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Abstract. The present discourse establish the geometrical bearing on La-
grangian submanifold of complex space form in terms of r-Newton-Ricci-Bourguignon
almost soliton where ρ 6= 0. Moreover, we extensively study the conception of La-
gragian immersion of Ricci-Bourguignon almost solitons and arrive at the sufficient
conditions for H-minimal and totally geodesic under Newton transformation with
the potential function ψ : Mn −→ R. Finally, we conclude our paper with the study
of 1-almost Newton-Ricci-Bourguignon almost solitons on Lagragian submanifold of
complex space form immersed in a locally symmetric Einstein manifold.
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1. Introduction

In 1981, the conception of Ricci-Bourguignon flow as a extension of Ricci flow [16]
has been initiated by J. P. Bourguinon [5] based on some unprinted work of Lich-
nerowicz and a paper of Aubin [1]. Ricci-Bourguignon flow are intrinsic geometric
flow on pseudo-Riemannian manifolds, whose fixed points are solitons.
Ricci-Bourguignon solitons, which generates self-similar solution to the Ricci-Bourguignon
flow [7]

∂g

∂t
= −2(Ric− ρRg), g(0) = g0, (1)

where Ric is the Ricci curvature tensor , R is the scalar curvature with respect to
the g and ρ is a real non zero constant. It should be noticed that for special values of
the constant ρ in equation (1) we have obtain the following situations for the tensor
Ric − ρRg appearing in equation (1). This PDE system (1) defined the evolution
equation is of special interest, in particular [7],
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1. ρ = 1
2 , the Einstein tensor Ric− R

2 g,

2. ρ = 1
n , the traceless Ricci tensor Ric− R

n g,

3. ρ = 1
2(n−1) , the Schouten tenosr Ric− R

2(n−1) ,

4. ρ = 0, the Ricci tensor Ric.

In dimension two, the first three tensors are zero, hence the flow is static and in
higher dimension the value of ρ are strictly ordered as above in descending order.

Short time existence and uniqueness for the solution of this geometric flow has
been proved in [7]. In fact, for sufficiently small t the equation has a unique solution
for ρ < 1

2(n−1) .
In the other hand, quasi Einstein metrics or Ricci solitons serve as a solution

to Ricci flow equation [8]. This motivates a more general type of Ricci soliton by
considering the Ricci-Bourguignon flow. In fact, a pseudo-Riemannian manifold of
dimension n ≥ 3 is said to be Ricci-Bourguignon soliton [1] if

1

2
LXg +Ric+ (λ+ ρR)g = 0, (2)

where LX denotes the Lie derivative operator along vector field X and λ is an arbi-
trary real constant. Similar to Ricci solitons, a Ricci-Bourguignon soliton is called
expanding if λ > 0, steady if λ = 0 and shrinking if λ < 0.

According to Pigola et al. [18] if we assume that the constant λ in (2) as a
smooth function λ ∈ C∞(M), called soliton function, then we say that (M, g) is
Ricci-Bourguignon almost soliton, see ([2] [4], [7]). This concept drags the attention
of many geometers. Therefore, in recent years much effort has been devoted to the
classification of self-similar solutions of geometric flows.

In fact, the some axioms and physical application of Ricci-Bourguignon flow
recently studied by Cantino and Mazzieri [7]. In this more general setting, we call
(2) as being fundamental equation of an Ricci-Bourguignon almost soliton.

Definition 1. [7] A Riemannian manifold (M, g) of dimension n is said to be the
gradinet Ricci almost soliton or almost gradient Ricci soliton if

Ric− 1

2
Rg +∇2ψ = λg, (3)

for some function ψ, λ ∈ C∞(M), where ψ : M −→ R and X = ∇ψ.

