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1. Introduction

The notion of (ε)-Sasakian manifolds was introduced by A. Bejancu and K. L. Duggal
[1]. Also in [14], the authors studied (ε)-Sasakian manifolds. Sasakian manifolds with
indefinite metric play important role in physics, so our natural trend is to study
various contact manifolds with indefinite metric. In 2009, the authors U. C. De
and A. Sarkar [2] studied (ε)-Kenmotsu manifolds. The notion of Lorentzian Para-
Sasakian manifolds was introduced by K. Matsumoto [7]. In 2012, R. Prasad and
V. Srivastava [11] defined and studied (ε)-LP-Sasakian manifolds. Totally umbilical
submanifolds of almost contact manifolds have been studied in the papers [3], [4],
[5], [8]. In [3], the authors characterized totally umbilical submanifolds of Sasakian
manifolds using theory of differential equations [3], [9], [10].

In the present paper we would like to study invariant submanifolds and totally
umbilical submanifolds of (ε)-LP-Sasakian manifolds.

The present paper is organized as follows :
Section 1 is introductory. Section 2 contains preliminaries. After introduction

and preliminaries we study invariant submanifolds of (ε)-LP-Sasakian manifolds in
Section 3. In Section 4, we study totally umbilical submanifolds of (ε)-LP-Sasakian
manifolds. In the last section we give an example.
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2. Preliminaries

A differentiable manifold is called (ε)-LP-Sasakian manifold if the following condi-
tions hold

φ2X = X + η(X)ξ, (1)

g(ξ, ξ) = −ε, η(X) = εg(X, ξ), (2)

g(φX, φY ) = g(X,Y ) + εη(X)η(Y ), (3)

where, φ is a (1,1) tensor, η ia 1-form, g is associated metric, ε is 1 or -1 according
as ξ is space-like or time-like vector field and X,Y are arbitrary vector fields on the
manifold. In (ε)-LP-Sasakian manifolds we have [11]

(∇̄Xφ)Y = g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y )ξ, (4)

where ∇ denotes the covariant derivative with respect to the Lorentzian metric g.
An (ε)-contact metric manifold is an (ε)-LP-Sasakian manifold if and only if [11]

∇̄Xξ = εφX. (5)

Let M2m+1 (m < n) be a submanifold of a differentiable manifold M̄2n+1. Let
∇ and ∇̄ be the Levi-Civita connections of M and M̄ , respectively. Then for any
vector fields X,Y ∈ χ(M), the second fundamental form h is defined by

∇̄XY = ∇XY + h(X,Y ). (6)

A submanifold M of an (ε)-LP-Sasakian manifold M̄ is called totally geodesic if

h(X,Y ) = 0, for X,Y ∈ χ(M).

Furthermore, for any section N of normal bundle T⊥M , we have

∇̄XN = −ANX +∇⊥N, (7)

where ∇⊥ denotes the normal bundle connection of M . The second fundamental
form h and shape operator AN are related by

g(ANX,Y ) = g(h(X,Y ), N). (8)

The Codazzi equation is given by

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z). (9)
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In an (ε)-LP-Sasakian manifolds M̄ , we also have [11]

R(X,Y )ξ = η(Y )X − η(X)Y, (10)

S(X, ξ) = 2nη(X) (11)

for any X,Y ∈ χ(M̄), where R, S, are curvature tensor, Ricci tensor respectively.
On a Riemannian manifold M̄ , for a (0, k)-type tensor field T (k ≥ 1) and a

(0, 2)-type tensor field E, we denote by Q(E, T ) a (0, k + 2)-type tensor field [13]
defined as follows

Q(E, T )(X1, X2, ..., Xk;X,Y ) = − T ((X ∧E Y )X1, X2, ..., Xn)

− T (X1, (X ∧E Y )X2, ..., Xk)− ...
− T (X1, ..., (X ∧E Y )Xk), (12)

where (X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y.
For a (2n + 1) dimensional Riemannian manifold M̄ , the concircular curvature

tensor C is defined by

C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ] (13)

for any vector fields X,Y, Z ∈ χ(M̄).

