([GW3]). Two linear maps j, j′ : z → so(v) are called
isospectral, denoted j ∼ j′, if for every z ∈ z there exists an orthogonal map
Az : v→ v such that j′z = AzjzA

−1
z .

2.2 Theorem. If j ∼ j′ then (C, gj) and (C, gj′) are isospectral.

Proof. Let L be the set of those z ∈ z for which L(0,z) = Id. Thus
L = f−1{h ∈ h | exph = e} in the notation 1.3(ii). Since H is a torus,
L is a lattice of full rank in z. The linear isometry f : z → h induces an
isometry f̄ between the flat tori T := z/L and H. The torus T acts on E by
Lz̄ := L(0,z), where z̄ = z + L ∈ T . Obviously this action is smooth, free,
and by isometries with respect to gj . The same holds for its restriction to the
submanifold C which is invariant under the action of T . The orbits are of the
form {v} ×Hs ⊂ C with v ∈ S1(v) and s ∈ S, and the orbits of the action of
any closed subgroup W of T have the form {v} × Us, where U = f̄(W ) is the
corresponding subtorus of H. By Lemma 1.6 these orbits are totally geodesic
in (E, gj) and thus also in (C, gj).

Since these facts are true also with respect to gj′ , we are in the situation
of Proposition 1.2 with condition (i) satisfied. Our goal now is to show that
j ∼ j′ implies that also condition (ii) of the proposition is satisfied. We will
actually show that the various pairs of quotients (W\C, gWj ) and (W\C, gWj′ )
are not only isospectral here, but even isometric.

First consider W = T . Denote the Lie bracket of gj′ by [ , ]′. Then
for all x, v ∈ v and s ∈ S the difference between the vectors vj(x,s) and

vj
′

(x,s) ∈ T(x,s)E equals (0, rs∗f(1
2 [x, v]− 1

2 [x, v]′)) and thus is tangent to the LT -
orbit through (x, s). Lemma 1.7 now implies that Id : E → E induces an isom-
etry between the quotient manifolds (T\E, gTj ) and (T\E, gTj′). By restriction,
Id : C → C induces the required isometry between (T\C, gTj ) and (T\C, gTj′).

Now let W ⊂ T be a closed subgroup of codimension 1. Denote by W̃ the
corresponding subspace of z, and choose z ∈ z \ {0} such that z ⊥ W̃ . Since
j ∼ j′, there exists an orthogonal map Az : v → v such that j′z = AzjzA

−1
z .

Define a diffeomorphism Fz : E → E by Fz(x, s) = (Azx, s). For u ∈ s, the
vector field uj = uj

′
from Lemma 1.7 is obviously carried to itself by Fz∗ .

Since the tangent space to the LW -orbit through (x, s) ∈ E is just {uj(x,s) | u ∈
f(W̃ )}, the map Fz carries LW -orbits to LW -orbits. Moreover, for every v ∈ v

we have

Fz∗|(x,s)(v
j) =

(
Azv, rs∗f(1

2 [x, v])
)

and

(Azv)j
′
|Fz(x,s)

=
(
Azv, rs∗f(1

2 [Azx,Azv]′)
)
.
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The choice of Az implies that 〈z, [x, v]− [Azx,Azv]′〉 = 〈jzx, v〉 − 〈j′zAzx,Azv〉
= 0. Thus the difference between Fz∗|(x,s)(vj) and (Azv)j

′
|Fz(x,s) is orthogonal

to (0, rs∗f(z)) and therefore tangent to the LW -orbit through Fz(x, s). Using
Lemma 1.7 we conclude that Fz induces an isometry between the quotients
(W\E, gWj ) and (W\E, gWj′ ). Since Fz preserves C, this isometry restricts to
the required isometry between (W\C, gWj ) and (W\C, gWj′ ).

2.3 Remark. In our notation, the bounded isospectral manifolds con-
structed in [GW3] are of the form (B1(v) × H, gj), resp. (B1(v) × H, gj′),
where B1(v) denotes the unit ball in v. Similarly, the isospectral manifolds
in [GGSWW] are of the form (S1(v)×H, gj), resp. (S1(v)×H, gj′).

2.4 Remarks. (i) If there exists an orthogonal map A : v → v such that
j′z = AjzA

−1 for all z ∈ z then the isospectrality condition from Definition 2.1
is trivially satisfied. In this situation the manifolds (C, gj) and (C, gj′) are
isometric; an isometry from the first to the latter is given by (x, s) 7→ (Ax, s).
For example, this is always the case if dim z = 1.

(ii) However, we will show that in case dim z = 2 and dim v ≥ 5, any
generic linear map j : z→ so(v) is contained in a continuous isospectral family
of maps j(t) such that the manifolds (C, gj(t)) are not pairwise isometric. Here,
generic means that j is an element of a certain Zariski open subset of the
space of all linear maps from z to so(v). Note that a similar genericity result,
although excluding the case dim v = 6, was obtained in [GW3, Theorem 2.2
and Proposition 1.4] and [GGSWW, Propositions 9 and 10] with respect to the
isospectral manifolds considered there. That result was stronger than the one
we prove here in the sense that it included the existence of multi-parameter
families of isospectral metrics. On the other hand, our result includes the case
dim v = 6 in which the previously used arguments had failed.