A more general type gradient Eisntein soliton [8] has been deduced by considering
the following Ricci-Bourguignon flow ([6], [16]).
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Definition 2. [6] A Riemannian manifold (M, g) of dimension n ≥ 3 is said to be
the gradient Ricci-Bourguignon almost soliton if

Ric+∇2ψ = λg + ρRg, ρ ∈ R, ρ 6= 0, (4)

for some function ψ, λ ∈ C∞(M). The function ψ : M −→ R is called Ricci-
Bourguignon potential, when vector filed X = ∇ψ type. The gradient Ricci-Bourguignon
almost soliton is called shrinking, steady or expanding according as λ < 0, λ = 0 and
λ > 0, respectively. In some studies Ricci-Bourguignon almost soliton is also known
as Ricci ρ-almost soliton [21] for some special values of ρ.

Many geometers extensively studied the above mentioned solitons which is closely
related to this paper, for further details see ([8], [9],[18], [20], [21], [22]).

In 2011, Barros and his co-authors [3] discussed isometric immersions of an al-
most Ricci soliton (Mn, g,X, λ) in to Riemannian manifold Mn+p. Particularly, if
Mn+p has non-positive sectional curvature, they proved that an almost Ricci soliton
is a Ricci soliton and the vector field has integrable norm on Mn, then Mn can not
be minimal. Furthermore, in [24] Wylie proved that if (Mn, g,X, λ) is a shrinking
Ricci soliton, with X having bounded norm on Mn, then Mn must be compact. In
of case, if Mn+p is a space form of non-positive sectional curvature, then such an
immersions can not be minimal. Recently, in 2018, Cunah and his co-authors [10]
have studied the immersed almost Ricci solitons under Newton transformation Pr
with second order differential operators Lr and developed a new concept of r-almost
Newton-Ricci soliton, for some 0 ≤ r ≤ n. In contrast Ejiri [15] studied totally real
minimal immersions of n-dimensional Real Space Forms into n-dimensional complex
Space.

Let M is an r-Newton-Ricci-Bourguignon almost soliton, for some 0 ≤ r ≤ n, if
there exist a smooth function ψ : Mn −→ R such that [6]

Ric+ Pr ◦Hessψ = λg + ρRg, (5)

where λ is a smooth function on Mn and Pr ◦Hessψ stands for tensor given by

Pr ◦Hessψ(X,Y ) = g(Pr∇X∇ψ, Y ), (6)

for tangent vectors fields X,Y ∈ χ(M). For r = 0, equation (5) reduces to the
definition of a gradient Ricci-Bourguignon almost soliton.

On the one hand, Lagrangian submanifolds of complex space forms have been
deeply studied since the decade 1970’s. The geometry of Lagrangian submanifolds
have been important geometric objects of the study in symplectic geometry. Sym-
plectic geometry covers different classes of symplectic manifolds [?]. The main study
related to the Hamiltonian dynamics and some special types of submanifolds mainly
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Lagrangian submanifolds (symplectic case). Symplectic geometry is a relatively new
field in mathematics, and has connections to algebraic geometry, dynamical systems,
geometric topology, and theoretical physics. In 1990’s Oh [17] introduced the study
of Hamiltonian minimal (H-minimal) Lagrangian submanifolds in complex Kähler
manifold. This is a nice extensions of the notion of minimal submanifold, and has
been studied by other geometers such as ([5], [6], [14], [25]). Also, a detailed survey
about Lagrangian submanifolds can be found in [6].

Therefore, inspired by the above literature’s in the present manuscript we have
explore the study of r-Newton-Ricci-Bourguignon almost soliton on Lagrangian sub-
manifolds of complex form. r-Newton-Ricci-Bourguignon almost soliton is the ex-
pansion of the previous research, therefore we can extensively furnish the previous
results more exclusively.

2. Preliminaries

In 1993, Oh defined the Hamiltonian deformation of Lagragian submanifolds in
complex manifold (Kähler manifold). Let M̄ be a complex n-dimensional Kähler
manifold with Kähler form ω , Riemannian metric g and complex structure J .

