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Rigidity of infinite disk patterns

By Zheng-Xu He*

Abstract

Let P be a locally finite disk pattern on the complex plane C whose
combinatorics are described by the one-skeleton G of a triangulation of the
open topological disk and whose dihedral angles are equal to a function Θ :
E → [0, π/2] on the set of edges. Let P ∗ be a combinatorially equivalent disk
pattern on the plane with the same dihedral angle function. We show that P
and P ∗ differ only by a euclidean similarity.

In particular, when the dihedral angle function Θ is identically zero, this
yields the rigidity theorems of B. Rodin and D. Sullivan, and of O. Schramm,
whose arguments rely essentially on the pairwise disjointness of the interiors of
the disks. The approach here is analytical, and uses the maximum principle,
the concept of vertex extremal length, and the recurrency of a family of elec-
trical networks obtained by placing resistors on the edges in the contact graph
of the pattern.

A similar rigidity property holds for locally finite disk patterns in the
hyperbolic plane, where the proof follows by a simple use of the maximum
principle. Also, we have a uniformization result for disk patterns.

In a future paper, the techniques of this paper will be extended to the
case when 0 ≤ Θ < π. In particular, we will show a rigidity property for a
class of infinite convex polyhedra in the 3-dimensional hyperbolic space.

1. Introduction

A disk pattern on the Riemann sphere Ĉ will be defined to be a collection
of closed disks in Ĉ in which no disk has its boundary contained in the union
of two other disks and no disk is the Hausdorff limit of a sequence of distinct
disks. The contact graph G = GP of such a pattern P is the graph whose
vertices correspond to the disks of the pattern, and an edge appears in G if
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the corresponding disks intersect each other. The dihedral angle of a pair of
intersecting disks D1 and D2 is defined to be the angle in [0, π) between the
clockwise tangent of ∂D1 and the counterclockwise tangent of ∂D2 at a point
of ∂D1 ∩ ∂D2. Let E be the set of edges in the graph G. For any [v1, v2] ∈ E,
let ΘP ([v1, v2]) be the dihedral angle of the disks P (v1) and P (v2). Then
ΘP : E → [0, π) is called the dihedral angle function of P .

Let G be a given graph and let Θ : E → [0, π) be a function defined
on the set of edges of G. Let us consider the following problem: Does there
exist a disk pattern P whose contact graph is (combinatorially equivalent to)
G and whose dihedral angle function is Θ? And if it does, to what extent
is the disk pattern unique? This problem is well posed under the condition
that 0 ≤ Θ ≤ π/2. In this case, by Thurston’s interpretation of Andreev’s
theorem, the existence problem has a complete answer when G is finite and
the uniqueness is understood when G is the one-skeleton of a triangulation of
the 2-sphere (see e.g. [26] or [16] for precise statements). In this paper, we will
study infinite disk patterns under the condition 0 ≤ Θ ≤ π/2. The general
case 0 ≤ Θ < π is technically more involved, and will be considered in [10]
where we will also generalize a characterization theorem due to I. Rivin and
C. Hodgson [18] for convex polyhedra in hyperbolic 3-space.

For a vertex v in the contact graph G of a disk pattern P , we will denote
P (v) to be the disk in P corresponding to the vertex. If P is a disk pattern
in the plane C whose dihedral angle function is bounded by π/2, then the
euclidean center A(v) of a disk P (v) lies outside of any other disk; for an
edge [v1, v2] in G, the straight arc A(v1)A(v2) is disjoint from the interior of
any disk P (v) with v 6= v1 and v 6= v2. The natural map which maps an
edge [v1, v2] homeomorphically onto the arc A(v1)A(v2) is an immersion of the
graph G into C. The only possible double points of this immersion can be
described as follows: The arc A(v0)A(v2) intersects A(v1)A(v3) (as in Figure
1.1) if and only if: ΘP ([vi−1, vi]) = π/2, 1 ≤ i ≤ 4 (where v4 = v0), and either
ΘP ([v0, v2]) or ΘP ([v1, v3]) is equal to 0. If this is the case, we must have both
ΘP ([v0, v2]) = ΘP ([v1, v3]) = 0 and we will call the edges [v0, v2] and [v1, v3]
reducible. The reduced graph of P , consisting of the same vertex set as G and
the irreducible edges, is embedded in C.

Similar observations can be made for a disk pattern on the Riemann
sphere, under the additional assumption that each disk in the pattern is smaller
than a hemisphere (see [26]).

Let G be a graph, and let Θ : E → [0, π/2] be a function on the set
of edges. Whenever a simple loop v1, v2, v3, v4 = v0 in G has the property
that Θ([vi−1, vi]) = π/2, i = 1, . . . , 4, and Θ([v0, v2]) = 0 as in Figure 1.1(b),
then we will add the other reducible edge [v1, v3], in case it is not in G, to
the graph. Let G̃ denote the graph thus obtained, and define a function Θ̃ by
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Figure 1.1. (a) The configuration of the disks P (vi), 1 ≤ i ≤ 4;

(b) The corresponding contact graph with dihedral angles marked on the edges.

letting Θ̃(e) = Θ(e) if e is an edge in G, and Θ̃(e) = 0 if e is in G̃−G. A disk
pattern P is said to realize the data (G,Θ) if its contact graph is combinatorially
isomorphic to G̃ and the corresponding dihedral angle function is equal to Θ̃.

A disk pattern P is called locally finite in a domain Ω ⊆ Ĉ, if all disks of
P are contained in Ω and every compact subset of Ω intersects only finitely
many disks of P . A graph is called a disk triangulation graph if it is equal to
the one-skeleton of a triangulation T of the open topological disk. The main
result of this paper is the following rigidity theorem.

Rigidity Theorem 1.1. Let G be a disk triangulation graph, and let
Θ : E → [0, π/2] be a function defined on the set of edges. Let P and P ∗ be
disk patterns in C which realize (G,Θ). Assume that P is locally finite in the
plane. Then there is a euclidean similarity f : C→ C such that P ∗ = f(P ).

See Figure 1.2 for several examples of locally finite disk patterns in C. By
Theorem 1.1, the geometry (i.e. the similarity class) of any of these patterns
is uniquely determined by its contact graph and dihedral angle function.

When Θ = 0 on all edges, then P is a disk packing. Rigidity property
in this case has been proved by B. Rodin and D. Sullivan [21] in the bounded
valence case, using Schottky groups (see [9, Remark (p. 407)] for a simplified
proof), and by O. Schramm [22] in the unbounded valence case, using an
argument which is topological in nature. A more direct proof of the rigidity
result of O. Schramm using a similar idea can be found in [11]. A different
proof based on the Schottky groups and a “generalized Gröstch argument” is
given in [12]. All these proofs rely essentially on the property that pairs of
disks have disjoint interiors, and therefore cannot be generalized.
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(a) A regular hexagonal packing. (b) A hexagonal pattern.

(c) A square grid pattern. (d) A square grid with deformed angles.

Figure 1.2. The similarity class of any of these patterns is uniquely determined

by its contact graph and dihedral angle function.

The method in the present paper is analytical, and can be roughly de-
scribed as follows. Let P and P ∗ be the patterns in Rigidity Theorem 1.1.
The first step in our approach is to show that there are some lower and upper
bounds on the ratio of the radii of pairs of corresponding disks in P ∗ and P .
The bounds will depend on the patterns but not on the individual disks. This
uses the idea of vertex extremal length (cf. [6], [7], [23]) as well as the maxi-
mum principle. Next we will construct a one-parameter family of “immersed
disk patterns” Pt, 0 ≤ t ≤ 1, with P0 = P , P1 = P ∗. For each vertex v in the
graph, let l(v, t) = log ρ(Pt(v))− log ρ(P0(v)), where ρ(·) denotes the euclidean
radius. Using the maximum principle again, it will be shown that the rate of

change h(v, t) = d l(v, t)/dt =
d ρ(Pt(v))/dt
ρ(Pt(v))

is bounded by a constant inde-

pendent of v. Moreover, for each fixed t, h(v, t) is harmonic in the electrical
network obtained from the graph G by placing resistors of certain conductances
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on its edges. In fact, the conductance of an edge [v0, v1] is defined to be the
partial derivative of the “curvature” at v0 with respect to log(ρ(Pt(v1))). Then
we prove that the network is recurrent in the sense that the resistance from
a finite subset of vertices to the infinity is infinite. As a bounded harmonic
function, h(v, t) is therefore constant in the graph. It follows that l(v, t) and
hence the ratio ρ(Pt(v))/ρ(P0(v)) are independent of v. We deduce that the
patterns Pt, in particular P1 = P ∗, are just images of P0 = P under euclidean
similarities.

In case of disk patterns in the Poincaré disk U = {z ∈ C; |z| < 1}, the
following can be easily proved using the maximum principle in the hyperbolic
plane.

Rigidity Theorem 1.2. Let G be a disk triangulation graph, and let
Θ : E → [0, π/2] be a function defined on the set of edges. Let P and P ∗

be disk patterns in U which realize (G,Θ). Assume that both P and P ∗ are
locally finite in U . Then there is a hyperbolic isometry f : U → U such that
P ∗ = f(P ).

Let us conclude this section by considering the Koebe uniformization of
disk patterns. Let G be a connected, planar graph. Assume that each edge has
distinct ends, and that through a pair of vertices there is at most one edge. A
subset contained in G is said to separate the vertices of G, if there is a pair of
vertices in the complement of the subset so that any path joining the vertices
passes through the subset. Let Θ : E → [0, π/2] be a function on the set of
edges. It is easy to show that if there is a disk pattern in Ĉ which realizes the
data (G,Θ), then the following conditions must hold (see [26]):

(C1) If a simple loop in G formed by three edges e1, e2, e3 separates the vertices
of G, then

∑3
i=1 Θ(ei) < π;

(C2) If v1, v2, v3, v4 = v0 are distinct vertices in G and if [vi−1, vi] ∈ E and
Θ([vi−1, vi]) = π/2, i = 1, . . . , 4, then either [v0, v2] or [v1, v3] is an edge
in G.