(iii) For dim v ≤ 4 and dim z = 2, it is not hard to show that, as mentioned
in [GW3], the condition j ∼ j′ can be satisfied only trivially (in the sense of (i)
above). For dim v ≤ 4 and dim z ≥ 3 it is still possible to show that there are no
continuous families of nontrivially isospectral maps j(t) : z→ so(v) (although
a pair of such maps is given in [GW3, Example 1.10]). Thus dim v = 5 and
dim z = 2 is indeed the minimal choice of dimensions for which nontrivial
continuous isospectral families j(t) : z→ so(v) exist.

(iv) The lowest dimensional compact, simply connected Lie group S whose
maximal torus has dimension r is the direct product of r copies of SU(2). For
this choice of S, the manifold C is diffeomorphic to the product of Sm−1 with
r copies of S3. By the previous remark, the lowest dimensional example of
this form on which our method produces nontrivial, continuous families of
isospectral metrics is S4 × S3 × S3.
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2.5 Example. This example is a modified version of Example 2.3 from
[GW3]. The modification mainly consists in lowering the dimension of v by
one. Consider v = R5 and z = R2. Let a, b ∈ so(v) be given as matrices with
respect to the standard basis by

a =


0 −a1 0 0 0
a1 0 0 0 0
0 0 0 −a2 0
0 0 a2 0 0
0 0 0 0 0

 , b =


0 0 b12 0 b13

0 0 0 0 0
−b12 0 0 0 b23

0 0 0 0 0
−b13 0 −b23 0 0

 .

Define a linear map ja,b : z → so(v) by letting ja,b(z1) = a and ja,b(z2)
= b, where {z1, z2} is the standard basis of z. The characteristic polynomial
det
(
λId − (sa + ub)

)
is equal to λ5 +

(
s2(a2

1 + a2
2) + u2(b212 + b213 + b223)

)
λ3 +(

s4a2
1a

2
2 + s2u2(a2

1b
2
23 + a2

2b
2
13)
)
λ. Thus ja,b ∼ ja,b′ if and only if

b212 + b213 + b223 = b′ 212 + b′ 213 + b′ 223 and a2
1b

2
23 + a2

2b
2
13 = a2

1b
′ 2
23 + a2

2b
′ 2
13 .

Now assume 0 < a1 < a2 and b12 , b13 , b23 ≥ 0. Then with

b12(t) :=
√
b212 + t(a2

2 − a2
1) , b13(t) :=

√
b213 + ta2

1 , b23(t) :=
√
b223 − ta2

2 ,

the maps ja,b and ja,b(t) satisfy conditions (i) and (ii) for every

t ∈
[
max

{ −b212

a2
2 − a2

1

,
−b213

a2
1

}
,
b223

a2
2

]
.

This interval has nonzero length if b23 > 0 or b12 , b13 > 0, and j(t) := ja,b(t) is a
continuous family of pairwise isospectral linear maps. This family is nontrivial;
i.e., the maps j(t) are not pairwise equivalent in the sense of Remark 2.4(i).
This can be seen, for example, by noting that the maps (j2

z1 +j2
z2)(t) = a2+b(t)2

are not pairwise similar, since routine computation shows that their determi-
nant is a linear polynomial in t with nonzero leading coefficient a4

1a
4
2(a2

1−a2
2). In

the next section, we will interpret the nonsimilarity of the various (j2
z1 +j2

z2)(t)
geometrically in terms of the scalar curvature of the isospectral manifolds
(C, gj(t)) (see formula (10) and Proposition 3.5).

3. Scalar curvature and a sufficient condition for nonisometry

In this section we will establish a sufficient condition for two manifolds
(C, gj) and (C, gj′) (with j ∼ j′) to be nonisometric. We will show that the
difference in geometry can in general be detected by studying the behaviour
of the scalar curvature. The manifolds (C, gj) are in general not locally ho-
mogeneous, and the scalar curvature function is in general nonconstant on a
given manifold (C, gj). In Proposition 3.5, we will formulate a condition on
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two isospectral linear maps j, j′ : z → so(v) which will imply that (C, gj) and
(C, gj′) have different sets of critical values of the scalar curvature function. In
Section four we will then show that in case dim z = 2 and dim v ≥ 5, any generic
linear map j : z→ so(v) admits a continuous isospectral deformation j(t) such
that the maps j(t) pairwise satisfy this condition.

We need some preparations in order to compute the scalar curvature of
(C, gj). In the following, let Gj be endowed with the left invariant metric mj

induced by the standard scalar product on gj = v⊕ z.

3.1 Lemma. The map ` : Gj 3 (x, z) 7→ L(x,z)(0, e) = (x, ef(z)) ∈
LGj (0, e) ⊂ (E, gj) is a local isometry. Moreover, the submanifold LGj (0, e) is
totally geodesic in (E, gj); consequently, this holds also for its right translates
under RS.