Let ϕ : Mn −→ M̄ be a Lagrangian immersion from a real n-dimensional man-
ifold M to M̄n+p. For a vector field X along φ we define a 1-form αX on M as
αX = g(JX, .). Smooth family of embedding et : M −→ P is called Hamiltonian de-
formation if for the variational vector field X, the 1-form αX is exact. A Lagerangian
submanifold M is Hamiltonian minimal (or H-minimal) if M is stationary for any
Hamiltonian deformation Oh [17] proved that when M is compact, M is H-minimal
if and only if αH is co-closed, i.e, Euler-Lagrange’s equation δαH = 0 where H is
the mean curvature vector field of M . We have

M is Hamiltonian minimal⇔ divJH = 0.

Now, again let ϕ : Mn −→ M̄ be a Lagrangian immersion into an n-dimensional
Riemannian manifold M̄ .

Let M̄(4c) be an n-dimensional complex space form with constant holomorphic
sectional curvature 4c and let M = Mn be a Lagrangian submanifold in M̄n(4c) [2].

The Gauss equation of the immersion is given by

R(X,Y )Z = (R̄(X,Y )Z)T ) + g(AX,Z)AY − g(AY,Z)AX (7)

for every tangent vector fields X,Y, Z ∈ χ(M), where ()T denotes the tangential
components of a vector field in χ(M) along Mn. A : χ(M) −→ χ(M) stands for
second fundamental form (or shape operator) of Mn in Mn+1 with respect to a fixed
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orientation, R̄ and R denotes the curvature tensors of M and M̄ , respectively. In
particular, the scalar curvature τ of the submanifold Mn satisfies

τ =
n∑
i,j

g(R̄(Ei, Ej)Ej , Ei) +H2 − |A|2 , (8)

where {E1, ......En} is an orthonormal frame on TM and |.| denotes the Hilbert-
Schmidt norm. When Mn+1 is a space form of constant sectional curvature c, we
have the identity

τ = n(n− 1)c+ nH2 − ‖A‖2 . (9)

Associated to second fundamental form A of the Mn there are n algebraic invariants,
which are the elementary symmetric functions τr of its principal curvatures k1, ...kn,
given by

τ0 = 1, τr =
∑

i1<...<ir

k1, ...kn. (10)

The r-th mean curvature Hr of the immersion is define by (nr )Hr = τr.
If r = 0, we have H1 = 1

nTr(A) = H the mean curvature of Mn.
For each 0 ≤ r ≤ n, we defines the Newton transformation Pr : χ(M) −→ χ(M)

of the Mn be setting P0 = I (the identity operator) and for 0 ≤ r ≤ n, by the
recurrence relation

Pr =
r∑
j=0

(−1)r−j(nj )HjA
r−j , (11)

where Aj denotes the composition of A with itself, j times (A0 = I). Let us recall
that associated to each Newton transformation Pr one has the second order linear
differential operator Lr : C∞(M) −→ C∞(M) defined by

Lru = Tr(Pr ◦Hessu). (12)

When r = 0, w note that L0 is just the Laplacian operator. Moreover, it is not
difficult to see that

divm(Pr∇u) =

n∑
i=1

g(∇EiPr)∇u, Ei) +

n∑
i=1

g(Pr(∇Ei∇u), Ei) (13)

= g(divMPr,∇u) + Lru,
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where the divergence of Pr on Mn is given by

divMPr = Tr(∇Pr) =

n∑
i=1

(∇EiPr)Ei. (14)

In particular, when the ambient space has constant sectional curvature equation
(13) reduces to

Lru = divM (Pr∇u), (15)

because divMPr = 0 (see [19] for more details).
Our aim, it also will be appropriate to deal with the so called traceless second

fundamental form of the submanifold Mn, which is is given by

Φ = AHI, Tr(Φ) = 0. (16)

and

|Φ|2 = Tr(Φ2) = |A|2 − nH2 ≥ 0. (17)

with equality if and only if Mn is totally umbilical.
In order to establish our results let us mention the following maximum principle

due to Caminha et al. for more details see [12]. We follows that, for each p ≥ 1 use
the notation

Lp(M) =

{
u : Mn −→ R;

∫
M
|u|p dm < +∞

}
. (18)

Also, we have the following lemma:

Lemma 1. Let X be a smooth vector field on the n-dimensional, complete, non
compact, oriented Riemannian manifold Mn, such that divMX does not change
sign on Mn. If |X| ∈ L1(M), then divMX = 0.