We note that conditions (C1), (C2) and Θ ≤ π/2 imply that if a sim-
ple loop formed by the edges e1, e2, . . . , ek separates the vertices of G, then∑k

i=1 (π −Θ (ei)) > 2π.
On the other hand, using Thurston’s interpretation of Andreev’s theorem

and a compactness argument, one may show that conditions (C1) and (C2)
are also sufficient for the existence of a disk pattern which realizes the data,
provided that the graph has at least five vertices (see [26] and §7). In the special
case of disk triangulation graphs, we have the following theorem, proved along
the same lines as Theorem 7.1 of [13] (also compare [24]).
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Uniformization Theorem 1.3. Let G be a disk triangulation graph,
and let Θ : E → [0, π/2] be a function defined on the set of edges. Assume that
conditions (C1) and (C2) hold.

(i) If G is VEL-parabolic, then there is a locally finite disk pattern in C which
realizes the data (G,Θ).

(ii) If G is VEL-hyperbolic, then there is a locally finite disk pattern in U

which realizes (G,Θ).

When Θ = 0, the above theorem implies Corollary 0.5 of [11], which in
turn, generalizes the result of [4] in the bounded valence case. Here we also
note that I. Rivin has a related uniformization theorem of finite ideal polyhedra
in hyperbolic 3-space (see [17]). As we noted earlier, the characterization of
compact polyhedra in terms of their polars was beautifully accomplished in
the joint work [18].

The paper is organized as follows. We will start in Section 2 by presenting
the Maximum Principle for disk patterns. In particular, Theorem 1.2 will be
obtained as a corollary. In Section 3, we will discuss immersed disk patterns,
and we will show that one may prescribe the radii of the boundary disks of
some finite pattern. In Section 4, assuming that ρ(P ∗(v))/ρ(P (v)) is uniformly
bounded, we construct the variation Pt from P to P ∗. We then show that for
each t, the rate of change h(v, t) of log ρ(Pt(v)) is a bounded harmonic func-
tion in the electrical network obtained from the graph G by placing resistors
of certain conductances on its edges. Then in Section 5, we show that the
network is recurrent, and as a consequence, h(v, t) is independent of v. The
uniform boundedness of ρ(P ∗(v))/ρ(P (v)) will be proved in Section 6. Finally,
in Section 7, we will study the uniformization of disk patterns.

Notational conventions. Throught the paper, G will denote a graph, E =
E(G) the set of edges in G, and V = V (G) the set of vertices. The symbol Θ
will denote a function from E to [0, π). If P is a disk pattern which realizes
(G,Θ), then for any subset of vertices W ⊆ V , we denote P (W ) =

⋃
v∈W P (v).

For a circle c, we denote by Vc(P ) the set of vertices v for which P (v)∩ c 6= ∅.
For any r > 0, we denote by c(r) the circle of radius r centered at 0, and D(r)
the closed disk bounded by c(r). For a disk D, we will denote ρ(D) to be its
euclidean radius.

We are very grateful to Professor Burt Rodin for introducing us to some
basic techniques for the rigidity problem. We are very much indebted to Pro-
fessors Michael Freedman, and Dov Aharonov, Peter Doyle, Oded Schramm
and Lihe Wang for helpful discussions as well as overall influence. We are also
very grateful to the referee for carefully reading the original manuscript and
providing many helpful suggestions.
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2. The maximum principle

Various forms of the maximum principle, some weaker, some stronger,
have been suggested and used by some authors. Here we will present it in a
way suitable to our applications. The proofs, included here for completeness,
are elementary and mostly well known.

Let G = (V,E) and Θ : E → [0, π/2] be given. A vertex v0 in G is
called interior if there is a closed chain of neighboring vertices v1, v2, . . . , vl,
where either l ≥ 4, or l = 3 and each edge [v0, vk] is irreducible, 1 ≤ k ≤ 3.
Otherwise, it is called a boundary vertex. Note that in the graph in Figure
1.1(b), with the values of Θ marked on the edges, v0 is the neighbor of the
chain of vertices v1, v2, v3, but is not an interior vertex by our definition. If G is
the one-skeleton of a triangulation of a planar surface possibly with boundary
so that each boundary component has at least four vertices, and if (C1) and
(C2) hold, then a vertex is interior precisely when it lies in the interior of the
surface.

Lemma 2.1 (maximum principle). Let G be a finite graph, and assume
0 ≤ Θ ≤ π/2. Let P and P ∗ be disk patterns in C which realize (G,Θ). Then
the maximum (or minimum) of ρ(P ∗(v))/ρ(P (v)) is attained at a boundary
vertex.

Proof. Let v0 be an interior vertex. Let v1, v2, . . . , vl, vl+1 = v1 be
the chain of neighboring vertices. Let Q be a disk pattern which realizes
the data (G,Θ). Denote by Aj be the center of the disk Q(vj), 0 ≤ j ≤
l + 1. Let βk(Q) be the angle ∠AkA0Ak+1. Since v0 is interior, we have∑l

k=1 βk(Q) = 2π. On the other hand, βk(Q) is a nondecreasing function
of ρ(Q(vk)) (and of ρ(Q(vk+1)) ) (see e.g. [26], or [16, Lemma 3 (p. 111)]).
The sum βk−1(Q) + βk(Q), and hence

∑l
j=1 βj(Q), are strictly increasing in

ρ(Q(vk)) if the edge [v0, vk] is irreducible. The maximum principle follows
immediately.

Remark. Assume that the set of interior vertices of G in Lemma 2.1 is
connected. If the maximum (or minimum) of ρ(P ∗(v))/ρ(P (v)) is attained
at an interior vertex, then it is constant in the union of the set of interior
vertices and the set of boundary vertices which share an irreducible edge with
an interior vertex.

The maximum principle suggests that the logarithm of the ratio ρ(P ∗(v))/
ρ(P (v)), considered as a function on the vertex set of G, behaves as a harmonic
function in the graph, an idea which we will pursue in Section 4.

A version of the maximum principle also holds for patterns in the hyper-
bolic disk U . For a closed disk D in U , denote by ρ hyp (D) its hyperbolic
radius. Let D0 be a fixed closed disk in U centered at 0, and let D1 be a
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variable closed disk which intersects D0 with a fixed dihedral angle between 0
and π/2. Then ρ hyp (D1) is a strictly increasing function of ρ(D1), and for any
real γ > 1, we have: ρ hyp (γD1)/ρ hyp (D1) > ρ hyp (γD0)/ρ hyp (D0), where
γD = {γz; z ∈ D}. Combining these facts with Lemma 2.1, we deduce:

Lemma 2.2 (maximum principle in the hyperbolic plane). Let G, Θ, P
and P ∗ be as in Lemma 2.1. Assume that the disks of P and P ∗ are contained
in U . Then:

(a) The maximum of ρ hyp (P ∗(v))/ρ hyp (P (v)), if > 1, is never attained at
an interior vertex ; and

(b) In particular, if the inequality ρ hyp (P ∗(v)) ≤ ρ hyp (P (v)) is true for each
boundary vertex, then it holds for all vertices of G.

The second part of the lemma is the analog of the Schwarz-Pick lemma.
See [5] and [11] for versions of Schwarz-Pick lemma for disk packings (also
compare [19], [20]). In [10], this will be generalized to the case 0 ≤ Θ < π.

To extend the lemma, we make the following definition of ρ hyp (D) for
a closed disk D in Ĉ which intersects U . If D in contained in U , we define
ρ hyp (D) to be the hyperbolic radius as before. If D intersects Ĉ − U , let
β = β(D) ∈ [0, π) denote the dihedral angle of the intersection. We define
ρ hyp (D) to be the symbol∞β. In particular, ρ hyp (D) =∞0 if D is internally
tangent to the unit circle ∂U . We make the convention that for any angles
β2 ≥ β1 ≥ 0 and for any real number a, we have: ∞β2 ≥ ∞β1 > a. With the
same proof, we have:

Lemma 2.3. Part (b) of Lemma 2.2 still holds if instead requiring the
disks of P and P ∗ be contained in U , we assume that all the disks have non-
empty intersection with U .

As an application, let us prove Rigidity Theorem 1.2.

Proof of Theorem 1.2. Let P and P ∗ be as given by the theorem. Let v0

be an arbitrary vertex of G. We will show that ρ hyp (P (v0)) = ρ hyp (P ∗(v0))
and this implies the theorem. By contradiction, let us assume that they are
different, say, ρ hyp (P (v0)) < ρ hyp (P ∗(v0)). Then for some real δ = 1 +
ε > 1, we still have ρ hyp (δP (v0)) < ρ hyp (P ∗(v0)). Consider the pattern
δP = {δP (v); P (v) ∈ P}. Let G1 be the subgraph of G corresponding to
the subpattern P1 of δP consisting of those disks which intersect U . Let P ∗1
be the corresponding subpattern of P ∗. Then G1 is finite as P is locally
finite in U . For every boundary vertex v of G1, the disk P1(v) intersects the
boundary of U ; therefore, ρ hyp (P1(v)) > ρ hyp (P ∗(v)). Thus, by Lemma 2.3,
we have ρ hyp (P1(v0)) ≥ ρ hyp (P ∗1 (v0)), a contradiction since P1(v0) = δP (v0)
and P ∗1 (v0) = P ∗(v0).
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3. Immersed disk patterns

Let T be a triangulation of a planar surface possibly with boundary. Let
G = T (1), and let Θ : E → [0, π/2] be a function on the set of edges. Given
a function η : V → R+ = (0,∞) on the set of vertices, we will build a path
metric on |T | as follows. For any edge [v1, v2], let D1 and D2 be a pair of
disks in C of radius η(v1) and η(v2) respectively, so that their dihedral angle is
equal to Θ([v1, v2]). Let ρ([v1, v2]) denote the distance of the centers of D1 and
D2. Then there is a unique path metric in |T | in which every edge [v1, v2] is
isometric to a line segment of length ρ([v1, v2]), and every 2-simplex is isometric
to an euclidean triangle. The curvature K(v) at an interior vertex v is defined
to be the sum of the angles at v of the 2-simplexes which contain v, less 2π. If
K(v) = 0 at all interior vertices, then |T | is locally euclidean. If, in addition,
|T | is simply connected, then the path metric space has an immersion into the
plane. In this case, it is easy to see that there is a collection P of closed disks
in the plane, indexed by V , such that ρ(P (v)) = η(v) for any vertex of T and
that the dihedral angle of P (v1) and P (v2) is equal to Θ([v1, v2]) for any edge
[v1, v2] in T (1). We will call P an immersed disk pattern which realizes the data
(T (1),Θ). Given (T (1),Θ), the isometric class of P is uniquely determined by
the radius function η(v) = ρ(P (v)). The following is clear.