Proof. Two elements of Gj have the same image under ` if and only if they
differ by an element of expL, where L is the central lattice f−1{h ∈ h | exph
= e} ⊂ z as in the proof of Theorem 2.2. Thus ` is a local diffeomorphism.
For v ∈ v, the left invariant vector field on Gj induced by v is mapped by `∗
to vj |LGj (0,e) , and for z ∈ z, the corresponding left invariant vector field on Gj
is mapped by `∗ to hj |LGj (0,e) , where h = f(z). Lemma 1.7 now implies that `

is a local isometry from (Gj ,mj) to LGj (0, e).
To see that LGj (0, e) is totally geodesic, first note that its tangent space at

(0, e) is v⊕ h ⊂ v⊕ s = T(0,e)E, and LGj (0, e) is the integral manifold through
(0, e) of the distribution {vj + hj | v ∈ v, h ∈ h}. In particular, for all x, v ∈ v

and every u ∈ u, where u denotes the orthogonal complement of h in s, we
have

(3) 〈[xj , vj ](0,e) , u〉 = 0.

Extend every u ∈ u ⊂ T(0,e)E to a vector field ũ on E whose flow F tũ consists
of the right translations Retu from 1.3(ii), and consider the vector field vj

associated with v ∈ v as in Lemma 1.7. One easily checks that the flow F t
vj

commutes with the maps Retu ; thus

(4) [vj , ũ] = 0.

Moreover, for x, v ∈ v the function 〈xj , vj〉 is constant on E by Lemma 1.7,
and 〈xj , ũ〉 = 〈vj , ũ〉 = 0 on E. By the Koszul formula for the Levi-Cività
connection ∇ on (E, gj), this implies together with (3) and (4) that

(5) 〈∇xvj , u〉 = 0.

We know that ∇hhj = 0 for h ∈ h, since hj is tangent to the flat submanifold
{0} ×H which is totally geodesic by Lemma 1.6. Finally, for all v ∈ v, h ∈ h,
and u ∈ u, we have 〈∇vhj , u〉 = 〈∇σ∗vσ∗hj , σ∗u〉 = 〈∇−vhj , u〉, where σ : E 3



298 DOROTHEE SCHUETH

(x, s) 7→ (−x, s) ∈ E is the involutive isometry from the proof of 1.6. Thus
〈∇vhj , u〉 = 0, and similarly 〈∇hvj , u〉 = 0. In summary, ∇yyj ∈ v ⊕ h for
every y ∈ v⊕ h, whence LGj (0, e) is totally geodesic.

Denote the scalar curvatures of (E, gj), (Gj ,mj), and (S, k) by scalE,j ,
scalGj , and scalS , respectively. Since all three manifolds are homogeneous,
their scalar curvatures are constant.

3.2 Lemma.
scalE,j = scalGj + scalS .

Proof. We compute the scalar curvature in the point (0, e) ∈ E. Recall
the orthogonal splitting T(0,e)E = v⊕h⊕u from the proof 3.1. Since v⊕h and
h⊕u = s are the tangent spaces to LGj (0, e) and {0}×S which are both totally
geodesic by 3.1 and 1.6, and since the sectional curvature of planes tangent
to h is zero, it suffices to show that

(6) K(v, u) = 0

for all v ∈ v and u ∈ u, where K denotes the sectional curvature on (E, gj).
Using again the involutive isometry σ : E 3 (x, s) 7→ (−x, s) ∈ E, we have

〈∇uvj , w〉 = 〈∇u(−vj), w〉 = 0 for every w ∈ s. Thus ∇uvj ∈ v. But the same
argument which led to (5) also shows 〈∇uvj , x〉 = 0 for every x ∈ v. Hence
∇uvj = 0, and by Lemma 1.7,

(7) ∇
uj
vj = 0 for all u ∈ u, v ∈ v.

Since uj equals ũ along the curve t 7→ (tv, e), where ũ is the vector field from
the proof of 3.1, we get ∇v∇ũvj = 0. By (4) we also know ∇[ũ, vj ]v

j = 0 and

thus R(u, v)v = ∇u∇vjv
j . Note that ∇

vj
vj = 0 by Lemma 3.1 and the fact

that ∇vv = −tadvv = 0 for the corresponding left invariant vector field on
(Gj ,mj), since v ⊥ [gj , gj ]. Hence R(u, v)v = 0, and the statement follows.

We can now compute the scalar curvature of the submanifold (C, gj) of
(E, gj):

3.3 Lemma. The scalar curvature scalC,j of (C, gj) at the point (v, s) ∈ C
is given by

scalC,j(v,s) = scalGj + scalS + (m− 1)(m− 2)− RicGj (v, v),

where m = dim(v), and scalGj and RicGj denote the scalar curvature and the
Ricci tensor of (Gj ,mj).

Proof. Let N be the outward unit normal field to (C, gj) in (E, gj). A
standard computation involving only the Gauss equations and the fact that
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(C, gj) is a codimension one submanifold of (E, gj) shows that

(8) scalC,jp = scalE,j − 2Ric(Np , Np) +
(
tr(∇N |TpC)

)2 − ‖∇N |TpC‖2
for all p ∈ C, where ∇ and Ric denote the Levi-Cività connection and
the Ricci tensor of (E, gj), and ‖ . ‖ denotes the euclidean norm on tensors.
Note that for p = (v, s), the tangent space TpC is the orthogonal sum of
{xj(v,s) | x ∈ v, x ⊥ v} and {uj(v,s) | u ∈ s}. Thus N(v,s) = vj(v,s) . Moreover, one
easily checks that for each x ⊥ v in v and each u ∈ s, we have

∇
xj(v,s)

N = xj(v,s) +∇
xj(v,s)

vj , ∇
uj(v,s)

N = ∇
uj(v,s)

vj .