3. Invariant submanifolds of an (ε)-LP-Sasakian manifolds

Let M2m+1 be a submanifold of an (ε)-LP-Sasakian manifold M̄2n+1(n > m). Gen-
erally a submanifold M is said to be invariant submanifold of M̄ if φ(TM)⊂ TM .
On an invariant submanifold M of M̄ , it follows that ξ ∈ χ(M).

From the equations (5) and (6) we have

∇Xξ + h(X, ξ) = εφ(X).

Comparing normal and tangential components we have

h(X, ξ) = 0, (14)

∇Xξ = εφ(X), (15)

for any vector field X ∈ χ(M).
Now form (4) we have

(∇Xφ)Y − h(X,φY ) + φ(h(X,Y )) = g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y ). (16)
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Comparing the tangential and normal components we have

h(X,φY ) = φ(h(X,Y )), (17)

(∇Xφ)Y = g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y ). (18)

Lemma 3.1. An invariant submanifold of an (ε)-LP-Sasakian manifold is an
(ε)-LP-Sasakian manifold

Proof. Form (5) and (6) we have

∇Xξ + h(X, ξ) = εφ(X).

So, ∇Xξ = εφ(X). By [11], the submanifold is (ε)-LP-Sasakian manifold.
Lemma 3.2. [12] M be a three dimensional invariant submanifold of an (ε)-

LP-Sasakian manifold then, then there exists two differentiable distributions D and
D⊥ on M such that

TM = D ⊕D⊥⊕ < ξ >, (19)

φ(D) ⊂ D⊥, φ(D⊥) ⊂ D.

Theorem 3.1. Every three dimensional invariant submanifolds of an (ε)-LP-
Sasakian manifold is totally geodesic.

Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ , then
by Lemma 3.2 there are two orthogonal distributions D and D⊥ satisfying the equa-
tion (19). Let X1, Y1 ∈ D, and φ(X1), φ(Y1) ∈ D⊥. Using (1) and (17) we obtain

h(φX1, φY1) = φ2h(X1, Y1)

= −h(X1, Y1).

Let φX1 = X2, φY1 = Y2. We see that X2 ∈ D⊥ and Y2 ∈ D⊥. Therefore

h(X2, Y2) = −h(X1, Y1) (20)

for any X1, Y1 ∈ D and X2, Y2 ∈ D⊥. By the property of bilinearity of h we have

h(X1 +X2 + ξ, Y1) = h(X1, Y1) + h(X2, Y1) + h(ξ, Y1), (21)

h(X1 +X2 + ξ, Y2) = h(X1, Y2) + h(X2, Y2) + h(ξ, Y2), (22)

h(X1 +X2 + ξ, ξ) = h(X1, ξ) + h(X2, ξ) + h(ξ, ξ). (23)

Keeping in mind h(X, ξ) = 0, and from (21), (22), (23) we obtain

h(X1 +X2 + ξ, Y1 + Y2 + ξ) = h(X1, Y2) + h(X2, Y1), (24)

h(X1 +X2 + ξ, Y1 − Y2 + ξ) = h(X1, Y2)− h(X2, Y1). (25)
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Since
TM = D ⊕D⊥⊕ < ξ >,

so any arbitrary vector fields U, V can be taken as U = X1 + X2 + ξ, and V =
Y1 + Y2 + ξ. Then form (24) and (25) we have

h(U, V ) = h(X2, Y1)− h(X1, Y2)

= h(φX1, Y1)− h(X1, φY2) = 0.

Hence the submanifold M is totally geodesic.

Theorem 3.2. An invariant submanifold of an (ε)-LP-Sasakian manifold is
totally geodesic if and only if Q(S, ∇̄h) = 0.

Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ satis-
fying Q(S, ∇̄h) = 0, then

Q(S, ∇̄Xh)(W,K;U, V ) = 0,

for the vector fields X,W,K,U, V ∈ χ(M). By the above equation and (12), we
have

0 = − (∇̄Xh)(S(V,W )U,K) + (∇̄Xh)(S(U,W )V,K)

− (∇̄Xh)(W,S(V,K)U) + (∇̄Xh)(W,S(U,K)V ).

