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Abstract. The object of the present paper is to classify almost conformal Ricci
solitons, almost conformal Ricci solitons with the potential vector field is collinear
to the reeb vector field ξ and finally, almost conformal gradient Ricci solitons on
almost CoKähler manifolds with ξ belongs to (k, µ)-nullity distribution. In this
paper, we prove that such manifolds with V is contact vector field and Qφ = φQ
is η-Einstein and it is Einstein when the potential vector field is pointwise collinear
to the reeb vectoer field ξ. We also derive so many delightful results. Moreover, we
prove that a (k, µ)-almost CoKähler manifolds admitting almost conformal gradient
Ricci solitons is isometric to a sphere.
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1. Introduction

In 1982, R. S. Hamilton [18] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics
on a Riemannian manifold defined as follows:

∂

∂t
g = −2S, (1)

where S denotes the Ricci tensor. Ricci solitons are special solutions of the Ricci
flow equation (1) of the form g = σ(t)ψ∗t g with the initial condition g(0) = g, where
ψt are diffeomorphisms of M and σ(t) is the scaling function. A Ricci soliton is a
generalization of an Einstein metric. We recall the notion of Ricci soliton according
to [6]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g, a Riemannian
metric, V a vector field, called the potential vector field and λ a real scalar such
that

£V g + 2S + 2λg = 0, (2)
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where £ is the Lie derivative. Metrics satisfying (2) are interesting and useful in
physics and are often referred as quasi-Einstein ([8],[9]). Compact Ricci solitons are
the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space of metrics
onto its quotient modulo diffeomorphisms and scalings, and often arise blow-up
limits for the Ricci flow on compact manifolds. Theoretical physicists have also
been looking into the equation of Ricci soliton in relation with string theory. The
initial contribution in this direction is due to Friedan [14] who discusses some aspects
of it. Recently, the notion of almost Ricci soliton have introduced [24] by Piagoli,
Riogoli, Rimoldi and Setti.
The Ricci soliton is said to be shrinking, steady and expanding according as λ is
negative, zero and positive respectively. Ricci solitons have been studied by several
authors such as ([10], [11], [16], [19], [20], [21], [28], [29]) and many others.

In [15], during 2003-2004, Fischer developed the notion of conformal Ricci flow
which is a generalization of the classical Ricci flow. The conformal Ricci flow on a
2n+ 1-dimensional smooth closed connected oriented manifold M is defined by the
following equation:

∂g

∂t
+ 2(S +

g

2n+ 1
) = −pg (3)

and r(g) = −1,
where p is a scalar non-dynamical field which depends on time, r(g) is the scalar
curvature of the manifold.

In 2015, Basu and Bhattacharyya [2] introduced the concept of conformal Ricci
soliton by the equation

£V g + 2S = [2λ− (p+
2

2n+ 1
)]g, (4)

where λ is constant. Conformal Ricci soliton is the generalization of Ricci soliton.
Pigola et al. first introduced [24] the notion of almost Ricci soliton in 2010. In

2014, Sharma has also studied [26] the almost Ricci soliton and has also done some
gloriuos research works. Recently, in 2018, Ghosh and Patra also have been studied
[17] the almost Ricci solitons on contact geometry. In Riemannian manifold (M, g),
almost Ricci soliton is defiend by the equation

£V g + 2S = 2λg, (5)

where λ is a smooth function on M . The almost Ricci soliton is said to be
shrinking, steady or expanding according as λ is positive, zero or negative.