Recall that LGj -orbits are totally geodesic in (E, gj) by Lemma 3.1. Since xj ,
vj , and hj for h ∈ h are tangent to these, we get for all x ∈ v and h ∈ h, with
z := f−1(h) ∈ z,

∇
xj(v,s)

N = xj(v,s) + (∇Gjx v)j(v,s) , ∇
hj(v,s)

N = (∇Gjz v)j(v,s) ,

whereas ∇
uj
N = 0 for u ∈ u = h⊥ ∩ s by (7). We have (see e.g. [Eb])

(9) ∇Gjx v =
1
2

[x, v], ∇Gjz v = −1
2
jzv

for all x, v ∈ v and z ∈ z. Thus ∇Gjv sends v to z and vice versa; hence

tr(∇N |T(v,s)C
) = m− 1, ‖∇N |T(v,s)C

‖2 = m− 1 + ‖∇Gjv‖2.

Moreover,

(10) RicGj |v =
1
2

r∑
i=1

j2
zi ,

where {z1, . . . , zr} is an orthonormal basis of z (see [Eb]). One routinely derives
from (9) and (10) that

‖∇Gjv‖2 = −RicGj (v, v).

Finally note that
Ric(vj , vj) = RicGj (v, v)

for all v ∈ v. This follows using again Lemma 3.1 and the fact that the sectional
curvatures K(v, u) vanish by (6) whenever v ∈ v and u ∈ u = h⊥ ∩ s. The
statement is now immediate from (8) and Lemma 3.2.

The scalar curvature function scalC,j can thus be viewed as a quadratic
function in the first coordinate v of (v, s) ∈ S1(v)× S = C. Consequently, we
have:
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3.4 Corollary. The set of critical points of the scalar curvature on
(C, gj) is given by {(v, s) ∈ C | v is an eigenvector of RicGj |v}, and the set
of critical values is {scalGj + scalS + (m − 1)(m − 2) − λ | λ is an eigenvalue
of RicGj |v}.

We can now establish a sufficient condition for nonisometry of two met-
rics gj and gj′ on C. Note that by the discussion in 2.5, this condition is
satisfied for the families given there.

3.5 Proposition. Let j ∼ j′. If RicGj |v and RicGj′ |v have different sets
of eigenvalues, then scalC,j and scalC,j

′
have different sets of critical values.

In particular, (C, gj) and (C, gj′) are not isometric. More generally, if RicGj |v
and RicGj′ |v do not have the same collection of eigenvalues, counted with multi-
plicities (i.e., if RicGj |v and RicGj′ |v are not similar), then (C, gj) and (C, gj′)
are not isometric.

Proof. The first statement follows from Corollary 3.4 by noting that j ∼ j′
implies scalGj = scalGj′ . In fact, by [Eb] we have RicGj (z, w) = −1

4tr(jzjw)
for all z, w ∈ z. Together with (10) we get scalGj = 1

4

∑r
i=1 tr(j2

zi), where
{z1, . . . , zr} is an orthonormal basis of z. But if j ∼ j′ then obviously tr(j2

z ) =
tr(j′ 2z ) for each z ∈ z, and thus scalGj = scalGj′ as claimed.

The last statement follows from the fact that the multiplicity nλ of an
eigenvalue λ of RicGj |v can be read off from the dimension dimS + (nλ − 1)
of the set of critical points in which scalC,j assumes the critical value scalGj +
scalS + (m− 1)(m− 2)− λ.

3.6 Remark. Since the total scalar curvature is a spectral invariant, (C, gj)
and (C, gj′) must have the same total scalar curvature if j ∼ j′. This fol-
lows also from 3.3 by direct computation; note that

∫
S1(v) RicGj (v, v) dv equals

vol(Sm−1) · 1
m · tr(RicGj |v) which coincides for j ∼ j′ by formula (10).

4. Generic families

Throughout this section we assume dim z = 2. As mentioned in Re-
mark 2.4(iii), nontrivial pairs of isospectral maps j : R2 → so(m) do not exist
if m ≤ 4. However, we will show in this section that in case m ≥ 5, any generic
linear map j : R2 → so(m) is contained in a nontrivial, continuous isospectral
family of linear maps j(t) : R2 → so(m) which pairwise satisfy the nonisometry
condition from Proposition 3.5. The idea is to construct the families j(t) as
the (locally defined) flow lines of a smooth vector field on the space of all linear
maps from R2 to so(m).
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Taking into account Theorem 2.2 and Proposition 3.5, the following propo-
sition not only completes the proof of the Main Theorem stated in the intro-
duction, but also shows that there is an abundant class of examples to it.