The following results further generalized Theorem 1.2 in [3].

Theorem 2. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of constant sec-
tional curvature c, with bounded second fundamental form and potential function
ψ : Mn −→ R such that |∇ψ| ∈ L1(M). Then we have

1. If c ≤ 0, λ > 0 and ρ > 1
n , then Mn can not be H-minimal.

2. If c < 0, λ ≥ 0 and ρ > 1
n , then Mn can not be H-minimal.
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3. If c = 0, λ ≥ 0, ρ > 1
n is H-minimal, then Mn is isometric to the Rn.

Proof. We know that the ambient space has constant sectional curvature, by equa-
tion (15) the operator Lr is a divergent type operator. On the other side, since
Mn has bounded second fundamental form it follows from (11) that the Newton
transformation Pr has bounded norm. In particular,

|Pr∇ψ| ≤ |Pr| |∇ψ| ∈ L1(M), (19)

Adopting (1) and (2), let us consider by contradiction that Mn is minimal. Then,
equation (9) jointly with the considering c ≤ 0 (c < 0) imply that the scalar
curvature of Mn satisfies τ ≤ 0(τ < 0). Hence, contracting (5) we have Lrψ =
nλ− (1− nρ)τ > 0 in both case, which contradicts Lemma (1), since the fact after
mentioned. This completes the proof of the first two assertions.

For the (3) assertion, since the ambient space has constant sectional curvature
c = 0 and Mn is minimal, then the equation (9) becomes as

τ = −‖A‖2 ≤ 0. (20)

So, since λ ≥ 0 and nρ > 1 we have that Lr(ψ) = nλ − (1 − nρ)τ ≥ 0. Now,
using the fact that Lru = divM (Pr∇u) and |Pr∇ψ| ∈ L1(M), we have again from
Lemma 1 that Lrψ = 0 on Mn. Hence, we conclude that 0 ≥ τ = nλ

(1−nρ) ≥ 0, that

is, τ = λ
(1−nρ) = 0. This implies that |A|2 = 0. Therefore, the r-Newton-Ricci-

Bourguignon almost soliton Mn must be geodesic and flat.

I order to prove our next theorems we will need the following lemmas, which corre-
sponds to Theorem 3 [3].

Lemma 3. Let u be a non-negative smooth subharmonic function on a complete
Riemannian manifold Mn. If u ∈ Lp(M), for some p > 1, the u is constant.

Further, we are in condition to establish the following result, which holds when
the ambient space is an arbitrary Riemannian manifold.

Theorem 4. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of sectional cur-
vature K, such that Pr is bounded from above (in the sense of quadratic forms) and
its potential function ψ : Mn −→ R is non-negative and ψ ∈ Lp(M) for some p > 1.
Then we have

1. If K ≤ 0, λ > 0 and ρ > 1
n , then Mn can not be H-minimal,

2. If K < 0, λ ≥ 0 and ρ > 1
n , then Mn can not be H-minimal,
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3. If K ≤ 0, λ ≥ 0, ρ > 1
n and Mn is H-minimal, then Mn is flat and totally

geodesic.

Proof. For proving (1), we begin with a contradiction that Mn is minimal our as-
sumption on the sectional curvature of the ambient space and equation (8) imply
that τ ≤ 0. Hence, contracting equation (5) we have

Lrψ = nλ− (1− nρ)τ > 0. (21)

Thus, since we are considering that Pr is bounded from above, there exists a positive
constant β such that

β∆ψ ≥ Lrψ > 0. (22)

In particular, from Lemma (3) we get that ψ must be constant, which gives a
contradiction. Finally, reasoning as in the proof of Theorem (2) we can easily obtain
(2) and (3).