Recently in [13], Dutta, Basu and Bhattacharyya have been introduced the no-
tion of almost conformal Ricci soliton by

£V g + 2S = [2λ− (p+
2

2n+ 1
)]g, (6)
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where λ is a smooth function on M . The almost conformal Ricci soliton is said
to be shrinking, steady or expanding according as λ is positive, zero or negative. An
almost conformal Ricci soliton is called conformal Ricci soliton if λ is constant. An
almost conformal Ricci soliton is said to be almost conformal gradient Ricci soliton
if the potential vector field V is the gradient of a smooth function f on M2n+1, that
is, V = Df , where D is the gradient operator of g on M2n+1. For convanience, we
denote (M2n+1, g,Df, λ) as a almost conformal gradient Ricci soliton with potential
function f .
In [1], Barros and Ribeiro proved that a compact almost Ricci soliton with constant
scalar curvature is isometric to an Euclidean sphere. In this connection, a theorem
has also been proved by Wang, Gomes and Xia in [27] for k-almost Ricci soiton
which is given as follows:

Theorem 1. [27] Let (Mn, g, V, β, λ), n ≥ 3 be a non-trivial β-almost Ricci soliton
with constant scalar curvature r. If Mn is compact, then it is isometric to a standard

sphere Sn(c) of radius c =

√
2n(2n+1)

r .

The above Theorem will be used in later to prove our results.
In the present paper, after introduction, we study almost CoKähler manifolds.

In section 3, we characterize almost conformal Ricci solitons on almost CoKähler
manifolds and prove several important results. In the next section we study almost
conformal Ricci solitons on almost CoKähler manifolds with the potential vector field
is pointwise collinear to the reeb vector field ξ. Finally, in section 5, we consider
almost conformal gradient Ricci solitons on almost CoKähler manifolds.

2. Almost CoKähler manifolds

In the present section, we give some well known definitions and basic formulae on
Almost CoKaehler manifolds which will be very useful in the next sections. An
almost contact structure on a (2n + 1)-dimensional smooth manifold M2n+1 is a
triplet (φ, ξ, η), where φ is a (1, 1)-type tensor field, ξ is a global vector field and η
is a 1-form satisfying ([3], [4])

φ2X = −X + η(X)ξ, η(ξ) = 1, (7)

Here also holds
φξ = 0, η ◦ φ = 0. (8)

If an almost contact manifold admits a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (9)
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for any vector fields X,Y , then the manifold is called an almost contact metric
metric manifold. In such a manifold we can define a fundamental 2-form Φ by

Φ(X,Y ) = g(X,φY ), (10)

for any vector fields X,Y . An almost contact metric manifold is said to be an almost
CoKähler manifold if both η and Φ are closed. That is, dη = 0 and dΦ = 0. An
almost contact metric manifold (M2n+1, φ, ξ, η, g) is said to be normal if the almost
complex structure J on M ×R defined by (pp. 80 of [4])

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
),

where f is a real valued function defined on M × R, is integrable. Moreover,
if an almost contact manifold (M2n+1, φ, ξ, η) is normal, then it is said to be a
CoKähler manifold. In addition an almost contact metric manifold (M2n+1, φ, ξ, η, g)
is CoKähler if and only if ∇φ = 0, or equivalently, ∇Φ = 0.
Let M2n+1(φ, ξ, η, g) be an almost CoKähler manifold. Let us consider two opera-
tors h and l which are defined by h = 1

2£ξφ and l = R(., ξ)ξ, where R denotes the
curvature tensor and £ is the Lie differentiation. These operators are symmetric of
type (1, 1) and satisfies ([7], [12] [22]) the following

hξ = h′ξ = 0, Trh = Trh′ = 0, hφ = −φh, (11)

where h′ = h · φ. Also in an almost CoKähler manifold, we have ([7], [12] [22])

∇Xξ = h′X = hφX, (12)

φlφ− l = 2h2, (13)

for any vector fields X.
A (k, µ)-contact metric manifold is a generalization of Sasakian and K-contact

manifold. In [5] Blair, Koufogiorgos and Papantoniou introduced and studied the
notion of (k, µ)-nullity distribution on contact metric manifolds M2n+1(φ, ξ, η, g). A
contact metric manifold M2n+1 whose curvature tensor satisfies

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

for all vector fields X,Y on M2n+1, where h = 1
2£ξφ (£ denotes the Lie derivative

of φ along ξ and k, µ ∈ R is known as (k, µ)-contact manifold and ξ is said to belongs
to the (k, µ)-nullity distribution. Several authors have studied ([23], [25]) the (k, µ)-
contact metric manifold and obtain some interesting results. When k, µ are smooth
functions, it is said to be the generalized (k, µ)-nullity distribution. Thus we have
the following:
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Definition 1. An almost CoKähler manifold M2n+1(φ, ξ, η, g) is said to be a (k, µ)-
almost CoKähler manifold if ξ satisfies the equation

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (14)

for all vector fields X,Y ∈ χ(M2n+1) and k, µ are real constants.