4.1 Proposition. Let m ≥ 5, and denote by J the space of all linear
maps from R2 to so(m). Then there exists a Zariski open subset U ⊂ J
such that every j ∈ U is contained in a continuous isospectral family j(t) with
j(0) = j such that the function t 7→ ‖RicGj(t) |v‖2 has nonzero derivative at
t = 0. In particular, for every j ∈ U there exists ε(j) > 0 such that for
−ε(j) < t < ε(j), the isospectral manifolds (C, gj(t)) have pairwise different
sets of critical values of the scalar curvature function.

Proof. We write j ∈ J in the form j = (j1, j2), where j1 := jz1 , j2 := jz2 ,
and {z1, z2} is an orthonormal basis of z = R2. The isospectrality condition
j ∼ j′ says that for all s, t ∈ R, the skew-symmetric map sj1 + tj2 has the same
collection of eigenvalues, counted with multiplicities, as sj′1+tj′2. As mentioned
in the proof of [GW3, Theorem 2.2], it is easy to see that this is equivalent
to the condition tr

(
(sj1 + tj2)k

)
= tr

(
(sj′1 + tj′2)k

)
for all even numbers k in

{1, . . . ,m}, or equivalently, for all k ∈ N. Let a, b ∈ N0 such that a + b > 0.
Then the coefficient at the monomial satb in tr

(
(sj1 + tj2)a+b

)
equals

(11) pa,b(j) :=
∑

σ∈Sa,b

tr(jσ(1) . . . jσ(a+b)),

where Sa,b denotes the set of all maps σ : {1, . . . , a+ b} → {1, 2} which satisfy
#σ−1(1) = a, #σ−1(2) = b. Thus we get

(12) j ∼ j′ ⇔ pa,b(j) = pa,b(j′) for all a, b ∈ N0 with a+ b > 0.

On the other hand, we consider the polynomial

j 7→ ‖RicGj |v‖2 = ‖1
2

(j2
1 + j2

2)‖2 =
1
4
(
tr(j4

1) + 2tr(j2
1 j

2
2) + tr(j4

2)
)
.

The condition j ∼ j′ implies tr(j4
1) = tr(j′ 41 ) and tr(j4

2) = tr(j′ 42 ). Thus in case
j ∼ j′ we have

(13) ‖RicGj |v‖2 − ‖RicGj′ |v‖2 =
1
2
(
q(j)− q(j′)

)
,

where

(14) q(j) := tr(j2
1 j

2
2).

By Lemma 4.2 below, the algebraic vector field Y on J , given by Y (j) =
(j3

1 j2−j2 j3
1 , 0), is everywhere orthogonal to the gradient of each of the polyno-

mials pa,b , while it is not everywhere orthogonal to the gradient of q. The first
property implies by (12) that the flow lines F tY (j) consist of pairwise isospec-
tral maps. By the second property and (13), the function t 7→ ‖RicGj(t) |v‖2
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(where j(t) := F tY (j)) has nonzero derivative at t = 0 for every j in the Zariski
open subset U := J \ {j ∈ J | dq|j(Y ) = 0} 6= ∅. The last statement of the
proposition now follows by Proposition 3.5 and the fact that ‖RicGj |v‖2 equals
λ2

1 + . . . λ2
m , where λ1, . . . , λm are the eigenvalues of RicGj |v .

4.2 Lemma. Let pa,b and q be the polynomials on the space J of all linear
maps from R2 to so(m) which were defined in (11) and (14). Then the vector
field Y on J , given by Y (j) = (j3

1 j2 − j2 j3
1 , 0), satisfies dpa,b(Y ) = 0 for all

a, b ∈ N0 such that a+b > 0, while the polynomial j → dq|j(Y ) does not vanish
identically on J if m ≥ 5.

Proof. First note that for all a, b ∈ N, we have dpa,0(Y ) = a·tr
(
ja−1
1 (j3

1 j2−
j2 j

3
1)
)

= 0, and trivially dp 0,b(Y ) = 0. Thus we can assume in the following
that both a and b are nonzero. Let j ∈ J , and let ε = (ε1, ε2) ∈ TjJ ∼= J .
Then

dpa,b|j(ε) =
∑

σ∈Sa,b

a+b∑
i=1

tr
(
jσ(1) . . . jσ(i−1) εσ(i) jσ(i+1) . . . jσ(a+b)

)

=
a+b∑
i=1

∑
σ∈Sa,b

tr
(
εσ(i) jσ(i+1) . . . jσ(a+b) jσ(1) . . . jσ(i−1)

)
= (a+ b) ·

( ∑
τ∈Sa−1,b

tr(ε1 jτ(1) . . . jτ(a+b−1))

+
∑

τ∈Sa,b−1

tr(ε2 jτ(1) . . . jτ(a+b−1))
)
.

Showing dpa,b(Y ) = 0 thus reduces to showing that

(15)
∑

τ∈Sa−1,b

tr(j3
1 j2 jτ(1) . . . jτ(a+b−1)) =

∑
τ∈Sa−1,b

tr(j2 j3
1 jτ(1) . . . jτ(a+b−1))

for all j ∈ J . We now define a bijection ϕ from Sa−1,b to itself such that for
ρ = ϕ(τ),

tr(j3
1 j2 jτ(1) . . . jτ(a+b−1)) = tr(j2 j3

1 jρ(1) . . . jρ(a+b−1)).