Hence,

0 = − ∇⊥
Xh(S(V,W )U,K) + h(∇XS(V,W )U,K) + h(S(V,W )U,∇XK)

+ ∇⊥
Xh(S(U,W )V,K)− h(∇XS(U,W )V,K)− h(S(U,W )V,∇XK)

− ∇⊥
Xh(W,S(V,K)U) + h(∇XW,S(V,K)U) + h(W,∇XS(V,K)U)

+ ∇⊥
Xh(W,S(U,K)V )− h(∇XW,S(U,K)V )− h(W,∇XS(U,K)V ),

Using equation (14) and putting K = V = W = ξ, in the above equation we have

S(ξ, ξ)h(U,∇Xξ) = 0. (26)

Using the equation (11) and (26) we have

(2n)h(U, φX) = 0. (27)

By using (17) we obtain h(U,X) = 0, for any U,X ∈ χ(M), hence the submanifold
is totally geodesic. Converse is trivially true.

Theorem 3.3. An invariant submanifold of an (ε)-LP-Sasakian manifold is
totally geodesic if and only if Q(S,R.h) = 0.
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Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ satis-
fying Q(S,R.h) = 0, then

Q(S,R(X,Y ).h)(W,K;U, V ) = 0

for the vector fields X,Y,W,K,U, V ∈ χ(M). Form (12) we have

0 = − S(V,W )(R(X,Y ).h)(U,K) + S(U,W )(R(X,Y ).h)(V,K)

− S(V,K)(R(X,Y ).h)(W,U) + S(U,K)(R(X,Y ).h)(W,V ).

Hence,

0 = − S(V,W )[R⊥(X,Y )h(U,K)− h(R(X,Y )U,K)− h(R(X,Y )K,U)]

+ S(U,W )[R⊥(X,Y )h(V,K)− h(R(X,Y )V,K)− h(R(X,Y )K,V )]

− S(V,K)[R⊥(X,Y )h(W,U)− h(R(X,Y )W,U)− h(R(X,Y )U,W )]

+ S(U,K)[R⊥(X,Y )h(W,V )− h(R(X,Y )W,V )− h(R(X,Y )V,W )].

Using equation (14) and putting K = V = W = Y = ξ, in the above equation we
have

S(ξ, ξ)h(U,R(X, ξ)ξ) = 0. (28)

By the equations (10), (11) and the above equation we have

(2n)h(U,X) = 0.

Consequently, we have h(U,X) = 0, for any U,X ∈ χ(M), hence the submanifold is
totally geodesic. Converse is trivially true.

Theorem 3.4. An invariant submanifold of an (ε)-LP-Sasakian manifold is
totally geodesic if and only if Q(g,R.h) = 0.

Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ satis-
fying Q(g,R.h) = 0, then

Q(g,R(X,Y ).h)(W,K;U, V ) = 0

for the vector fields X,Y,W,K,U, V ∈ χ(M). Form (12) we have

0 = − g(V,W )(R(X,Y ).h)(U,K) + g(U,W )(R(X,Y ).h)(V,K)

− g(V,K)(R(X,Y ).h)(W,U) + g(U,K)(R(X,Y ).h)(W,V ).

Hence,
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0 = − g(V,W )[R⊥(X,Y )h(U,K)− h(R(X,Y )U,K)− h(R(X,Y )K,U)]

+ g(U,W )[R⊥(X,Y )h(V,K)− h(R(X,Y )V,K)− h(R(X,Y )K,V )]

− g(V,K)[R⊥(X,Y )h(W,U)− h(R(X,Y )W,U)− h(R(X,Y )U,W )]

+ g(U,K)[R⊥(X,Y )h(W,V )− h(R(X,Y )W,V )− h(R(X,Y )V,W )].

Using equation (14) and putting K = V = W = Y = ξ, in the above equation we
have

h(R(X, ξ)ξ, U) = 0. (29)

By the equations (10) and (29) we have

h(U,X) = 0. (30)

We have h(U,X) = 0, for any U,X ∈ χ(M), hence the submanifold is totally
geodesic. Converse is trivially true.