In our next results we generalized Theorem 1.5 of [3] for the case when X = ∇ψ,
giving conditions for a r- Newton-Ricci-Bourguignon almsot soliton immersed be
totally umbilical since it has bounded second fundamental form. Therefore, we
prove the following theorem:

Theorem 5. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of constant sec-
tional curvature c, with bounded second fundamental form and potential function
ψ : Mn −→ R such that |∇ψ| ∈ L1(M). Then we have

1. ρ > 1
n and λ ≥ (1 − nρ)(n − 1)c + nH2, then Mn is totally geodesic, with

λ = (1− nρ)(n− 1)c, ρ = 1
2 and scalar curvature τ = n(n− 1)c,

2. If Mn is compact ρ > 1
n and λ ≥ (1−nρ)(n−1)(c+H2), then Mn is isometric

to a Euclidean sphere,

3. If nρ > 1 and λ ≥ (1 − nρ)(n − 1)(c + H2), then Mn is totally umbilical. In
particular, the scalar curvature τ = n(n − 1)KM is constant, where KM =

λ
(1−nρ)(n−1) is the sectional curvature of Mn.

Proof. To prove (1), using the equations (5) and (9), we obtain

Lrψ = n[λ+ (n− 1)(1− nρ)c−H2] + ‖A‖2 . (23)
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Then, for our consideration on λ, we get that Lrψ is non-negative function on
Mn. By Lemma (1) we find that Lrψ vanishes identically. Hence, from equation
(23) we arrive at that Mn is totally geodesic and λ = (1 − nρ)(n − 1)c, nρ = 1.
Moreover, it is clear form (9) that τ = n(n− 1)c, which complete the proof of (1).

If Mn is compact, as it is totally geodesic, then the ambient space must be
necessarily a sphere Sn and Mn is isometric to the Euclidean sphere Sn, proving (2).

For the assertion (3), we start with equation (23) that can be written in terms
of the traceless second fundamental form Φ as

Lrψ = n[λ+ (1− nρ)(n− 1)c+H2] + ‖Φ‖2 . (24)

Therefore, our assumption on λ and ρ gives Lrψ ≥ 0. Then by applying Lemma
(1) once again we have Lrψ = 0. This implies that |Φ|2, that is, Mn is a totally
umbilical submanifold. In particular κ of Mn is constant and Mn has constant
sectional curvature given by KM = c + κ2. This combined with (24) , we obtain
that

λ = (1− nρ)(n− 1)(c+H2) = (1− nρ)(n− 1)(c+ κ2) (25)

= (1− nρ)(n− 1)KM ,

which implies that τ = n(n− 1)KM , as desired.

Now, we have the following consequence of the Theorem (5):

Theorem 6. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon al-
most soliton on Lagrangian submanifold of complex form M̄n(c) of constant sectional
curvature c. If λ = (1− nρ)(n− 1)H2, then Mn is isometric to Sn.

From Theorem 1.6 of [2] which states that a nontrivial almost Ricci soliton Mn,
minimally immersed in Sn+1 with τ ≥ n(n− 2) and such that the nor of the second
fundamental form obtain its maximum, must be isometric to Sn. Now, applying
Theorem (5) we obtain an generalization of this results.

Theorem 7. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon al-
most soliton on Lagrangian submanifold of complex form M̄n(c) of constant sectional
curvature c. Consider that τ ≥ n(n− 2), the norm of the second fundamental form
attains its maximum and λ ≥ λ = (1 − nρ)(n − 1), ρ > 1

n . Then, Mn is isometric
to Sn.

Proof. Since the immersions is minimal with τ ≥ n(n− 2), from (9) we arrive at

‖A‖2 = n(n− 1)− τ ≤ n.
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From Simons’s formula [20], we obtain

∆ ‖A‖2 = ‖∇A‖2 + (n− ‖A‖2) ‖A‖2 ≥ 0. (26)

Thus, we can apply Hopf’s strong maximum principle to get that ∇A = 0 on Mn.
Therefore, Proposition 1 of [13] assures that Mn must be compact and, hence, the
results from Theorem (5).