Namely, given τ ∈ Sa−1,b , let c = max{i | τ(i) = 2}; define ρ = ϕ(τ) by letting
ρ(i) = 1 for i = 1, . . . , a+ b− c−1, ρ(a+ b− c) = 2, and ρ(a+ b− c+ i) = τ(i)
for i = 1, . . . , c− 1. Obviously ϕ : Sa−1,b → Sa−1,b is a bijection; moreover,

tr(j3
1 j2 jτ(1) . . . jτ(a+b−1)) = tr(j3

1 j2 jτ(1) . . . jτ(c−1) j2 j
a+b−c−1
1 )

= tr(j2 j3
1 j

a+b−c−1
1 j2 jτ(1) . . . jτ(c−1))

= tr(j2 j3
1 jρ(1) . . . jρ(a+b−1)),



ISOSPECTRAL METRICS ON SIMPLY CONNECTED MANIFOLDS 303

as required. Equation (15) now follows; hence dpa,b(Y ) = 0 as claimed. More-
over,

dq|jY = tr
(
(j3

1 j2− j2 j3
1)j1 j2

2 + j1(j3
1 j2− j2 j3

1)j2
2

)
= tr(j3

1 j2 j1 j
2
2 − j1 j2 j3

1 j
2
2).

For m ≥ 5, this polynomial does not vanish identically on J ; e.g., for

(16) j1 =

 0 0 0 1 0
0 0 0 1 1
0 0 0 0 0
−1 −1 0 0 0
0 −1 0 0 0

 and j2 =

 0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0


it equals 2 6= 0.

4.3 Remarks. (i) In case m ≤ 4, we have tr(j3
1 j2 j1 j

2
2 − j1 j2 j3

1 j
2
2) = 0

for all j1, j2 in so(m), which is not hard to show. We also remark that on
the other hand, this is implied by the above arguments in connection with
Remark 2.4(iii).

(ii) In Example 2.5, it happens to be the case that ‖RicGj(t) |v‖2 is con-
stant in t. In other words, even though det(RicGj(t) |v) is nonconstant in t (as
observed in 2.5) and thus RicGj(t) has nonconstant eigenvalue spectrum, not
only the trace of RicGj(t) |v is constant in t (which is automatic by (10) since
the j(t) are pairwise isospectral), but even the sum of the squares of its eigen-
values is constant. Hence the families given in 2.5 do not represent examples
for Proposition 4.1. Examples for 4.1 would be obtained by computing flow
lines of the vector field Y through suitable starting points j = (j1, j2), e.g.,
the one given by (16). However, this seems hard to do explicitly. A different
explicit example of an isospectral family j(t) = (j1(t), j2(t)) : R2 → so(5) with
‖RicGj(t) |v‖2 6= const, although not representing a flow line of Y , is given by

j1(t) :=

 0 0 −t 0 0
0 0 0 t−1 0
t 0 0 0 −ϕ(t)
0 1−t 0 0 −ψ(t)
0 0 ϕ(t) ψ(t) 0

 , j2(t) :=

 0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 ,

where ϕ(t) =
(
(t4−3t2 +1)/(1−2t)

)1/2
and ψ(t) =

(
(−t4 +4t3−3t2−2t+1)/

(1−2t)
)1/2

. This deformation is defined for t ∈
[

1
2(1−

√
5), 1

2(3−
√

5)
]
. The j(t)

are pairwise isospectral since det
(
λId−(sj1(t)+uj2(t))

)
= λ5 +(3s2 +2u2)λ3 +

(s2 + u2)λ is independent of t. On the other hand, ‖RicGj(t) |v‖2 = t2 − t+ 13
2

is nonconstant in t.

5. The spectrum on 1-forms

Let (M, g) be a compact Riemannian manifold without boundary. The
Hodge-de Rham Laplacian ∆p

g acts on the space of smooth p-forms on (M, g) by
∆p
g(α) = −(dδ+δd)α, where d denotes the exterior derivative and δ its adjoint
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operator with respect to the canonical scalar product on p-forms induced by g.
Like ∆g = ∆0

g , the operators ∆p
g are elliptic, positive semi-definite and self-

adjoint, and have a discrete spectrum of eigenalues tending to infinity. Two
manifolds (M, g) and (M ′, g′) are called isospectral on p-forms if spec(∆p

g) =
spec(∆p

g′).

5.1 Proposition. If j ∼ j′ and ‖RicGj |v‖2 6= ‖RicGj′ |v‖2 then the iso-
spectral manifolds (C, gj) and (C, gj′) are not isospectral on 1-forms. In par-
ticular, in each of the families (C, gj(t)) from Proposition 4.1, the manifolds
are not pairwise isospectral on 1-forms.

We will prove this proposition by using the heat invariants for the spec-
trum on functions and on 1-forms; see [Gi, §4.8] for details. The heat invariants
api (g) are the coefficients appearing in the asymptotic expansion

tr
(
exp(−t∆p

g)
)
∼ (4πt)−dimM/2

∞∑
i=0

api (g)ti for t↘ 0.

If (M, g) and (M ′, g′) are isospectral on p-forms, then necessarily api (g) = api (g
′)

for all i ∈ N0. We will use this fact for the heat invariants a0
2(g) and a1

2(g)
which are given explicitly as follows.