In a consequence of (14), we have l = −kφ2 + µh. In view of this, from (13) we
deduce

h2 = kφ2 (15)

and also we obtain
S(X, ξ) = 2nkη(Y ), (16)

Qξ = 2nkξ. (17)

Definition 2. ([17]) A vector field V on a contact manifold is said to be a contact
vector field if it preserve the contact form η, that is

£V η = ψη, (18)

for some smooth function ψ on M . When ψ = 0 on M , the vector field V is called
a strict contact vector field.

Now we state a well known Lemma:

Lemma 2. (Poincare Lemma): In a Riemannian manifold d2 = 0, where d is the
exterior differential operator, that is,

g(∇Xgradζ, Y ) = g(∇Y gradζ,X), (19)

for any two vector fields X,Y and for any smooth function ζ.

3. Almost conformal Ricci solitons on (k, µ)-Almost CoKähler
manifolds

In this section we characterize almost conformal Ricci solitons on almost CoKähler
manifolds with the potential vector field is a contact vector field. Then we obtain

(£V dη)(X,Y ) = £V dη(X,Y )− dη(£VX,Y )− dη(X,£V Y )

= £V g(X,φY )− g(£VX,φY )− g(X,φ£V Y )

= £V g(X,φY )− g(£VX,φY )− g(X,£V φY − (£V φ)Y )

= £V g(X,φY )− g(£VX,φY )− g(X,£V φY ) + g(X, (£V φ)Y )

= (£V g)(X,φY ) + g(X, (£V φ)Y ), (20)
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for any vector fields X and Y on M . Then using (6) in (20) we get

(£V dη)(X,Y ) = −2S(X,φY ) + [2λ− (p+
2

2n+ 1
)]g(X,φY )

+g(X, (£V φ)Y ), (21)

for any vector fields X and Y on M . As V is a contact vector field, from (18) we
have

£V dη = d£V η = (dψ) ∧ η + ψ(dη), (22)

from which it follows that

(£V dη)(X,Y ) =
1

2
{dψ(X)η(Y )− dψ(Y )η(X)}+ ψg(X,φY ). (23)

for any vector fields X and Y on M . In view of (21) and (23) we infer

−2S(X,φY ) + [2λ− (p+
2

2n+ 1
)]g(X,φY ) + g(X, (£V φ)Y )

=
1

2
{dψ(X)η(Y )− dψ(Y )η(X)}+ ψg(X,φY ) (24)

and hence we get

2(£V φ)Y = 4QφY + 2[ψ − 2λ+ (p+
2

2n+ 1
)]φY

+η(Y )Dψ − dψ(Y )ξ. (25)

for any vector field Y on M . Substituting Y = ξ in (25) yields

2(£V φ)ξ = Dψ − (ξψ)ξ. (26)

The equation (6) can be exhibited as

g(∇XV, Y ) + g(X,∇Y V ) + 2S(X,Y ) = [2λ− (p+
2

2n+ 1
)]G(X,Y ), (27)

for any vector fields X and Y on M . Tracing the above equation gives

2 div V = −[2λ− (p+
2

2n+ 1
)]2r + (2n+ 1)[2λ− (p+

2

2n+ 1
)]. (28)

Let Ω be the volume form of M , that is,

Ω = η ∧ (dη)n 6= 0. (29)

110



D. Kar and P. Majhi – Almost conformal Ricci solitons . . .

Taking Lie derivative of the foregoing equation along the vector field V and applying
the formula £V Ω = (divV)Ω and using (18) and (22) yields