Another application of Theorem (4), we can also obtain the following theorem:

Theorem 8. Let the data (g, ψ, λ, r) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of constant sec-
tional curvature c, such that Pr is bounded from above and its potential function
ψ : Mn −→ R is non-negative and ψ ∈ Lp(M) for some p > 1. Then we have

1. ρ > 1
n and λ ≥ (1 − nρ)(n − 1)(c + H2), then Mn is totally geodesic, with

λ = (1− nρ)(n− 1)c, nρ = 1 and scalar curvature τ = n(n− 1)c.

2. If ρ > 1
n and λ ≥ (1 − nρ)(n − 1)(c + H2), then Mn is totally umbilical. In

particular, the scalar curvature τ = n(n − 1)KM is constant, where KM =
λ

(1−nρ)(n−1) is the sectional curvature of Mn.

Proof. Let us begin observing that by equation (23) and assumption on λ we get

Lrψ = n[λ+ (n− 1)(1− nρ)c− nH2] + |A|2 ≥ 0. (27)

Since we are assuming that Pr is bounded from above, there is a positive constant
β such that

β∆ψ ≥ Lrψ ≥ 0. (28)

Using Lemma (3), we have that ψ must constant. Therefore Lrψ = 0, and
equation (27) we conclude that Mn is totally geodesic, λ = (1− nρ)(n− 1)c, ρ = 1

n
and τ = n(n− 1)c, proving assertion (1), reasoning as in Theorem (5), it is easy to
prove assertion (2).

3. 1-Newton-Ricci-Bourguignon almost soliton

This section, explores the study of 1-Newton-Ricci-Bourguignon almost soliton on
Lagragain submanifold of complex space form immersed into a locally symmetric
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space.
We know that a complex space is called locally symmetric if all the covariant

derivative components of its curvature tensor vanishes identically. In this aspect,
such spaces exhibit an specific extension of constant curvature spaces.

Let Mn be a Lagrangian submanifold of complex manifold M̄n. In what follows
we initiated our curvature constraint, which will be consider in the prime results of
this segment. More precisely, we will consider that there is a constant µ such that
the sectional curvature CK of the ambient space M̄n satisfies the following equality:

CK(η, t) =
µ

n
, (29)

where the vectors η ∈ T⊥(M) and t ∈ T (M).
A Riemannian manifold M̄n of constant sectional curvature c is a locally sym-

metric space and it is easy to observe that the curvature condition (29) is satisfies
for every hypersurface Hn immersed into M̄n, with µ

n = c. Therefore in some ex-
tent our consideration is natural generalization of the case where the ambient space
has constant sectional curvature. Moreover, when the ambient manifold is a Rie-
mannian product of two Riemannian manifolds of constant sectional curvature, say
M = M1(k1)×M2(k2), the M us locally symmetric and, if k1 = 0 and k2 ≥ 0, then
every hypersurface of the type H = H1 ×M2(k2), where H1 is an orientable and
connected hypersurface immersed in M1(k2), satisfied the curvature constraint (29)
with µ = 0.

Let M̄n be a locally symmetric complex manifold satisfying condition (29) and
let {E1, ...En} be an orthonormal frame on T (M). Then, its scalar curvature τ̄ is
given by

τ̄ =
n∑
i=1

Ric(Ei, Ei) (30)

=
∑n

i,j=1 g(Ric(Ei, Ej)Ej , Ej) + 2
∑n

i=1 g(Ric(En+1, Ei)En+1, Ei)

τ̄ =
n∑

i,j=1

g(Ric(Ei, Ej)Ej , Ej) + 2µ. (30)

Moreover, it is well know fact that scalar curvature of a locally symmetric complex
manifold is constant. Thus =

∑n
i,j=1 g(Ric(Ei, Ej)Ej , Ej) is a constant naturally

attached to a locally symmetric complex manifold satisfying (29). Therefore, for the
sake of simplicity, we choose the following notation τ̄S := 1

n(n−1)
∑n

i,j=1 g(Ric(Ei, Ej)Ej , Ej).