Theorem 3.5. An invariant submanifold of an (ε)-LP-Sasakian manifold is
totally geodesic if and only if Q(g, C.h) = 0, provided that r 6= 2n(2n+ 1).

Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ satis-
fying Q(g,R.h) = 0, then

Q(g,R(X,Y ).h)(W,K;U, V ) = 0,

for the vector fields X,Y,W,K,U, V ∈ χ(M). Form (12) we have

0 = − g(V,W )(R(X,Y ).h)(U,K) + g(U,W )(R(X,Y ).h)(V,K)

− g(V,K)(R(X,Y ).h)(W,U) + g(U,K)(R(X,Y ).h)(W,V ).

Hence,

= − g(V,W )[R⊥(X,Y )h(U,K)− h(R(X,Y )U,K)− h(R(X,Y )K,U)]

+ g(U,W )[R⊥(X,Y )h(V,K)− h(R(X,Y )V,K)− h(R(X,Y )K,V )]

− g(V,K)[R⊥(X,Y )h(W,U)− h(R(X,Y )W,U)− h(R(X,Y )U,W )]

+ g(U,K)[R⊥(X,Y )h(W,V )− h(R(X,Y )W,V )− h(R(X,Y )V,W )].

Using equation (14) and putting K = V = W = Y = ξ, in the above equation we
have

h(C(X, ξ)ξ, U) = 0. (31)
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By the the equations (10), (13) and (31) we have

{1− r

2n(2n+ 1)
}h(U,X) = 0. (32)

h(U,X) = 0, for any U,X ∈ χ(M),provided r 6= 2n(2n+ 1). Hence the submanifold
is totally geodesic. Converse is trivially true.

Theorem 3.6. An invariant submanifold of an (ε)-LP-Sasakian manifold is
totally geodesic if and only if Q(S,C.h) = 0, provided that r 6= 2n(2n+ 1).

Proof. Let M be an invariant submanifold of an (ε)-LP-Sasakian manifold M̄ satis-
fying Q(S,C.h) = 0, then

Q(S,C(X,Y ).h)(W,K;U, V ) = 0,

for the vector fields X,Y,W,K,U, V ∈ χ(M). Form (12) we have

0 = − S(V,W )(C(X,Y ).h)(U,K) + S(U,W )(C(X,Y ).h)(V,K)

− S(V,K)(C(X,Y ).h)(W,U) + S(U,K)(C(X,Y ).h)(W,V ).

Hence,

0 = − S(V,W )[C⊥(X,Y )h(U,K)− h(C(X,Y )U,K)− h(C(X,Y )K,U)]

+ S(U,W )[C⊥(X,Y )h(V,K)− h(C(X,Y )V,K)− h(C(X,Y )K,V )]

− S(V,K)[C⊥(X,Y )h(W,U)− h(C(X,Y )W,U)− h(C(X,Y )U,W )]

+ S(U,K)[C⊥(X,Y )h(W,V )− h(C(X,Y )W,V )− h(C(X,Y )V,W )].

Using equation (14) and putting K = V = W = Y = ξ, in the above equation we
have

S(ξ, ξ)h(U,C(X, ξ)ξ) = 0. (33)

By the the equations (10), (11), (13) and (33) we have

2n{1− r

2n(2n+ 1)
}h(U,X) = 0. (34)

h(U,X) = 0, for any U,X ∈ χ(M), provided that r 6= 2n(2n + 1). Hence the sub-
manifold is totally geodesic. Converse is trivially true.
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4. Totally umbilical submanifolds of (ε)-LP-Sasakian manifolds.

Let M be a totally umbilical submanifold of (ε)-LP-Sasakian manifolds M̄ . Then
the second fundamental form h of M is given by h(X,Y ) = g(X,Y )H [3], where
X,Y ∈ χ(M) and H is mean curvature vector.

If we set α = ||H||2, then for the totally umbilical submanifold M with mean
curvature parallel in the normal bundle, we have X.α = 0 for any X ∈ χ(M), that
is, α is constant.