Lemma 3.1. Lemmas 2.1, 2.2 and 2.3 also hold for immersed disk pat-
terns.

Let ρ0, ρ1, ρ2 be positive real numbers, and let Θij ∈ [0, π/2], where (i, j) ∈
{(0, 1), (0, 2), (1, 2)}. Then there is a configuration of three disks D0, D1, D2,
unique up to euclidean isometries, such that ρ(Dk) = ρk, 0 ≤ k ≤ 2, and
that the dihedral angle of Di and Dj is equal to Θij . The configuration can
be shown to exist by first computing (using the rule of cosines) the size of
the triangle formed by the centers Ak of Dk, k = 1, 2, 3 (see e.g. [16]). Let
Φk = Φk(ρ0, ρ1, ρ2; Θ01,Θ02,Θ12) be the angle of the triangle A0A1A2 at Ak
(see Figure 3.1).

The following lemma is contained in the argument of [26] (or [16, Lemma 3]).

Lemma 3.2. Following above, let Lij be the line through ∂Di ∩ ∂Dj , and
tangent to Di and Dj in case Θij = 0. The lines L01, L02 and L12 meet in a
point O contained in the triangle A0A1A2 (see Figure 3.1). Let hij denote the
distance from O to the edge AiAj. For any 0 ≤ i, j ≤ 2, i 6= j, we have

∂Φi(ρ0, ρ1, ρ2; Θ01,Θ02,Θ12)
∂(log ρj)

=
hij

|Ai −Aj |
.

In particular,
∂Φi

∂(log ρj)
does not change if one switches i and j.
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(a) (b)

Figure 3.1. The configuration of the disks P (vi) and the corresponding contact graph.

Note that the point O is in the interior of the triangle A0A1A2 if and only
if the angles Θ01, Θ02 and Θ12 are not permutations of 0, π/2 and π/2.

The following elementary lemma will be useful.

Lemma 3.3. Let j = 1 or 2. There is a universal constant C such that :

∂Φ0(ρ0, ρ1, ρ2; Θ01,Θ02,Θ12)
∂(log ρj)

≤ CΦ0(ρ0, ρ1, ρ2; Θ01,Θ02,Θ12).

Proof. Without loss of generality, let us assume that j = 1. Let β0k =
∠OA0Ak, where k = 1, 2. As we remarked earlier, as Θ01,Θ02,Θ12 ≤ π/2,
point O is contained in the triangle A0A1A2 (and O is not equal to A0, A1 or
A2). Thus, β0j ∈ [0, π/2).

By Lemma 3.2, ∂Φ0/∂(log ρ1) = h01/|A0 − A1| < tanβ01, which is less
than Cβ01 ≤ CΦ0 provided that β01 is not close to π/2, say, for β01 ≤ 1. Next,
consider the case β01 ∈ [1, π/2). In particular, Φ0 ≥ β01 ≥ 1 is bounded from
below. Thus we need show that ∂Φ0/∂(log ρ1) = h01/|A0 − A1| is bounded
by some constant C. By rescaling we may assume that |A0 − A1| = 1. Then
ρ0, ρ1 < 1. But O lies in the convex hull of the union of disks D0 ∪D1. Thus,
h01 < 2. We conclude that ∂Φ0/∂(log ρ1) = h01/|A0 −A1| < 2.

The following lemma is a straight generalization of Andreev’s theorem as
interpreted by Thurston [26].
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Lemma 3.4. Let G be the one-skeleton of a triangulation T of the closed
topological disk, and let Θ : E → [0, π/2]. Assume conditions (C1) and (C2)
hold. For any boundary vertex v of G, let ρ(v) > 0 be given. Then there
is an immersed disk pattern Q in the plane which realizes (G,Θ), such that
ρ(Q(v)) = ρ(v) for any boundary vertex v. Moreover, Q is unique up to eu-
clidean isometries.

Proof. We will just sketch the proof here as it is almost identical to the
argument of [26] (or [16]). Let RN+ denote the space of functions µ : Vint →
R+ = (0,+∞) where Vint is the set of interior vertices of G and N is the
cardinality of Vint. Similarly, let RN denote the set of functions K : Vint → R.
We construct a transformation F : RN+ → RN as follows. For any µ in Rk+,
define η : V → R+ by: η(v) = µ(v) for v ∈ Vint and η(v) = ρ(v) for v ∈ V −Vint.
Then, as above, η defines a path metric in |T |. Let K(v), v ∈ Vint, be the
curvature at V in the path metric defined by η. Then our transformation F

takes µ to K. By the same argument as in [26], F is one-to-one, and maps
RN+ onto some open region in RN bounded by a finite number of hyperplanes.
Using conditions (C1) and (C2), the argument of [16] can be repeated without
any essential modification to show that K = 0 ∈ RN is always on the correct
side of the hyperplanes, and hence is in the image of F . The corresponding
preimage η : Vint → R will then define an immersed disk pattern Q in C which
realizes (T (1),Θ) and satisfies the required boundary condition. Clearly, the
uniqueness of Q up to euclidean isometries follows by the uniqueness of η.

We note that with a similar proof, Lemma 3.4 also holds in the hyperbolic
plane.

4. Deformation of disk patterns and harmonicity

Unless otherwise specified, we will let C be any positive constant which
is independent of the vertices of G. The following lemma will be proved in
Section 6.

Lemma 4.1. Let P and P ∗ be as in Theorem 1.1. There is a constant
C ≥ 1 such that for any vertex v,

(4.1)
1
C
≤ ρ(P ∗(v))

ρ(P (v))
≤ C.

In the following two sections, we will prove the conclusion of Theorem 1.1
assuming Lemma 4.1 by exploring the “harmonicity” of the bounded function
log
[
ρ(P ∗(v))/ρ(P (v))

]
. Harmonicity properties were also used in [3], [19], [20],

[1], and [25] in their study of the rigidity properties of some special classes of
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disk packings. Our approach may be compared with that of K. Stephenson
[25] who studied the convergence of a certain class of disk packings by using
random walks and Markov processes in some networks with “leaks” which are
based on a graph expanded from G. The networks used in this paper are based
on G, and the edge conductances are quite simple.

Let G, Θ, P and P ∗ be as given in Theorem 1.1. We will first build a
one-parameter family of immersed patterns joining P and P ∗ as follows. For
each vertex v in G, denote ρ̃(v, t) = eλ(v)tρ(P (v)), where

λ(v) = log
(
ρ(P ∗(v))/ρ(P (v))

)
.

Clearly ρ̃(v, 0) = ρ(P (v)), ρ̃(v, 1) = ρ(P ∗(v)), and by (4.1),

(4.2) | log
ρ̃(v, t+ h)
ρ̃(v, t)

| = |h| · |λ(v)| ≤ |h| · logC,

where t, t+ h ∈ [0, 1].
Let Gn be an increasing sequence of subgraphs of G whose union is G. We

will choose Gn to be the one-skeletons of triangulations of the closed topological
disk. The pair (Gn,Θ|Gn) is realized by a subpattern of P , and thus satisfies
conditions (C1) and (C2). Using Lemma 3.4, for each n and each t ∈ [0, 1],
there is an immersed disk pattern Pn,t in C which realizes (Gn,Θ|Gn) such
that ρ(Pn,t(v))) = ρ̃(v, t) for each boundary vertex v of Gn. Using Lemma 2.1
for immersed disk patterns (see Lemma 3.1), it follows from (4.2) that for any
vertex v of Gn, ∣∣∣∣log

ρ(Pn,t+h(v))
ρ(Pn,t(v))

∣∣∣∣ ≤ |h| · logC.

Therefore,

(4.3)
∣∣∣∣d log ρ(Pn,t(v))

dt

∣∣∣∣ ≤ logC.

In particular, this implies that ρ(P (v))/C ≤ ρ(Pn,t(v)) ≤ Cρ(P (v)).
Thus, replacing by a subsequence and by means of euclidean transformations
if necessary, we may assume that for each vertex v in G, the sequence Pn,t(v)
converges (in the Hausdorff metric) to some limit disk, say Pt(v). Then for
each t, the collection Pt =

{
Pt(v); v ∈ V

}
is an immersed disk pattern.

By uniqueness part of Lemma 3.4, we may assume that the patterns Pn,0
are subpatterns of P , and therefore P0 = P . Similarly, we may assume that
P1 = P ∗.

Letting n→∞ in (4.3), we obtain

(4.4)
∣∣∣∣d log ρ(Pt(v))

dt

∣∣∣∣ ≤ logC
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where the derivative with respect to t is in the generalized sense (or distribu-
tional sense). Let l(v, t) = log ρ(Pt(v))− log ρ(P0(v)). We have l(v, 0) = 0, and
(4.4) implies that,

(4.5)
∣∣∣∣d l(v, t)dt

∣∣∣∣ ≤ logC.