(divV)Ω = (n + 1)ψΩ, (30)

and hence

divV = (n + 1)ψ. (31)

With help of (28), from (31) it follows that

r = −(n+ 1)ψ + (n+
1

2
)[2λ− (p+

2

2n+ 1
)]. (32)

The equivalent form of almost conformal Ricci soliton equation is given by

(£V g)(X,Y ) + 2S(X,Y ) = [2λ− (p+
2

2n+ 1
)]g(X,Y ), (33)

for any vector fields X and Y on M . Putting X = Y = ξ in the last equation
and using (16) we get

2g(£V ξ, ξ) = 4nk − 2λ+ (p+
2

2n+ 1
)]. (34)

Replacing Y by ξ in the equation (33) and then using (16) and (18) we obtain

£V ξ = [ψ − 2λ+ (p+
2

2n+ 1
) + 4nk]ξ, (35)

for any vector fields X and Y on M . Making use of (35) we find

(£V φ) = 0. (36)

Applying (36) in (26) we have

Dψ = (ξψ)ξ, (37)

from which it follows that

dψ(Y ) = (ξψ)ξ (38)

and hence

dψ = (ξψ)η. (39)
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Taking exterior derivative of (39) and using (19) we get

d(ξψ) ∧ η + (ξψ)dη = 0. (40)

Taking wedge product of (40) with η gives

(ξψ)η ∧ dη = 0. (41)

As η ∧ (dη)n is the volume element, then η ∧ dη 6= 0 and hence

ξψ = 0. (42)

With help of (42), from (39) we have

dψ = 0 (43)

and hence ψ becomes a constant. Integrating (31) and applying the Divergence
theorem we infer

ψ = 0. (44)

Therefore, V becomes a strict contact vector field. Thus we are in a position to
state the following:

Definition 3. Let M2n+1 be a (k, µ)-almost CoKähler manifold admitting almost
conformal Ricci solitons with potential vector field V . If V is a contact vector field,
then V is a strict contact vector field.

By the virtue of (34) and (35) we get

2ψ = 2λ− (p+
2

2n+ 1
)− 4nk (45)

which implies that

2λ = (p+
2

2n+ 1
) + 4nk. (46)

Case I: For k = 0, then λ > 0 and the almost conformal Ricci soliton is shrinking.
Case II: For k > 0, then λ > 0 and the almost conformal Ricci soliton is shrinking.
Case III: For k < 0, if p+ 2

2n+1 > 4nk, then λ > 0 and the almost conformal Ricci
soliton is shrinking.
Case IV: For k < 0, if p+ 2

2n+1 < 4nk, then λ < 0 and the almost conformal Ricci
soliton is expanding.
Case V: For p+ 2

2n+1 +4nk = 0, then λ = 0 and the almost conformal Ricci soliton
is steady.
Hence we can conclude the following:
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Theorem 3. Let M2n+1 be a (k, µ)-almost CoKähler manifold admitting almost
conformal Ricci solitons with potential vector field V . Then the following relations
holds:

(a) For k = 0, the almost conformal Ricci soliton is shrinking.

(b) For k > 0, the almost conformal Ricci soliton is shrinking.

(c) For k < 0 and p+ 2
2n+1 > 4nk, the almost conformal Ricci soliton is shrinking.

(d) For k < 0 and p+ 2
2n+1 < 4nk, the almost conformal Ricci soliton is expanding.

(e) For p+ 2
2n+1 + 4nk = 0 the almost conformal Ricci soliton is steady.