If α 6= 0, define a unit vector e ∈ ν in the normal bundle, by setting H =
√
αe.

The normal bundle can be split into the direct sum α = {e} ⊕ {e}⊥, where {e}⊥
is the orthogonal compliment of the line sub-bundle {e} spanned by e. For each
X ∈ χ(M). Set

φX = ψ(X)−A(X)e+ P (X), φe = t+ F, (35)

where ψ(x) is the tangential components of φX, while A(X) and P (X) are the {e}
and {e}⊥ components, respectively. t and F are the {e} and {e}⊥ components of
φe, respectively, in view of the skew-symmetry of φ.

Lemma 4.1. Let M be a totally umbilical submanifold of an (ε)-LP-Sasakian
manifolds M̄ with curvature vector parallel to the normal bundle. If α 6= 0, then for
any X ∈ χ(M) following hold:
i) ∇̄Xe = −

√
αX,

ii) ∇Xt = −
√
αψ(X) + εg(e, ξ)X + 2εg(X, ξ)g(e, ξ)ξ,

iii)∇⊥
XF = −

√
αP (X).

Proof. Taking inner product with respect to Y in both sides of equation (7), we
obtain

∇̄XN = −g(H,N)X +∇⊥
XN.

Putting N = e, in the above equation we obtain

∇̄Xe = −
√
αX.

Thus (i) is proved.
Next put Y = e in the equation (4), and the equation (35) we obtain

∇Xt+∇⊥
XF +

√
α(ψ(X)−A(X)e+ P (X))

= εg(e, ξ)X + 2εg(X, ξ)g(e.ξ)ξ.

Now comparing the tangential part we have

∇Xt = −
√
αψ(X) + εg(e, ξ)X + 2εg(X, ξ)g(e, ξ)ξ.
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Thus (ii) is proved. Now comparing {e}⊥ component and using the result A(X) =
g(X, t) we obtain

∇⊥
XF = −

√
αP (X).

Thus (iii) is proved.

Lemma 4.2. Let M be a totally umbilical submanifold of an (ε)-LP-Sasakian
manifold M̄ with mean curvature vector parallel in the normal bundle. If α 6= 0, and
ξ ⊥ e, then, setting ξ = ξ1 + ξ2, where ξ1 is the tangential component and ξ2 is the
{e}⊥-component of ξ, we have

(i) ∇Xξ1 = εψ(X),
(ii)(∇Xψ)Y = (1 + εα)[g(X,Y )ξ + g(Y, ξ)X] + εη(X)η(Y )ξ1.

Proof. Putting ξ = ξ1 + ξ2 in the equation (12) and (35) we have

∇Xξ1 +∇Xξ2 + h(X, ξ) = ε(ψ(X)−A(X)e+ P (X)).

Comparing tangential part we have (i), and comparing e component, we have h(X, ξ) =
−εA(X)e i.e.,

√
αη(X) = −A(X),

√
αξ1 = εt. (36)

Now using the equations (4) and (35) we have

(∇XψY )−∇X(AY )e−A(Y )(∇Xe) +A(∇XY )e+ (∇XP )Y

= g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y )ξ.

Using the Lemma 4.1, we obtain from the above equation

(∇Xψ)Y + (∇XP )Y +
√
αg(X,Y )(t+ F )− αη(Y )X

= g(X,Y )ξ + εη(Y )X + 2εη(X)η(Y )ξ.

Comparing the tangential part we obtain (ii).

Theorem 4.1. Let M be a n dimensional totally umbilical submanifold of an
(ε)-LP-Sasakian manifold with mean curvature vector parallel in the normal bundle.
Then one of the following holds :

(i) M is totally geodesic,
(ii) M is isometric to a sphere,
(iii) M is homothetic to a Sasakian manifold.
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Proof. Since H is parallel in the normal bundle, µ is a constant. If α = 0, then
H = 0, and consequently h(X,Y ) = 0, X,Y ∈ χ(M). Thus the submanifold M is
totally geodesic, which proves the first part of the theorem.