5.2 Lemma ([Gi, Theorem 4.8.18]). Let (M, g) be a closed Riemannian
manifold, and let cs(g) :=

∫
M scal2(p) dvolg(p), cRic(g) :=

∫
M ‖Ric‖2p dvolg(p),

and cR(g) :=
∫
M ‖R‖2p dvolg(p), where scal denotes the scalar curvature, Ric

and R denote the Ricci and curvature tensors of (M, g), respectively, and the
norm ‖ . ‖p is the euclidean norm on tensors, corresponding to the scalar prod-
uct induced by g on TpM . Then

(i) a0
2(g) = 1

360(5cs − 2cRic + 2cR)(g),
(ii) a1

2(g) = 1
360

(
(5 dimM−60)cs−(2 dimM−180)cRic+(2 dimM−30)cR

)
(g).

5.3 Corollary. If (M, g) and (M ′, g′) are isospectral on functions and
if a1

2(g) = a1
2(g′)(in particular, if (M, g) and (M ′, g′) are isospectral both on

functions and on 1-forms), then

cs(g)− cs(g′) + 10
(
cRic(g)− cRic(g′)

)
= 0.

Proof. Since a0
2(g) − a0

2(g′) = 0 by isospectrality on functions, we have
by Lemma 5.2 that cR(g) − cR(g′) = −5

2(cs(g) − cs(g′)) + cRic(g) − cRic(g′).
Substituting this into a1

2(g)− a1
2(g′) = 0 yields the required formula.

The next lemma is crucial for the proof of Proposition 5.1.

5.4 Lemma. If j ∼ j′ then for the metrics gj and gj′ on C = S1(v) × S
the following holds:
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(i) cs(gj)−cs(gj′) = vol(S)·vol(Sm−1)· 2
m(m+ 2)

·
(
‖RicGj |v‖2−‖RicGj′ |v‖2

)
,

(ii) cRic(gj)−cRic(gj′) = vol(S)·vol(Sm−1)·m− 4
m
·
(
‖RicGj |v‖2−‖RicGj′ |v‖2

)
.

Here m = dim v, and vol(S) is the volume of (S, k), where k is the biinvariant
metric used in 1.3(ii).

Proof of Proposition 5.1. By Lemma 5.4,

cs(gj)− cs(gj′) + 10
(
cRic(gj)− cRic(gj′)

)
= vol(S) · vol(Sm−1) · 10m2 − 20m− 78

m(m+ 2)
·
(
‖RicGj |v‖2 − ‖RicGj′ |v‖2

)
.

This is nonzero since the third factor is nonzero for all integers m and the last
factor is nonzero by assumption. Since (C, gj) and (C, gj′) are isospectral on
functions by Theorem 2.2, Corollary 5.3 implies that a1

2(gj) 6= a1
2(gj′); hence

the two manifolds are not isospectral on 1-forms.

Proof of Lemma 5.4. (i) By Lemma 3.3,∫
C

(scalC,jp )2 dvolgj (p)

= vol(S) ·
∫
S1(v)

(
RicGj (v, v)2 − 2ϕ(j)RicGj (v, v) + ϕ(j)2

)
dv,

where ϕ(j) = scalGj + scalS + (m − 1)(m − 2) does not depend on v. Recall
from the proof of 3.5 that j ∼ j′ implies ϕ(j) = ϕ(j′). Moreover, for every
A ∈ End(Rm) we have the general formulas

∫
Sm−1

〈Av, v〉 dv = tr(A) ·
∫
Sm−1

v2
1 dv = tr(A) · vol(Sm−1) · 1

m
,

(17)

∫
Sm−1

〈Av, v〉2 dv =
(
tr(A)2 + ‖A‖2 + 〈A, tA〉

)
·
∫
Sm−1

v2
1v

2
2 dv

=
(
tr(A)2 + ‖A‖2 + 〈A, tA〉

)
· vol(Sm−1) · 1

m(m+ 2)
,

where v1, . . . , vm are the standard coordinates on Rm. If j ∼ j′ then tr(RicGj |v)
= 1

2

∑r
i=1 tr(j2

zi) equals tr(RicGj′ |v) = 1
2

∑r
i=1 tr(j′ 2zi ). Since RicGj |v : v→ v is

symmetric, (17) therefore implies that cs(gj) − cs(gj′) = vol(S) · vol(Sm−1) ·
1

m(m+2) ·
(
2‖RicGj |v‖2 − 2‖RicGj′ |v‖2

)
, as claimed.