Let t ∈ [0, 1] be fixed. Define h(v) = h(v, t) = d l(v, t)/dt. We will
show that h is harmonic in the electrical network based on G in which the
conductance µ([v0, v1]) of an edge [v0, v1] is defined to the partial derivative
of the curvature K(v0) with respect to the logarithm of ρ(Pt(v1)). Let v2

and v3 be the vertices which are neighbors to both vertices v0 and v1 of the
edge. That is, [v0, v1, v2] and [v0, v1, v3] are the two 2-simplexes which contain
[v0, v1]. Then we have,

(4.6)

µ([v0, v1]) =
∂Φ0(ρ(Pt(v0)), ρ1, ρ(Pt(v2)); Θ([v0, v1]),Θ([v0, v2]),Θ([v1, v2]))

∂ log ρ1

∣∣∣
ρ1=ρ(Pt(v1))

+
∂Φ0(ρ(Pt(v0)), ρ1, ρ(Pt(v3)); Θ([v0, v1]),Θ([v0, v3]),Θ([v1, v3]))

∂ log ρ1

∣∣∣
ρ1=ρ(Pt(v1))

.

Note that µ([v0, v1]) = µ([v1, v0]) by Lemma 3.2, so the conductance is well
defined. Clearly, µ(e) ≥ 0 for any edge e, and µ(e) = 0 if and only if e is
reducible. Thus, µ > 0 precisely in the reduced graph of Pt.

In virtue of Lemma 3.2, the conductance µ([v0, v1]) has the following ge-
ometrical interpretation. Let A0 and A1 be the centers of Pt(v0) and Pt(v1),
respectively. Consider the triple v0, v1, v2, where there is a unique (real or
imaginary) circle which is orthogonal to ∂Pt(v0), ∂Pt(v1) and ∂Pt(v2). Let
the center of the circle be denoted by O2; it is called the center of the circle
dual to the disks Pt(v0), Pt(v1) and Pt(u). It is a good elementary exercise to
show that O2 is at the intersection of the lines L01, L02 and L12 in Figure 3.1.
Similarly, let O3 be the center of the center dual to the disks Pt(v0), Pt(v1)
and Pt(v3). Clearly, the line segment O2O3 is orthogonal to A0A1. Then the
conductance µ([v0, v1]) of [v0, v1] is equal to the ratio of the euclidean lengths
of O2O3 and A0A1.

Lemma 4.2. The function h(v) = h(v, t) is harmonic in the network based
on G in which the conductance µ([v0, v1]) of an edge [v0, v1] is defined by (4.6).

Proof. Let v0 be an arbitrary vertex and let v1, v2, . . . , vl, vl+1 = v1 be
the chain of neighboring vertices which surround v0. Then the Laplacian ∆h
is defined to be

(4.7) ∆h(v0) =
l∑

k=1

µ([v0, vk])(h(vk)− h(v0)).



14 ZHENG-XU HE

Consider the pattern Pt. Let Ak(t) denote the center of the disk Pt(vk),
0 ≤ k ≤ l + 1. For 1 ≤ k ≤ l, denote,

βk(t) = ∠Ak(t)A0(t)Ak+1(t)

= Φ0

(
ρ(Pt(v0)), ρ(Pt(vk)), ρ(Pt(vk+1)); Θ([v0, vk]),Θ([v0, vk+1]),Θ([vk, vk+1])

)
.

Then the curvature at v0 is K(v0, Pt) =
∑

1≤k≤l βk(t)−2π = 0 (see Figure 4.1).
Since (G,Θ) is fixed, K(v0, Pt) can be considered as a function of the radii

ρ(Pt(vj)), 0 ≤ j ≤ l. By the definition of µ, we have,

∂K(v0, Pt)/∂ log(ρ(Pt(vk))) = µ([v0, vk]), 1 ≤ k ≤ l.

Clearly, K(v0, Pt) is homogeneous of degree 0 in the (vector) variable
(ρ(Pt(v0)), ρ(Pt(v1)), . . . , ρ(Pt(vl))); thus,

∑
0≤j≤l ∂K(v0, Pt)/∂ log(ρ(Pt(vj)))

= 0. Then, ∂K(v0, Pt)/∂ log(ρ(Pt(v0))) = −
∑

1≤k≤l µ([v0, vk]). Differentiat-
ing the equality K(v0;Pt) = 0 with respect to t, we obtain ∆h(v0) = 0 by the
chain rule.

Figure 4.1. The curvature at v0 is
∑

1≤k≤l βk − 2π.

The following lemma follows easily by Lemma 3.3.

Lemma 4.3. There is a universal constant C such that for any vertex v
of G, the sum of conductances µ of edges from v is bounded by C.

In the next section, we will show that the network based on G in which
the edge conductances are equal to µ is recurrent, and as a consequence, any
bounded harmonic function in the network is a constant.
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5. Recurrence of electrical networks

We will make extensive use of the vertex extremal length in graphs. The
notion resembles the extremal length of curve families in Riemann surfaces,
and was introduced and studied by J. Cannon and others (see [6], [7], [23], and
[13]). (A further extension to the idea of “transboundary extremal length”
appeared in [24].) Below we will recall the basics. For details, we refer to [13].

Let G be a graph and let V be the set of vertices. A vertex metric in the
graph is just a function η : V → [0,+∞). The area of the metric η is defined
to be:

(5.1) area (η) =
∑
v∈V

η(v)2.

Any subset of vertices will be called a vertex curve. The length of a vertex
curve γ in the metric η is defined to be:

(5.2)
∫
γ
dη =

∑
v∈γ

η(v).

Let Γ be a collection of vertex curves in G. A vertex metric η is called
Γ-admissible, if

∫
γ dη ≥ 1 for each γ ∈ Γ. The vertex modulus of Γ is defined

by,

(5.3) MOD (Γ) = inf
{

area (η); η : V → [0,∞) is Γ-admissible
}
.

The vertex extremal length of Γ is defined to be:

(5.4) VEL (Γ) =
1

MOD (Γ)
.

We make the convention that the vertex extremal length is +∞ if Γ is void.
A path in G is defined to be a finite or infinite sequence of vertices

(v0, v1, . . . , vk, . . . ), such that [vk−1, vk] is an edge of G. The set of vertices in
a path is a vertex curve, and for the purpose of defining vertex extremal length,
we will identify the path with the curve. (Later we will also consider a path as
a sequence of edges for the purpose of defining the electrical resistance.) Let
V1, V2 be nonvoid subsets of vertices. Let ΓG(V1, V2) be the set of paths in G

joining V1 and V2. We allow V2 = ∞, in which case a path joining V1 and ∞
is by definition a path starting from a vertex in V1 which passes through an
infinite subset of vertices. The vertex extremal length between V1 and V2 in G

is then defined to be:

(5.5) VEL (V1, V2) = VEL (ΓG(V1, V2)).

For any three nonvoid subsets of vertices V1, V2 and V3 in the graph G,
V2 is said to separate V1 and V3, if any path from V1 to V3 passes through a
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vertex in V2. Note that we do not require that Vi∩Vj = ∅ for 1 ≤ i < j ≤ 3. In
graph theory, V2 is also called a cutset between V1 and V3. The lemma below
follows by a classical argument (see e.g. [2] or [15]).

Lemma 5.1. Let V1, V2, . . . , V2m be mutually disjoint, nonvoid subsets
of vertices such that for i1 < i2 < i3, Vi2 separates Vi1 from Vi3. We allow
V2m =∞. Then we have

(5.6) VEL (V1, V2m) ≥
m∑
i=1

VEL (V2k−1, V2k).

Let V0 be a finite, nonvoid subset of vertices in a connected graph G. Then
G is called VEL-parabolic if VEL (V0,∞) =∞, and VEL-hyperbolic otherwise.
The definition is independent of the choice of V0.

If G is the contact graph of a disk packing which is locally finite in C, and
if G is connected, then G is VEL-parabolic (see [13, Theorem 3.1]). Without
much more effort, we will prove:

Lemma 5.2. Let G be a connected graph, and let Θ : E → [0, π/2].
Suppose that P is a disk pattern in C which realizes (G,Θ). If P is locally
finite in the plane, then G is VEL-parabolic.

Proof. For a circle c in the plane, let Vc = Vc(P ) = {v; P (v) ∩ c 6= ∅}.
Then, inductively, we may find a sequence of circles c(ri) = {z ∈ C; |z| = ri},
such that: ri+1 ≥ 2ri and Vc(ri+1) ∩ Vc(ri) = ∅ (and Vc(r1) 6= ∅). For 1 ≤ i1 <

i2 < i3, it is easy to see that Vc(ri2 ) separates Vc(ri1 ) from Vc(ri3 ). By Lemma
5.1, we have:

VEL (Vc(r1),∞) ≥
∞∑
k=1

VEL (Vc(r2k−1), Vc(r2k)).

Then Lemma 5.2 follows by the lemma below.

Lemma 5.3. Let G be a graph, and let Θ : E → [0, π/2]. Suppose that P
is a disk pattern in C which realizes (G,Θ). Then for any r2 > r1 > 0,

(5.7) VEL (Vc(r1), Vc(r2)) ≥
(r2 − r1)2

(32 + (8π)2)(r2)2
.

In particular, if r2 ≥ 2r1, then,

(5.8) VEL (Vc(r1), Vc(r2)) ≥
1

128 + (16π)2
.

Remark. We first note that the constants in (5.7), (5.8), and in similar
formulas below are not the best possible. In fact, any constants, large or small,
are good for our purpose.
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Proof. For any v ∈ V , let d(v) = diam (P (v) ∩ D(r2)), where diam (·)
denotes the euclidean diameter. Let γ be a path in G joining Vc(r1) and Vc(r2).
Then P (γ) =

⋃
w∈γ P (w) is a continuum joining c(r1) and c(r2) (see Fig-

ure 5.1).