It is worth pointing out that when Mn+1 is a space of constant sectional curvature,
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the the constant τ̄S agrees with its sectional curvature.
The following results are the generalization of Theorem (2) for the context of

r-Newton-Ricci-Bourguinon almost soliton on Lagrangian submanifold of complex
manifold.

Theorem 9. Let the data (g, ψ, λ, 1) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of constant sec-
tional curvature c, with bounded second fundamental form and potential function
ψ : Mn −→ R such that |∇ψ| ∈ L1(M) and let Mn+1 be a locally symmetric Ein-
stein manifolds satisfying the curvature condition (29). Then we have

1. If τ̄S ≤ 0, λ > 0 and ρ > 1
n , then Mn can not be H-minimal.

2. If τ̄S < 0, λ ≥ 0 and ρ > 1
n , then Mn can not be H-minimal.

3. If τ̄S = 0, λ ≥ 0,ρ > 1
n , and Mn is H-minimal, then Mn is totally geodesic.

Proof. For the proof of (1) considering the proof of theorem (2) by contradiction
that Mn is minimal. Then by our assumption on the constant ρ > 1

n we get from
the equation (8) that the scalar curvature of Mn satisfies τ ≤ 0, which implies that
Lr(ψ) = nλ− (1− nρ)τ ≥ 0.

On the other side, we have the differential operator L1 satisfies

L1ψ = divM (P1∇ψ)− g(divMP1,∇ψ). (31)

In particular, taking an orthonormal frame {E1, ...., En} in T (M) and denoting by
N the orientation of Mn, it follows from Lemma 25 of [2] that

g(divMP1,∇ψ) =

n∑
i=1

g(R(N,Ei)∇ψ,Ei) = Ric(N,∇ψ). (32)

Since Mn is consider to be Einstein we conclude by equation (31) combined with
the equation (32), we arrive at

L1ψ = divM (P1∇ψ). (33)

Moreover, as we have observed from Theorem (2) we obtain from our consideration
on second fundamental form that |∇ψ| ∈ L1(M). Therefore, we are in position to
apply Lemma (1) to conclude that Lrψ = 0, which gives a contradiction. Finally,
reasoning as above it is easy to prove (2) and (3).

Now, we obtaining the analogous results to Theorem (5) in the case where r = 1
and the ambient space is locally symmetric. Particularly, we obtain the following
theorem:
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Theorem 10. Let the data (g, ψ, λ, 1) be a complete r-Newton-Ricci-Bourguignon
almost soliton on Lagrangian submanifold of complex form M̄n(c) of constant sec-
tional curvature c, with bounded second fundamental form and potential function
ψ : Mn −→ R such that |∇ψ| ∈ L1(M) and let Mn+1 be a locally symmetric Ein-
stein manifolds satisfying the curvature condition (29). Then we have

1. ρ > 1
n and λ ≥ (1 − nρ)(n − 1)τ̄S + nH2, then Mn is totally geodesic, with

λ = (1− nρ)(n− 1)c, nρ = 1 and scalar curvature τ = n(n− 1)c,

2. If ρ > 1
n and λ ≥ (1 − nρ)(n − 1)(τ̄S + H2), then Mn is totally umbilical. In

particular, the scalar curvature τ = n(n− 1)(τ̄S + κ2) is constant, where κ is
the principal curvature of Mn.

Proof. The proof is similar as in the proof of Theorem (5). For the sake of com-
pleteness, we give the following argument that proves (1). Taking trace in (5) and
using definition of the constant τ̄S , we obtain equation (8) that

Lrψ = n[λ+ (n− 1)(1− nρ)τ̄S − nH2] + |A|2 , (34)

which implies that L1ψ ≥ 0 because our assumption on λ and ρ. Then from Lemma
(1) we obtain that Lrψ = 0. Therefore, we conclude from equation (34) that Mn

is totally geodesic with λ = (1 − nρ)(n − 1)τ̄S , nρ = 1 and scalar curvature τ =
n(n− 1)τ̄S . This complete the prove of the result.

We completing our paper mentioning the following theorem, which can be furnish
from the similar manner used in the proof of Theorem (8) and (10).