Next we assume that α 6= 0. Define a smooth function f : M → R by f = g(e, ξ),
for X,Y ∈ χ(M). Then Lemma 4.1, and equations (5), (6), (7), imply that

Y f = g(∇Xξ, e) + g(ξ,∇Xe)
= −εg(Y, t)−

√
αg(ξ, Y ).

So, by using the equation (5), (35) and the Lemma 4.2, we have,

XY f − (∇XY )f = −ε2fg(X,Y ),

g(∇Xgradf, Y ) = −ε2fg(X,Y ). (37)

Taking trace of this equation we have

∆f = −ε2nf. (38)

Then, if f is non-constant function, then the equation (38) is the differential equa-
tion in [8], which is necessary and sufficient condition for M to be isometric to a
sphere of radius 1

ε .

If f is a constant, then equation (38) gives −nε2f = 0, consequently f = 0, that
is ξ ⊥ e.

Now define a smooth function G : M → R by

G =
1

2
tr.ψ2. (39)

Note that (35) gives g(ψY,X) = −g(ψX, Y ), X, Y ∈ χ(M).
Let ω be a 1-form defined by ω = dG. For each p ∈ M we can choose a local

orthonormal frame {e1, ...., en} of M such that ∇ei(p) = 0. Thus, for any Z ∈ χ(M),
we have

ω(Z) = ZG =

n∑
i=1

g((∇Zψ)(ei), ψ(ei)). (40)

Using the Lemma 4.2, we obtain

ω(Z) = −2Ng(ξ, ψZ)− 2g(Z, ξ), (41)

where N = (1 + εα).
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The first covariant derivative of (41) is

(∇ω)(Y, Z) = −2Ng(ξ1, (∇Y )Z)− 2Ng(∇Y ξ1, ψZ)− 2g(Z,∇Y ξ1).

Consequently using the equation (41) and the above equation we have

(∇2ω)ε(2g(Y,Z)ω(X) + g(X,Y )ω(Z) + g(X,Z)ω(Y )) = 0. (42)

Equation (42) is the differential equation in [4] which, G being non-constant, is the
necessary and sufficient condition for M to be isometric to a sphere. This again leads
to case (ii). Suppose G is constant function. Then equation (40) gives ψ(ξ1) = 0.
Define a smooth function G1 : M → R by

G1 = g(ξ1, ξ1).

Then using the Lemma 4.2, we get Xα = 0, X ∈ χ(M). In others words ξ1 has
constant length. Taking the covariant derivative in (i) of Lemma 4.2 and using (ii),
we get

∇X∇Y ξ1 −∇∇XY ξ1 = Nε(g(X,Y )ξ1 − g(Y, ξ1)X). (43)

Further more, from (i) of the Lemma 4.2, it follows that ξ1 is a killing vector
field. Since N 6= 0 and ξ1 is a killing vector field of constant length, which satisfies
(43), a result of Okumura [9] states that, if ξ1 6= 0, then M is homothetic to a
Sasakian manifold. which is (iii). Thus to complete the proof we have only to show
that ξ1 = 0, cannot happen.

We see that if ξ1 = 0, then ξ ∈ {e}⊥, since ξ ⊥ e. Lemma 4.2 gives ψ(X) = 0,
thus φX is normal to M for all X ∈ χ(M). Again, equation (36) gives t = 0,
consequently φe = F ∈ {e}⊥, and g(φX, φe) = g(X, e)− η(X)η(e) = 0, X ∈ χ(M),
g(φe, ξ) = 0. Thus the dim of

ν ≥ dim{M}+ dim{ξ}+ dim{e}+ dim{φe} − 1,

which is impossible as dim{M̄} = 2n+ 1. This complete the proof.
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5. Example

In the following we give an example of invariant submanifold of an (ε)-LP-Sasakian
manifolds. We consider the 5-dimensional manifold [12] M̄ = {(x, y, z, u, v) ∈ R5 :
(x, y, z, u, v) 6= (0, 0, 0, 0, 0)}, where (x, y, z, u, v) are the standard coordinates of R5.
We consider the vector fields

e1 = −2
∂

∂x
+ 2y

∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
, e4 = −2

∂

∂u
+ 2v

∂

∂z
, e5 =

∂

∂v

which are linearly independent at each point of M̄ . Now we define the metric g by

g(ei, ej) = ε, if i = j 6= 3,

= 0, if i 6= j,

= −ε, if i = j = 3.