Figure 5.1. For any path γ in G joining Vc(r1) and Vc(r2), P (γ) is a continuum

joining c(r1) and c(r2).

It follows that
∑

v∈γ d(v) ≥ r2 − r1. Let η(v) = d(v)/(r2 − r1). Thus η is
ΓG(Vc(r1), Vc(r2))-admissible, and then by (5.3),

MOD (ΓG(Vc(r1), Vc(r2))) ≤ area (η)

≤
∑

area (P (v)∩D(r2))≥(1/2)area (P (v))

(4/π) area (P (v))/(r2 − r1)2

+
∑

area (P (v)∩D(r2))<(1/2)area (P (v))

d(v)2/(r2 − r1)2.

Since any point in C lies in at most four disks in the pattern P , the first
sum on the right-hand side is bounded by (4/π) ·4 ·2 ·area (D(r2))/(r2−r1)2 =
32(r2)2/(r2− r1)2. The second sum is bounded by (8πr2)2/(r2− r1)2, because,∑

area (P (v)∩D(r2))<(1/2)area (P (v))

d(v) ≤ 4 · length (∂D(r2)) = 8πr2.

As a consequence,

(5.9) MOD (ΓG(Vc(r1), Vc(r2))) ≤ area (η) ≤ [32 + (8π)2](r2)2/(r2 − r1)2.

This implies (5.7).

Let µ : E → [0,∞) be a function on the set of edges in a graph G. Let us
denote by Gµ the electrical network based on G in which an edge e is placed
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with a resistor of conductance µ(e) (see e.g. [8]). The reduced graph of the
network Gµ is the graph formed by the same vertex set as G and those edges e
of G for which µ(e) 6= 0. A network is called connected if its reduced graph is
connected.

An edge metric in G is by definition a function m : E → [0,∞). Its area
(or µ-area) is defined by,

(5.10) area µ (m) =
∑
e∈E

µ(e)m(e)2.

The length of a path γ = (v0, v1, . . . , vk, . . . ) in the metric m is

(5.11)
∫
γ
dm =

∑
k≥1

m([vk−1, vk]).

Let Γ be a collection of paths. We call the edge metric Γ-admissible if
∫
γ dm ≥ 1

for any γ ∈ Γ. The conductance (or µ-conductance) of Γ is defined by,

(5.12) COND (Γ) = inf
{

area µ (m); m : E → [0,∞) is Γ-admissible
}
.

Its inverse is called the resistance (or µ-resistance) of Γ,

(5.13) RES (Γ) =
1

COND (Γ)
.

In case Γ = ΓG(V1, V2) where V1 and V2 are a pair of mutually dis-
joint, nonvoid subsets of vertices, we call COND (Γ) and RES (Γ) the con-
ductance and resistance between V1 and V2. We denote COND (V1, V2) =
COND (ΓG(V1, V2)), and RES (V1, V2) = RES (ΓG(V1, V2)). Again, we allow
V2 = ∞. A connected network Gµ is called recurrent (or parabolic) if the
resistance from a finite nonvoid vertex subset to the infinity is infinite; and
transient (or hyperbolic) otherwise.

Lemma 5.4. Let C > 0 be a constant. Suppose that for each vertex v, we
have

∑
v∈e µ(e) ≤ C. Then for any mutually disjoint, nonvoid subsets V1 and

V2 of V , we have:

(5.14) VEL (V1, V2) ≤ 2C · RES (V1, V2).

In particular, if G is VEL-parabolic and if Gµ is connected, then Gµ is recur-
rent.

Proof. We need show that,

COND (V1, V2) ≤ 2C ·MOD (V1, V2).

Let η : V → [0,∞) be any ΓG(V1, V2)-admissible vertex metric. Define m =
mη : E → [0,∞) by, m([v1, v2]) = η(v1)+η(v2). Then clearly, m is a ΓG(V1, V2)-
admissible edge metric. The lemma follows since,
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area µ(m) =
∑

e=[v1,v2]∈E
µ(e)(η(v1) + η(v2))2 ≤ 2

∑
e=[v1,v2]∈E

µ(e)
(
η(v1)2 + η(v2)2

)
= 2

∑
v∈V

(∑
v∈e

µ(e)
)
η(v)2 ≤ 2C

∑
v∈V

η(v)2 = 2C · area (η).

Lemma 5.5. Let Gµ be a recurrent network, let V be the set of vertices,
and let h : V → R be a bounded harmonic function. Then h is constant.

Proof. The lemma is well known to analysts. We will sketch an elementary
proof for those who are not familiar with the method. For a survey of relevant
results and their origin, we refer to [27].

First, we may assume that µ > 0 on all edges, otherwise replace G by the
reduced graph. A vertex v of a subset W of vertices is called an interior vertex
of the subset relative to G, if its neighbors in G are all contained in the subset;
otherwise it is called a boundary vertex of W relative to G. Let W be finite
and let g : W → R be a function. If for each interior vertex v of W relative to
G,

∆g(v) =
∑

e=[v,w]∈E
µ(e)(g(w)− g(v)) = 0,

then the maximum (or minimum) of g is obviously attained at some bound-
ary vertex of W relative to G. This property is referred to as the maximum
principle.

Let v0 be fixed. We will show that h(v) = h(v0) for all v. We may reduce
to the case when h(v0) = 0 and |h(v)| ≤ 1, so we make this assumption. For
each integer n ≥ 0, let Un be the set of the vertices which can be joined to
v0 by a path of combinatorial length ≤ n. In particular, U0 = {v0}. Let
∂Un = Un − Un−1, n ≥ 1. Then by an elementary argument,

(5.15) lim
n→∞

COND (U0, ∂Un) = COND (U0,∞) = 0.

On the other hand, it is easy to check that,
(5.16)

COND (U0, ∂Un) = inf
{

area µ (| 5 g|); g : V → R, g|U0 = 0, g|∂Un = 1
}
,

where |5 g|([v, w]) = |g(v) − g(w)| : E → R is the absolute gradient of g.
Let gn : V → [0, 1] be the minimizer for (5.16), which exists as Un is finite.
Then for v ∈ V − (∂Un ∪ U0), we have ∆gn(v) = 0, and as h is harmonic,
∆(gn + h)(v) = 0. But gn + h = 1 + h ≥ 1 − 1 = 0 in ∂Un and gn + h = 0
in U0. Then by the maximum principle, the minimum of gn + h in the finite
graph Un is equal to 0. That is,

(5.17) gn(v) + h(v) ≥ 0, for all v ∈ Un.
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On the other hand,∑
[v1,v2]∈E

µ([v1, v2])|gn(v1)− gn(v2)|2 = COND (U0, ∂Un)→ 0,

by (5.15). As µ([v1, v2]) > 0 for any [v1, v2] ∈ E, we deduce that

lim
n→∞

|gn(v1)− gn(v2)| = 0.

Since the graph is connected and gn(v0) = 0, we obtain, limn→∞ gn(v) = 0 for
any v. Taking limit in (5.17), it follows that h(v) ≥ 0. Similarly, −h(v) ≥ 0;
hence h(v) = 0.

We now assemble the proof of Theorem 1.1.

Proof of Theorem 1.1 (assuming Lemma 4.1). Let t ∈ [0, 1] be fixed.
Consider the network Gµ where µ is defined by (4.6). Its reduced graph is the
same as the reduced graph of the pattern P (see the remark before Lemma
4.2), and hence is connected. Lemma 4.3 says there is a universal upper bound
on the sum of the conductances of the edges from a vertex; and Lemma 5.2
tells us that G is VEL-parabolic. Then using Lemma 5.4, we deduce that the
network Gµ is recurrent.

By Lemma 4.2, h(v, t) = dl(v, t)/dt is harmonic in Gµ. By (4.5), it is
also uniformly bounded. Then by Lemma 5.5, h(v, t) is independent of v.
It follows that l(v, t) =

∫ t
0 h(v, s)ds is also independent of v. In particular,

ρ(P ∗(v))/ρ(P (v)) = ρ(P1(v))/ρ(P0(v)) = el(v,1) is constant. This implies that
P ∗ and P are images of each other by euclidean similarities.

6. Uniform bound on the ratio of radii

In this section, we prove Lemma 4.1, restated as follows:

Lemma 6.1. Let P and P ∗ be as in Theorem 1.1. There is a constant
C ≥ 1 such that for any vertex v,

1
C
≤ ρ(P ∗(v))

ρ(P (v))
≤ C.

Let G be a graph, and let V1 and V2 be nonvoid subsets of vertices in G.
Again, we allow V2 = ∞. Let Γ∗G(V1, V2) be the collection of vertex curves in
G which separate V1 from V2. Then by an elementary argument similar to the
duality argument for the extremal length of curve families in the plane (see
e.g. [23] or [13, §5]; compare [7]), we have,

(6.1) MOD (Γ∗G(V1, V2)) =
1

MOD (ΓG(V1, V2))
= VEL (V1, V2).
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Let Q be a disk pattern in C which realizes (G,Θ) where 0 ≤ Θ ≤ π/2. If
G is a disk triangulation graph and Q is locally finite in C, then for any circle
c, Vc = Vc(Q) is a connected set of vertices, and thus Q(Vc) =

⋃
v∈Vc Q(v) is

pathwise connected. It is also easy to see that for any path γ = (v0, v1, . . . , vl),
the set Q(γ) =

⋃l
k=0Q(vk) is pathwise connected.

It is well known that for an annulus of sufficiently big modulus in C
which separates 0 from ∞, there is some r > 0 such that the annulus contains
{z; r ≤ z ≤ 2r} (see e.g. [2] or [15]). Similarly, we have the following lemma.