By the help of (45) and using the fact that ψ is constant, the equation (25)
reduces to

2(£V φ)Y = 4QφY + [−2λ+ (p+
2

2n+ 1
)− 4nk]φY, (47)

for any vector field Y on M . Also using (45) we have

2£V η = [2λ− (p+
2

2n+ 1
)− 4nk]η. (48)

Now we have

(£V φ)Y = £V φY − φ(£V Y ) (49)

Substituting Y = φY in (49) we obtain

(£V φ)φY = −£V Y + £V η(Y )ξ + η(Y )£V ξ − φ(£V φY ). (50)

Operating φ on (49) we get

φ(£V φ)Y = φ(£V φY ) + £V Y − η(£V Y )ξ. (51)

On addition of (50) and (51) we obtain

φ(£V φ)Y + (£V φ)φY = (£V η)(Y )ξ + 2η(Y )£V ξ. (52)

Multiplying both sides of (52) by 2 and using (18) and (45)

2φ(£V φ)Y + 2(£V φ)φY = 0. (53)

Making use of (47) in above equation

4φQφY + [−2λ+ (p+
2

2n+ 1
)− 4nk]φ2Y

+4Qφ2Y + [−2λ+ (p+
2

2n+ 1
)− 4nk]φ2Y = 0. (54)
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Let us assume that Qφ = φQ. Then using (17) we deduce

QY =
1

4
[2λ− (p+

2

2n+ 1
) + 4nk]Y

+
1

4
[−2λ+ (p+

2

2n+ 1
)− 4nk]η(Y )ξ, (55)

which shows that the manifold is η-Einstein and hence we can state that

Theorem 4. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold with Qφ =
φQ. If g is an almost conformal Ricci soliton with potential vector field V such that
V is contact vector field, then the manifold is η-Einstein.

Taking covarient derivative of (55) with respect to an arbitrary vector field X
we obtain

(∇XQ)Y =
1

2
(Xλ)Y − 1

2
(Xλ)η(Y )ξ

+
1

4
[−2λ+ (p+

2

2n+ 1
)− 4nk]g(h′X,Y )ξ

+
1

4
[−2λ+ (p+

2

2n+ 1
)− 4nk]η(Y )h′X. (56)

Inner product of (56) with Z entails

g((∇XQ)Y,Z) =
1

2
(Xλ)g(Y,Z)− 1

2
(Xλ)η(Y )η(Z)

+
1

4
[−2λ+ (p+

2

2n+ 1
)− 4nk]g(h′X,Y )η(Z)

+
1

4
[−2λ+ (p+

2

2n+ 1
)− 4nk]η(Y )g(h′X,Z). (57)

Contracting X,Z and Y,Z in the preceeding equation respectively we get

Y r = Y λ− (ξλ)η(Y ) (58)

and

Xr = n(Xλ). (59)

In view of (58) and (59) we infer

(1− n)(Xλ) = (ξλ)η(X). (60)

Putting X = ξ in (60) we have

ξλ = 0. (61)
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In a consequence of (61), from (60) we get

Xλ = 0, (62)

which implies that λ is constant, provided n > 1 and hence the almost conformal
Ricci soliton becomes a conformal Ricci soliton. Thus we have the following:

Theorem 5. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold admitting
almost conformal Ricci solitons with potential vector field V such that V is a contact
vector field and Qφ = φQ. Then the almost conformal Ricci solitons becomes a
conformal Ricci soliton.

Using the fact that λ is constant, from (59) we have

Xr = 0, (63)

which implies that r is costant. Then by the virtue of (63) and the Theorem 1.1
we can state the following:

Theorem 6. Let M2n+1(φ, ξ, η, g) be a compact (k, µ)-almost CoKähler manifold
admitting almost conformal Ricci solitons with potential vector field V such that V
is a contact vector field and Qφ = φQ. Then the manifold is isometric to a sphere

S2n+1(c) of radius c =

√
2(2n+1)(4n+3)

r .

4. Almost conformal Ricci solitons on almost CoKähler manifolds
with potential vector field is pointwise collinear to ξ

This section is devoted to study the almost conformal Ricci solitons on almost
CoKähler manifolds with potential vector field is pointwise collinear to the reeb
vector field ξ. Then we have

V = ρξ, (64)

where ρ is a smooth function on M .
Taking covariant derivative of (64) with respect to an arbitrary vector field X we
find

∇XV = (Xρ)ξ + ρh′X. (65)

Applying (65) on (27) we get

(Xρ)η(Y ) + ρg(h′X,Y ) + (Y ρ)η(X) + ρg(X,h′Y ) + 2S(X,Y )