Theorem 11. Let the data (g, ψ, λ, 1) be a complete r-Newton-Ricci-Bourguignon al-
most soliton on Lagrangian submanifold of complex form M̄n(c) of constant sectional
curvature c such that Pr is bounded from above, its potential function ψ : Mn −→ R
is nonnegative and such that |∇ψ| ∈ L1(M) for some p > 1 and let Mn+1 be a
locally symmetric Einstein manifolds satisfying the curvature condition (29). Then
we have

1. ρ > 1
n and λ ≥ (1 − nρ)(n − 1)τ̄S + nH2, then Mn is totally geodesic, with

λ = (1− nρ)(n− 1)c, nρ = 1 and scalar curvature τ = n(n− 1)c,

2. If ρ > 1
n and λ ≥ (1 − nρ)(n − 1)(τ̄S + H2), then Mn is totally umbilical. In

particular, the scalar curvature τ = n(n− 1)(τ̄S + κ2) is constant, where κ is
the principal curvature of Mn.

We observe that from Theorems (9), (10) and (11) we can replace that the
hypothesis that the ambient space Mn+1 is Einstein under the condition, Ricci cur-
vature tensor identically vanishes.
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4. examples

Example 1. For example in an even dimensional Cartesian space X = R2n equipped
with its canonical symplectic form ω =

∑n
i=1 dqi ∧ dpi, standard Lagrangian sub-

manifolds are the submanifolds Rn ↪→ R2n of fixed values of the {qi}ni=1 coordinates.
Indeed locally, every Lagrangian submanifold looks like this.

Example 2. Let us consider the standard immersion of Sn in Sn+1, which we know
that its is totally geodesic. In particular, Pr = 0 for all 1 ≤ r ≤ n, and choosing
λ = (n−1)

n , where scalar curvature R = (n − 1) and ρ = 1
n , we obtain that the

immersion satisfies equation (5).

Example 3. Let S2n(1) be the unit sphere in the Euclidean space R2n and ψ :
S2n(1) ↪→ R2n the natural embedding with induced metric g on S2n(1), then (S2n(1), J, g)
is a complex structure. It is well known that this complex structure gives a complex
space form S2n(1) and its a complex space form space form with constant sectional
curvature c = 1. Let i : Mn −→ S2n(1) ⊂ Rn ∼= R2n an immersion of a smooth
n-dimensional manifold Mn in to unit sphere.

For a constant t ∈ Rn, according to [4], by choosing the functions f̄t on R2n such
that

f̄l(t) = −g(t, l) + 2m− 1 and ψl(t) = −f̄l + c, f̄l := i ∗ f̃l ∈ C∞(S2n)

where l ∈ S2n(1), t 6= 0, c ∈ R2n and t = (t1, .....t2n) ∈ S2n is the position vector, we
have that (S2n, g,∇ψl, λl) satisfies

Ric+Hessψl = (λl − ρR)g. (35)

On the other hand, it is well know that Sm+1 is totally umbilical with r-th mean
curvature Hr = 1 and second fundamental form B = I. In particular, for every
0 ≤ m the Newton tensor are given by

Pr = αI, (36)

where α =
∑r

j=0(−1)r−j(mj ). Hence, taking smooth function ψ = α−1ψl we get that
subamnifold satisfied equation (7).

Example 4. We recall the Gaussian soliton is the Euclidean space Rm endowed with
its standard metric |.| admits the standard complex space form and the potential
function ψ(x) = λ

4 |x|
2. It is well know that the spheres of the hyperbolic space

Hm+1 are totally umbilical subamnifold isometric to Rm, having r-th mean curvature
Hr = 1 and second fundamental form B = I. Hence, we can reason as in example
(2) to verify that the spheres Sn ↪→ Hm+1 satisfies equation (7).

Example 5. Since the canonical immersion Sn ↪→ Sn × R is totally geodesic, pro-
ceeding as in Example (2) we see that this immersion satisfies equation (5) for all
1 ≤ r ≤ n and λ = ρ

n .
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