Lemma 6.2. Let G be a disk triangulation graph and Θ : E → [0, π/2].
Let Q be a disk pattern in C which realizes the data (G,Θ). Let V0 = {v0},
V1 and V2 be mutually disjoint, finite, connected subsets of vertices, and let
V4 = ∞. Assume that for any 0 ≤ i1 < i2 < i3 ≤ 4, the set Vi2 separates Vi1
from Vi3. If

(6.2) VEL (V1, V2) > 288 + (24π)2,

then there is some r > 0 such that for any circle c concentric with Q(v0) and
of radius ρ(c) ∈ [r, 2r], the vertex subset Vc(Q) separates V1 from V2.

Proof. We may assume that Q(v0) is centered at 0. Let r > 0 be the
minimum number such that Q(v) ∩ D(r) 6= ∅ for any v ∈ V1. In fact, r =
max{dist (0, P (v)); v ∈ V1}; where dist (·, ·) denotes the euclidean distance
(see Figure 6.1). Without loss of generality, we may assume that r = 1.

Figure 6.1. The number r is the maximum of dist (0, P (v)), v ∈ V1.

Let γ∗ ∈ Γ∗G(V1, V2). Then γ∗ also separates V1 ∪ {v0} from ∞. Thus by
the minimality of r and the assumptions on V1, V2 and G, we have,

(6.3) diam (Q(γ∗)) ≥ r = 1.

By contradiction, let us assume that Lemma 6.2 fails. Then there is a
circle c(ρ1) centered at z0 = 0 and of radius ρ1 ∈ [1, 2] such that Vc(ρ1) does
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not separate V1 from V2. So there is a path γ0 in the graph joining V1 and
V2 such that γ0 ∩ Vc(ρ1) = ∅. That is, Q(γ0) ∩ c(ρ1) = ∅. In other words, the
continuum Q(γ0) is either contained in the interior of the disk D(ρ1) or in the
exterior of D(ρ1). But since D(1) has nonempty intersection with every Q(v),
v ∈ V1, and since γ0 contains a vertex of V1, we have Q(γ0) ∩D(1) 6= ∅.

Therefore Q(γ0) is contained in the interior of D(ρ1) (recall that ρ1 ≥ 1).
As γ0 ∈ ΓG(V1, V2) and γ∗ ∈ Γ∗G(V1, V2), we deduce that,

(6.4) Q(γ∗) ∩D(ρ1) ⊇ Q(γ∗) ∩Q(γ0) ⊇ Q(γ∗ ∩ γ0) 6= ∅.
For any vertex v, let η(v) = diam (Q(v) ∩ D(3)). Then η : V → [0,∞)

is a vertex metric in the graph. If γ∗ ∈ Γ∗G(V1, V2) is connected, then by (6.4)
it follows that Q(γ∗) is either contained in D(3), or is a continuum joining
c(ρ1) and c(3). In either case, by (6.3) and the inequality 3 ≥ ρ1 + 1, we have,∫
γ∗ dη =

∑
v∈γ∗ diam (Q(v) ∩D(3)) ≥ 1. Again by the assumptions on V1, V2

andG, it is easy to see that each vertex curve in Γ∗G(V1, V2) contains a connected
vertex subcurve γ∗ in Γ∗G(V1, V2). It follows that η is Γ∗G(V1, V2)-admissible.
Thus,

MOD (Γ∗G(V1, V2)) ≤ area (η).

By an argument as in Lemma 5.3 (see (5.9)), we deduce that,

MOD (Γ∗G(V1, V2)) ≤ area (η) ≤ [32 + (8π)2] · 32.

By (6.1), this contradicts (6.2).

Corollary 6.2. Let G be a disk triangulation graph and let Θ : E →
[0, π/2] be a function on the set of edges. Let Q be a disk pattern in C which
realizes the data (G,Θ). Then Q is locally finite in C if and only if G is
VEL-parabolic.

Proof. The “only if” part follows by Lemma 5.2. To prove the converse,
let G be VEL-parabolic. Let v0 be a vertex of G, and let V0 = {v0}, Vi,
i = 1, 2, . . . , be a sequence of mutually disjoint, finite, connected subsets of
vertices such that for any 0 ≤ i1 < i2 < i3, the set Vi2 separates Vi1 from Vi3 ,
and that,

VEL (Vi, Vi+1) > 288 + (24π)2.

We may assume that Q(v0) is centered at 0. Then by Lemma 6.1, for any
integer k ≥ 1, there is some rk > 0, such that for any ρ ∈ [rk, 2rk], the vertex
set Vc(ρ)(Q) separates V2k−1 from V2k.

On one hand, this implies that Vc(2rk)(Q)∩Vc(rk+1)(Q) ⊆ V2k ∩V2k+1 = ∅,
and therefore, rk+1 ≥ 2rk; hence, limk→∞ rk = +∞. On the other hand, we
deduce that the finite, connected subset V2k separates Vc(rk)(Q) from∞. Thus
there are only a finite number of disks in the pattern which intersect the disk
D(rk). It follows that Q is locally finite in the plane.
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For any disk D in C, denote,

(6.5) τ(D) =
ρ(D)

dist (0, D)
∈ (0,+∞].

For an infinite disk pattern Q in C, we may arrange the disks of Q into a
sequence, Q(vk), and define,

(6.6) τ(Q) = lim sup
v→∞

τ(Q(v)) = lim sup
k→∞

τ(Q(vk)) ∈ [0,+∞].

Clearly, τ(Q) does not depend on the order of the sequence. Moreover, if
Q is locally finite in C, and if f : C → C is a euclidean similarity, then
τ(f(Q)) = τ(Q).

Proof of Lemma 6.1. Let G, Θ, P and P ∗ be as in Theorem 1.1. We may
assume that for some fixed vertex v0, we have P ∗(v0) = P (v0) and its center
is at 0. Let v1 be any other vertex. For any circle c of Ĉ, we will denote
Vc = Vc(P ), and V ∗c = Vc(P ∗).

Case 1: τ(P ) <∞. There is some δ > 0 and a finite subset V0 of vertices
such that,

(6.7)
ρ(P (v))

dist (0, P (v))
= τ(P (v)) ≤ δ

3
, for all v ∈ V − V0.

We will assume that V0 contains the vertices v0 and v1, and that

(6.8) δ > 3.

Let r0 > 0 be such that P (V0) ⊆ D(r0). Then for any r > r0, it follows by
(6.7) and (6.8) that no disk P (v) can intersect both c(r) and c(δr). In other
words, Vc(r) ∩ Vc(δr) = ∅.

Let ri = δir0, and let Vi = Vc(ri) for i ≥ 1. Then for any 0 ≤ i1 < i2 < i3,
Vi2 separates Vi1 from Vi3 . Therefore,

VEL (V2, V2k−1) ≥
k−1∑
i=1

VEL (V2i, V2i+1).

By Lemma 5.3, VEL (V2i, V2i+1) ≥ 1/
(
128 + (16π)2

)
. It follows that,

VEL (V2, V2k−1) ≥ k − 1
128 + (16π)2

.

Let k be the following integer:

(6.9) k = 2 + the integer part of (128 + (16π)2)(288 + (24π)2).

Then,

(6.10) VEL (V2, V2k−1) > 288 + (24π)2.
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Applying Lemma 6.1 to the pattern Q = P ∗, there is some r∗, such that
for any ρ ∈ [r∗, 2r∗], the vertex set V ∗c(ρ) separates V2 from V2k−1. It follows
that V ∗c(ρ) also separates V1 from V2k. Moreover, V ∗c(ρ) ∩ V1 ⊆ V2 ∩ V1 = ∅ and
V ∗c(ρ) ∩ V2k ⊆ V2k−1 ∩ V2k = ∅. Therefore P ∗(V1) is contained in the interior
disk of c(r∗), and P ∗(V2k) lies in the exterior disk of c(2r∗). (See Figure 6.2.)

Figure 6.2. The sets P (V1), P (V2k), P ∗(V1) and P ∗(V2k) (not drawn to scale).

Consider the subgraph G1 of G consisting of the vertices v for which
P (v) ∩ D(r1) 6= ∅ and the corresponding edges. Then the disks P ∗(v), v ∈
V (G1), are contained in the disk D(r∗) ⊂ D(2r∗). Using Lemma 2.3, we
deduce that for each v ∈ V (G1),

ρ hyp ((1/(2r∗))P ∗(v)) ≤ ρ hyp ((1/r1)P (v)).

In particular, for v = vj , j = 0, 1,

(6.11) ρ hyp

(
(1/(2r∗))P ∗(vj)

)
≤ ρ hyp

(
(1/r1)P (vj)

)
.

On the other hand, consider the subgraph G2 consisting of the vertices v
for which P ∗(v) ∩ D(2r∗) 6= ∅ and the corresponding edges. Then the disks
P (v), v ∈ G2, are contained in the interior of D(r2k). If follows by Lemma 2.3
again that,

ρ hyp ((1/(2r∗))P ∗(v)) ≥ ρ hyp ((1/r2k)P (v)), for all v ∈ V (G2).

Thus, for v = vj , j = 0, 1,

(6.12) ρ hyp

(
(1/(2r∗))P ∗(vj)

)
≥ ρ hyp

(
(1/r2k)P (vj)

)
.