Here i, j runs form 1 to 5. We consider an 1-form η defined by

η(X) = εg(X, e3), X ∈ χ(M̄).

i.e., we choose e3 = ξ.
We define the (1.1) tensor field φ by

φe1 = e2, φe2 = e1, φe3 = 0, φe4 = e5, φe5 = e4.

The linear property of g and φ shows that

η(e3) = −ε, φ2(X) = X + η(X)e3,

g(φX, φY ) = g(X,Y ) + εη(X)η(Y )

for any vector fields X,Y on χ(M̄). So (φ, ξ, η, g) defines an almost contact manifold
with e5 = ξ. Moreover, let ∇̄ is the Levi-Civita connection with respect to metric g
of M̄ . Then we have

[e1, e2] = −2εe3, [e4, e5] = −2εe3, [ei, ej ] = 0, otherwise.

By Koszul formula, we obtain the following

∇̄e1e3 = εe2, ∇̄e1e2 = −εe3, ∇̄e2e3 = εe1, ∇̄e2e1 = εe3,

∇̄e3e5 = εe4, ∇̄e3e4 = εe5, ∇̄e3e2 = εe1, ∇̄e3e1 = εe2,

∇̄e4e5 = −εe3, ∇̄e4e3 = εe5, ∇̄e5e4 = εe3, ∇̄e5e3 = εe4,

∇̄eiej = 0, otherwise.
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Thus we see that M̄ is an (ε)-LP-Sasakian manifold.
Let M be a subset of M̄ and consider the isometric immersion f : M → M̄

defined by
f(x, y, z) = (x, y, z, 0, 0).

It is easy to prove that M = {(x, y, z) ∈ R3 : (x, y, z) 6= (0, 0, 0)} is a submanifold of
M̄ , where (x, y, z) are the standard co-ordinate of R3. We choose the vector fields

e1 = −2
∂

∂x
+ 2y

∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
,

which are linearly independent at each point of M . We define g1 by

g(ei, ej) = ε, if i = j 6= 3,

= 0, if i 6= j,

= −ε, if i = j = 3.

Here i, j runs form 1 to 3.
We define 1-form η1 and (1,1) tensor φ1 respectively by

η1 = g1(X, e5),

φ1(e1) = e2, φ1(e2) = e1, φ1(e3) = 0.

The linear property of g1 and φ1 shows that

η1(e3) = 1, φ21(X) = X + η1(X)e5,

g1(φ1X,φ1Y ) = g1(X,Y )− η1(X)η1(Y )

for any vector fields X,Y on M(φ1, ξ, η1, g1). It is seen that M is an invariant
submanifold of M̄ with e3 = ξ. Moreover, let ∇ be the Levi-Civita connection with
respect to the metric g1. Then we have

[e1, e2] = −2εe3, [ei, ej ] = 0, otherwise.

By using Kouszul formula, we obtain

∇e1e3 = εe2, ∇e1e2 = −εe3, ∇e2e3 = εe1, ∇e2e1 = εe3,

∇e3e2 = εe1, ∇e3e1 = εe2, ∇eiej = 0, otherwise.

Hence M(φ, ξ, η, g) is a three dimensional (ε)-LP-Sasakian submanifold of the
manifold M̄ .

78



A. Sarkar, N. Biswas and M. Sen – Submanifolds of (ε)-LP-Sasakian manifolds

If we take D =< e1 >,D
⊥ =< e2 >. Then we can write

TM = D ⊕D⊥⊕ < ξ > .

So the Lemma 3.2 is verified.
Now from the value of ∇̄eiej , and ∇eiej and the form the relation h(ei, ej) =

∇̄eiej − ∇eiej , we can obtain h(X,Y ) = 0, for any vector fields X,Y . So the
submanifold M is totally geodesic. Hence the Theorem 3.1 is verified.
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