(ii) In order to access cRic(gj) we first establish explicit formulas for the
Ricci tensor of (C, gj), denoted RicC,j . Recall from the proof of 3.3 that for any
(v, s) ∈ S1(v)×S = C, the tangent space T(v,s)C is given as {(xj+hj+uj)(v,s) |
x ∈ v, x ⊥ v, h ∈ h, u ∈ u = h⊥∩s}, where xj etc. are the vector fields defined
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in 1.7. Using Lemmas 3.1 and 1.6, the fact that R(uj , vj)vj = 0 in (E, gj)
by the proof of 3.2, the results on the shape operator ∇N from the proof
of 3.3, formula (7), and the Gauss equations, one easily shows for all x, x′ ∈ v

such that x, x′ ⊥ v, all u, u′ ∈ u, all h, h′ ∈ h and the corresponding vectors
z = f−1(h), z′ = f−1(h′) ∈ z:

RicC,j(v,s)(x
j , x′ j) = 〈RicGjx, x′〉+

1
2
〈[x, v], [x′, v]〉+ (m− 2)〈x, x′〉,

RicC,j(v,s)(x
j , hj) =

m− 2
2
〈jzx, v〉,

RicC,j(v,s)(x
j , uj) = 0,

RicC,j(v,s)(h
j , h′ j) = −1

4
tr(jz jz′)−

1
2
〈jzv, jz′v〉+ RicS(h, h′),

RicC,j(v,s)(h
j , uj) = RicS(h, u),

RicC,j(v,s)(u
j , u′ j) = RicS(u, u′),

where RicS denotes the Ricci tensor of (S, k). Thus

‖RicC,j(v,s)‖
2 =

m∑
a,b=1

(
〈RicGjxa , xb〉+

1
2
〈[xa , v], [xb , v]〉+ (m− 2)〈xa , xb〉

)2(18)

− 2
m∑
a=1

(
〈RicGjxa , v〉+ (m− 2)〈xa , v〉

)2
+
(
〈RicGjv, v〉+ (m− 2)

)2
+ 2

m∑
a=1

r∑
i=1

(m− 2
2
〈jzixa , v〉2

)
+

r∑
i,k=1

(
−1

4
tr(jzi jzk)− 1

2
〈jziv, jzkv〉

)2
+ 2

r∑
i,k=1

(
−1

4
tr(jzi jzk)− 1

2
〈jziv, jzkv〉

)
· RicS(hi , hk)

+ ‖RicS‖2,

where {x1, . . . , xm} and {z1, . . . , zr} are orthonormal bases of v and z, respec-
tively, and hi = f(zi) for i = 1, . . . , r. By ‖RicS‖ we denote the pointwise
norm of RicS which is constant since (S, k) is homogeneous; moreover, this
norm does not depend on j. Note also that j ∼ j′ implies tr(jz jw) = tr(j′z j

′
w)

as well as tr(2 j2
z j

2
w + jz jw jz jw) = tr(2 j′ 2z j′ 2w + j′z j

′
w j
′
z j
′
w) for all z, w ∈ z ;

this follows by considering the coefficients at su, resp. s2u2, in tr
(
(sjz+ujw)2

)
,
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resp. tr
(
(sjz + ujw)4

)
. Using these facts and formulas (10) and (17), one de-

rives from (18) by direct computation (of which we omit the details here) that
the only summands in

∫
C ‖RicC,j‖2p dvolgj (p) which in case j ∼ j′ do possibly

not coincide for j and j′ consist of linear multiples of ‖RicGj |v‖2 ; moreover,
the respective coefficients sum up to vol(S) ·

∫
S1(v)(1 − 4v2

1 + 0 v2
1v

2
2) dv =

vol(S) · vol(Sm−1) · (1− 4
m).

5.5 Final Remarks. (i) The proof of Proposition 5.1 shows that the heat
invariant a1

2(gj(t)) changes nontrivially during each of the isospectral deforma-
tions given in Proposition 4.1. As mentioned in the introduction, these families
consitute the first examples of manifolds which are isospectral on functions and
for which nonisospectrality on 1-forms turns out already from considering heat
invariants only. Not also that the terms cs(gj(t)), cRic(gj(t)), and cR(gj(t))
change nontrivially as t varies. The heat invariant a0

2(gj(t)) which is a linear
combination of these (see 5.2(i)) is nevertheless constant in t by isospectrality
on functions, while a1

2(gj(t)) (another linear combination of the same terms,
see 5.2(ii)) is not constant in t.

(ii) Note that Proposition 5.1 does not exclude the possible existence of
isospectral manifolds (C, gj) and (C, gj′) with j ∼ j′ which are also isospec-
tral on 1-forms. We do not know whether such examples exist here. The
proposition only says that in this case, the norms of RicGj |v and RicGj′ |v must
coincide, which by 4.1 is frequently not the case.

(iii) Each of the conditions j ∼ j′ and ‖RicGj |v‖2 6= ‖RicGj′ |v‖2 on a
pair j, j′ of linear maps from z to so(v) is invariant under rescaling both maps
by the same real factor. Lemma 1.7 implies that the metrics gαj converge to
the product metric on C = S1(v) × S for α → 0, where S1(v) is the round
unit sphere in v = Rm, and S is endowed with the biinvariant metric k used
in 1.3(ii). Therefore, it follows from Proposition 4.1 that there are nontrivial
isospectral families of metrics gj(t) on Sn × S for every n ≥ 4 which are ar-
bitrarily close to the product metric g0 . In particular, nontrivial isospectral
deformations of the form (Sn × S3 × S3, gj(t)) can take place arbitrarily close
to the standard metric on Sn × S3 × S3 for every n ≥ 4.
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[Sz] Z. Szabó, Locally nonisometric yet super isospectral spaces, GAFA, to appear.
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