Since the disks (1/(2r∗))P ∗(vj), (1/r1)P (vj), (1/r2k)P (vj), j = 0, 1, are
all contained in (1/2)U , it follows that their euclidean radii are comparable with
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their hyperbolic radii. So by (6.11) and (6.12), there is a universal constant
C0 > 0 such that,

(1/(2r∗))ρ(P ∗(vj)) ≤ C0(1/r1)ρ(P (vj)),

and

C0(1/(2r∗))ρ(P ∗(vj)) ≥ (1/r2k)ρ(P (vj)) = δ−(2k−1)(1/r1)ρ(P (vj)),

where j = 0, 1. As P ∗(v0) = P (v0), it follows that 1/(2r∗) ≤ C0/r1 and
C0/(2r∗) ≥ δ−(2k−1)/r1. Then,

ρ(P ∗(v1))/ρ(P (v1)) ≤ C0(2r∗)/r1 ≤ (C0)2δ2k−1 = C,

and

ρ(P ∗(v1))/ρ(P (v1)) ≥ δ−(2k−1)(2r∗)/(C0r1) ≥ δ−(2k−1)/(C0)2 = 1/C.

Since the constant C does not depend on v1, Lemma 4.1 is proved in case
τ(P ) <∞.

Case 2: τ(P ) =∞. Let W be the subset of vertices v for which

τ(P (v)) = ρ(P (v))/dist (0, P (v)) ≥ 1.

Then clearly W is infinite.

Lemma 6.3. Assume that τ(P ) = +∞. Then

(6.13) lim sup
v∈W, v→∞

τ(P ∗(v)) > 0.

Proof. Assume the contrary. Then for any 0 < ε < 1/2, there is a finite
subset of vertices V0 in G, with v0 ∈ V0, such that

(6.14) ρ(P ∗(v))/dist (0, P ∗(v)) = τ(P ∗(v)) < ε, for all v ∈W − V0.

The choice of ε will be made later. Let W ′ = W − V0, and let G̃ be the
subgraph of G obtained by removing the vertices in W ′ as well as the edges
with an end in W ′.

Let r0 > 0 be such that P (V0) ⊂ D(r0). Let ri = 4ir0, and let Vi = Vc(ri),
i ≥ 1. Then for i 6= j, Vi ∩ Vj ⊂ W ′ = W − V0, and for any 0 ≤ i1 < i2 < i3,
Vi2 separates Vi1 from Vi3 in G. Let VELG̃ (Vi, Vj) denote the vertex extremal
length between Vi ∩ (V −W ′) and Vj ∩ (V −W ′) in the subgraph G̃.

Let k be the following integer:

(6.15) k = 2 + the integer part of 2(128 + (16π)2)(288 + (24π)2).
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As before, by applying Lemma 5.3 to G̃, we have,

VELG̃ (V2, V2k−1) ≥
k−1∑
i=1

VELG̃ (V2i, V2i+1)(6.16)

≥ k − 1
128 + (16π)2

> 2[288 + (24π)2].

We claim that there is some r∗ > 0 such that for any ρ ∈ [r∗, 2r∗], the
vertex subset V ∗c(ρ) separates V2 from V2k−1 in G. Assuming this, it follows that
V2 ∩ V2k−1 ⊂ V ∗c(r∗) ∩ V ∗c(2r∗). On the other hand, V2 ∩ V2k−1 ⊂ W ′ = W − V0.
Then by (6.14), we deduce that V2 ∩ V2k−1 ⊂ V ∗c(r∗) ∩ V ∗c(2r∗) ∩ (W − V0) = ∅.
That is, Vc(42r0) ∩ Vc(42k−1r0) = ∅. As r0 is arbitrary but sufficiently big, this
implies that τ(P ) ≤ (42k−3 − 1)/2, a contradiction.

To show the existence of r∗ with the above property, let U2,2k−1 be the
set of vertices in G which is separated from V0 by V2, and separated from
∞ by V2k−1. In fact, U2,2k−1 is equal to the set of vertices v for which P (v)
has nonempty intersection with the annulus bounded by c(r2) and c(r2k−1).
Let W ′′ = U2,2k−1 ∩W . Then, clearly the cardinality of W ′′ is bounded by a
universal constant C1.

Let r∗ > 0 be the minimum number such that P ∗(v) ∩D(r∗) 6= ∅ for any
v ∈ V2. We may assume that r∗ = 1. Let γ∗ ∈ Γ∗G(V2, V2k−1). As in Lemma
6.1, the diameter of P ∗(γ∗) is at least equal to r∗:

(6.17) diam (P ∗(γ∗)) ≥ r∗ = 1.

By contradiction, let us assume that there is a circle c(ρ1) with ρ1 ∈ [1, 2]
such that V ∗c(ρ1) does not separate V2 from V2k−1. Thus there is a path γ0 in
the graph joining V2 and V2k−1 such that γ0 ∩ V ∗c(ρ1) = ∅. As in Lemma 6.1,
P ∗(γ0) is contained in the interior of D(ρ1), and then,

(6.18) P ∗(γ∗) ∩D(ρ1) ⊇ P ∗(γ∗ ∩ γ0) 6= ∅.
For any vertex v ∈ V , let η(v) = diam (P ∗(v) ∩D(3)). Using (6.17) and

(6.18), and since 3 ≥ ρ1 + 1, we deduce that for any connected vertex curve γ∗

in Γ∗G(V2, V2k−1),

(6.19)
∑
v∈γ∗

η(v) ≥ 1.

But since V2 and V2k−1 are finite and connected and G is a disk triangulation
graph, any vertex curve in Γ∗G(V2, V2k−1) contains a connected vertex subcurve
in Γ∗G(V2, V2k−1). Thus (6.19) holds for any γ∗ in Γ∗G(V2, V2k−1).

By (6.14), we have η(v) ≤ 6ε for any v ∈W ′ ⊇W ′′. Since the cardinality
of W ′′ is at most C1, we see that

(6.20)
∑
v∈W ′′

η(v) ≤ 6C1ε.
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Now let β∗ ∈ Γ∗
G̃

(
V2∩(V−W ′), V2k−1∩(V−W ′)

)
. Then, the union γ∗ = β∗∪W ′′

is a vertex curve in Γ∗G(V2, V2k−1). Using (6.19) and (6.20), we deduce that

∑
v∈β∗

η(v) ≥ 1− 6C1ε.

We choose ε > 0 so small that 1− 6C1ε ≥ 1/
√

2. Then
√

2η is Γ∗
G̃

(
V2 ∩ (V −

W ′), V2k−1 ∩ (V −W ′)
)
-admissible. Thus by (6.1),

VELG̃ (V2, V2k−1) = MOD
(
Γ∗
G̃

(V2 ∩ (V −W ′), V2k−1 ∩ (V −W ′))
)

≤ area (
√

2η).

As in Lemma 6.1, it follows that

VELG̃ (V2, V2k−1) ≤ 2 · area (η) ≤ 2[32 + (8π)2] · 32.

This contradicts (6.16). The proof of Lemma 6.3 is thus complete.

Proof of Lemma 6.1, Case 2 (continued). Let δ ∈ (0, 1/3) be a fixed num-
ber strictly smaller than third of the limit in (6.13). Then, there is a sequence of
mutually distinct vertices uk such that τ(P (uk)) ≥ 1 and τ(P ∗(uk)) ≥ 3δ. As P
and P ∗ are both locally finite in C (see Cor. 6.2), we have dist (0, P (uk))→∞
and dist (0, P ∗(uk))→∞.

Let ρ0 > 0 be such that P (v0)∪P (v1)∪P ∗(v0)∪P ∗(v1) ⊆ D(ρ0). Let u =
uk be a vertex in the above sequence such that d = dist (0, P (uk)) ≥ 100ρ0/δ

2

and d∗ = dist (0, P ∗(uk)) ≥ 100ρ0/δ
2. See Figure 6.3 for the configuration of

D(ρ0) and P (u). The figure of P ∗(u) is similar.
Let F be a Möbius transformation with F (0) = 0 and F (Ĉ− P (u)) = U ,

and let F ∗ be a Möbius transformation with F ∗(0) = 0 and F ∗(Ĉ−P ∗(u)) = U .
Then the hyperbolic distance between F (∞) and 0 is bigger than the hyper-
bolic distance between 0 and ρ(P (u))/(d + ρ0 + ρ(P (u))). It follows then
|F (∞)| = ρ(P (u))/(d + ρ(P (u))) = τ(P (u))/(1 + τ(P (u))) > 1/3 > δ. Sim-
ilarly, |F ∗(∞)| = τ(P ∗(u))/(1 + τ(P ∗(u))) ≥ 3δ/(1.01 + 3δ) > δ. Also, it is
easy to see from ρ0 ≤ δ2d/100 and ρ0 ≤ δ2d∗/100 that the disks F (D(ρ0)),
F ∗(D(ρ0)); hence F (P (v0)), F (P (v1)), F ∗(P ∗(v0)), and F ∗(P (v1)) are all con-
tained in (δ/2)U .
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Figure 6.3. The disks D(ρ0) and P (u) (not drawn to scale).

Since dist (0, P (u)) ≥ 100ρ0, the absolute derivative |dF/dz| of F in D(ρ0)
does not vary by a factor ≥ 2. Therefore, the ratio between

ρ(F (P (v1)))/ρ(F (P (v0)))

and
ρ(P (v1))/ρ(P (v0))

is in [1/4, 4]. Similarly, the ratio between

ρ(F ∗(P ∗(v1)))/ρ(F ∗(P ∗(v0)))

and
ρ(P ∗(v1))/ρ(P ∗(v0))

is in [1/4, 4]. As P (v0) = P ∗(v0), in order to get lower and upper bounds for
ρ(P ∗(v1))/ρ(P (v1)), we need show that ρ(F (P (v1)))/ρ(F (P (v0))) is compara-
ble with ρ(F ∗(P ∗(v1)))/ρ(F ∗(P ∗(v0))).

Compare the pattern (1/δ)F (P ) with F ∗(P ∗). In the first pattern, as
|F (∞)| > δ and F (P ) is locally finite in Ĉ− {F (∞)}, only a finite number of
disks intersect with U . Using Lemma 2.3 as in Case 1, we obtain, for j = 0, 1,

ρ hyp ((1/δ)F (P (vj))) ≥ ρ hyp (F ∗(P ∗(vj))).

Similarly, comparing F (P ) with (1/δ)F ∗(P ∗), as |F ∗(∞)| > δ, we obtain

ρ hyp (F (P (vj))) ≤ ρ hyp ((1/δ)F ∗(P ∗(vj))).

Lemma 4.1 follows since all the disks involved are contained in (1/2)U .
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7. Uniformization of disk patterns

In this section, we will prove Uniformization Theorem 1.3. The following
is an analog of the Ring Lemma of [21]:

Lemma 7.1. Let G be a graph and let Θ : E → [0, π/2] be a function on
the set of edges. Let P be a disk pattern in C which realizes the data (G,Θ). Let
v0 be an interior vertex, and let v1, v2, . . . , vl, vl+1 = v1 be a closed chain of
neighboring vertices. Assume that the vertices vk, 1 ≤ k ≤ l, are also interior
vertices. Then there is a constant C1 = C1(v0, G,Θ) depending on v0, G, and
Θ, such that,

(7.1) ρ(P (v0)) ≤ C1ρ(P (vk)), 1 ≤ k ≤ l.

Proof. Assume that no such constant C1 exists. Then there is a sequence
of patterns Pn in the plane which realize (G,Θ), such that Pn(v0) = D(1),
and limn→∞ ρ(Pn(vk)) = 0 for some k, 1 ≤ k ≤ l. By subtracting a subse-
quence, we may assume that for each vertex v in the graph, limn→∞ ρ(Pn(v))
exists in [0,∞]. Denote by W+ the set of vertices v in the graph for which
limn→∞ ρ(Pn(v)) > 0, and W− = V −W+.

For any integer m ≥ 0, let Um be the set of vertices in G whose combina-
torial distance from v0 is at most m, and let Vm = Um − Um−1. Then clearly,
V1 contains at least two vertices in W+ and V2 contains at least three vertices
in W+. We have vk ∈ V−. Let W ′− be the set of vertices in U2 ∩W−, which
may be joined to vk by a path passing through vertices in U2 ∩W− only. Let
W ′+ be the set of vertices in U2 which share an edge with a vertex in W ′−. It is
then easy to see that W ′+ consists of the (distinct) vertices: v0, v1,i, 1 ≤ i ≤ i1,
and v2,j , 1 ≤ j ≤ j1, where v1,i ∈ V1, v2,j ∈ V2, i1 ≥ 2 and j1 ≥ 1.

Replacing by a subsequence if necessary, we may assume that for each
v ∈W ′+, the sequence of disks Pn(v) converges to some disk P∞(v) in Ĉ. These
limit disks all pass through a single point on the unit circle ∂P∞(v0) = c(1).
Moreover, for each j, as the vertices v0 and v2,j do not share an edge in G,
the disks P∞(v0) and P∞(v2,j) should then be tangent. It follows that j1 = 1;
otherwise Θ(v2,1v2,2) would be equal to π. Similarly, i1 = 2. Then w0 = v0,
w1 = v2,1, w2 = v2,1, w3 = v1,2, w4 = w0 form a simple loop of four edges
in G which separates the vertices of G. Moreover, Θ(wiwi+1) = π/2. This
contradicts conditions (C1) and (C2) in Section 1. The lemma is thus proved.

Let G be a disk triangulation graph and let Θ : E → [0, π/2] be a function
on the set of edges. Suppose that conditions (C1) and (C2) in Section 1 are
satisfied. Let Gn be an increasing sequence of subgraphs of G whose union is
G. Again, we will choose Gn to be one-skeletons of triangulations of the closed
topological disk. Then using Andreev’s theorem ([26]), for each n, there is a
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disk pattern Pn which realizes (Gn,Θ|Gn). Moreover, we may assume that all
disks are contained in the closed unit disk U = D(1), and that the boundary
disks are all internally tangent to ∂U .

Let v0 be a fixed vertex. By means of Möbius transformations preserving
U , we may assume that for each n, the disk Pn(v0) is centered at 0. Let
δn = 1/ρ(Pn(v0)). Then by Lemma 2.3, δn is an increasing sequence. Consider
Qn = δnPn. Then Qn(v0) = D(1) for each n. Let v be a vertex in G. Using
Lemma 7.1 inductively, there is a constant C2(v) = C2(v,G,Θ) ≥ 1 such that
for any big n,

(7.2) 1/C2(v) ≤ ρ(Qn(v)) ≤ C2(v).

Thus by subtracting a subsequence if necessary, we may assume that each
sequence Qn(v) converges to a bounded disk Q(v) in C. Clearly, the dihedral
angle of a pair of neighboring disks is preserved in the limit. Thus we have
proved the following lemma:

Lemma 7.2. Let G be a disk triangulation graph and let Θ : E → [0, π/2]
be a function of edges. Suppose that conditions (C1) and (C2) are satisfied.
Then there is a disk pattern Q in C which realizes the data (G,Θ).

Remark. With a similar proof, Lemma 7.2 also holds if G is the one-
skeleton of a triangulation of a planar surface possibly with boundary so that
each boundary component has at least four vertices, or just any connected
planar graph with at least five vertices such that each edge has two distinct
vertices and through a pair of vertices there is at most one edge.

Theorem 1.3 follows from Lemma 7.2, Corollary 6.2, and the following
lemma.

Lemma 7.3. Let G be a disk triangulation graph and let Θ : E → [0, π/2].
Suppose that conditions (C1) and (C2) are satisfied. Then the following state-
ments are equivalent :

(1) The graph G is VEL-hyperbolic;
(2) For any increasing sequence of finite, connected subsets of vertices Vk in

G such that V∞ =
⋃∞
k=1 Vk is infinite, we have limk→∞VEL (Vk,∞) = 0;

(3) There is a disk pattern P , locally finite in U , which realizes (G,Θ).

Proof. By Corollary 6.2, (3) implies (1). Assuming that (1) holds, let
us prove (2). As the sequence VEL (Vk,∞) is monotone decreasing, we need
only show that a subsequence converges to 0. Let Q be a disk pattern in C
which realizes (G,Θ) (actually we may assume Θ = 0). There is a unique
simply connected domain Ω in C, such that Q is (contained and) locally finite
in Ω. By Corollary 6.2, Ω 6= C. Let x∞ ∈ ∂Ω be a limit point of Q(V∞) =
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v∈V∞ Q(v) ⊆ Ω. Inverting the disk pattern on a circle centered at x∞, we may

assume that x∞ = ∞. Let r0 > 0 be big such that Q(V1) ⊂ D(r0) and that
D(r0)∩∂Ω 6= ∅. Let rk, k ≥ 1, be an increasing sequence such that rk ≥ 2rk−1,
and that Vc(rk) ∩ Vc(rk−1) = ∅, where Vc = Vc(Q) = {v; Q(v) ∩ c 6= ∅}.

Let sk ≥ 0 be the minimum number such that D(sk) ∩ Q(v) 6= ∅ for any
v ∈ Vk. Since ∞ is a limit point of Q(V∞), we deduce that sk diverges to ∞.
Dropping a subsequence of Vk if necessary, we may assume that sk ≥ rk. Let
k = 2m. Then, as D(r0) ∩ ∂Ω 6= ∅, any vertex curve in Γ∗G(V2m,∞) contains
a path connecting Vc(r1) to Vc(r2m), and hence a disjoint union of subpaths γi,
1 ≤ i ≤ m, with γi ∈ ΓG(Vc(r2i−1), Vc(r2i)). It follows that

VEL (Γ∗G(V2m,∞)) ≥
m∑
i=1

VEL (Vc(r2i−1), Vc(r2i)).

Then by Lemma 5.3, we deduce that,

VEL (Γ∗G(V2m,∞) ≥ m

128 + (16π)2
.

Thus by (6.1), we obtain VEL (V2m,∞)) = 1/VEL (Γ∗G(V2m,∞))→ 0.
It remains to show that (2) implies (3). As VEL (Vk,∞) is finite for suf-

ficiently big k, the graph G is VEL-hyperbolic. Let Gn, Pn, δn = 1/ρ(Pn(v0)),
Qn = δnPn and Q = limn→∞Qn be as constructed before the statement of
Lemma 7.2. Let δ∞ = limn→∞ δn. Clearly, Q is contained in D(δ∞), and
hence in intD(δ∞) = {z ∈ C; |z| < δ∞} because G is a disk triangulation
graph. We will show that Q is locally finite in intD(δ∞). Then it follows by
Corollary 6.2 that δ∞ is finite and therefore P = (1/δ∞)Q is the required disk
pattern.

By contradiction, assume that Q is not locally finite in intD(δ∞). Let
δ′0 < δ∞ be such that the set W of vertices v for which Q(v) ∩ D(δ′0) 6= ∅ is
infinite. Then it is elementary to see that W contains an infinite simple path
(v0, v1, v2, . . . , vk, . . . ) in the graph. Let Vk = {v0, v1, . . . , vk}. Let δ′1, δ′2, be
some fixed numbers with δ′0 < δ′1 < δ′2 < δ∞. Then for each k, there is some
n = nk such that δnk > δ′2 and Qnk(vi) ∩D(δ′1) 6= ∅ for 0 ≤ i ≤ k. Applying
Lemma 5.3 to Qnk , we obtain,

VEL (Vk, ∂Gnk) ≥ VEL (Vc(δ′1)(Qnk), Vc(δ′2)(Qnk)) ≥ (δ′2 − δ′1)2

(δ′2)2(32 + (8π)2)
,

where ∂Gnk denotes the set of boundary vertices of Gnk . In particular,
VEL (Vk,∞) ≥ VEL (Vk, ∂Gnk) cannot converge to 0, a contradiction to (2).

Remark. We do not know if the equivalence of (1) and (2) in the above
lemma holds for any locally finite, connected graph with a finite number of
ends.
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