= [2λ− (p+
2

2n+ 1
)]g(X,Y ). (66)
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Replacing Y by ξ in (66) we infer

Xρ+ (ξρ)η(X) + 4nkη(X) = [2λ− (p+
2

2n+ 1
)]η(X). (67)

Substituting X = ξ in the above equation we obtain

ξρ = λ− 1

2
(p+

2

2n+ 1
)− 4nk. (68)

Using (68) in (67) we infer

Xρ = [λ− 1

2
(p+

2

2n+ 1
) + 4nk]η(X) (69)

from which it follows that

dρ = [λ− 1

2
(p+

2

2n+ 1
) + 4nk]η. (70)

Taking exterior differentiation of (70) and using (19) yields

(dλ) ∧ η + [λ− 1

2
(p+

2

2n+ 1
)]dη = 0. (71)

Taking wedge product of (71) with η gives

2λ = (p+
2

2n+ 1
)− 8nk. (72)

Therefore, we can conclude the following:

Theorem 7. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold admit-
ting almost conformal Ricci solitons with potential vector field V . If V is pointwise
collinear to the reeb vector field ξ, then the almost conformal Ricci solitons is shrink-
ing, steady or expanding according as p+ 2

2n+1 is greater than, equal to or less than
8nk.

Making use of (72) in (69) we get

Xρ = 0, (73)

for any vector field X on M from which shows that ρ is constant. Thus we have the
following:

Theorem 8. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold admitting
almost conformal Ricci solitons with potential vector field V . If V is pointwise
collinear to the reeb vector field ξ, then V is costant multiple of ξ.
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Since, ρ is constant, then from (66) we have

2ρg(h′X,Y ) + 2S(X,Y ) = 2λ− (p+
2

2n+ 1
)g(X,Y ), (74)

for any vector fields X,Y on M . Let us assume that X ∈ [λ]′ = {X : h′X = λX},
that is, λ is the eigen value of h′. Then the foregoing equation assigns

S(X,Y ) = [λ(1− ρ)− (p+
2

2n+ 1
)]g(X,Y ), (75)

for all vector fields X and Y on M which entails that the manifold is Einstein. Then
we can state our next theorem as follows:

Theorem 9. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold admitting
almost conformal Ricci solitons with potential vector field V . If V is pointwise
collinear to the reeb vector field ξ, then the manifold is Einstein.

Again, taking wedge product of (71) with dη returns

dλ = 0, (76)

which determines λ is constant. Thus we are in a position to state that

Theorem 10. Let M2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler manifold admitting
almost conformal Ricci solitons with potential vector field V . If V is pointwise
collinear to the reeb vector field ξ, then the almost conformal Ricci solitons becomes
conformal Ricci solitons.

Contracting X and Y in (75) yields

r = λ− (n+
1

2
)p− 1, (77)

which ensures that r is constant, as λ is constant. Hence following the Theorem
1.1 we can conclude that

Theorem 11. Let M2n+1(φ, ξ, η, g) be a compact (k, µ)-almost CoKähler manifold
admitting almost conformal Ricci solitons with potential vector field V . If V is point-
wise collinear to the reeb vector field ξ and any vector field X on M belongs to [λ]′,

then the manifold is isometric to the sphere S2n+1(c) of radius c =

√
2(2n+1)(4n+3)

r .
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5. Almost conformal gradient Ricci solitons on almost CoKählar
manifolds

This section deals with the study of an almost conformal gradient Ricci soliton on
almost CoKählar manifolds. Then we have

V = Df, (78)

where f is a smooth function on M and D denotes the gradient operator. Then
using Poincare Lemma, from the equation (27) we get

∇XDf = [λ− 1

2
(p+

2

2n+ 1
)]X −QX, (79)

for any vector field X on M . Taking covariant derivative of (79) with respect to an
arbitrary vector field Y

∇Y∇XDf = [λ− 1

2
(p+

2

2n+ 1
)]∇YX −∇YQX + (Y λ)X, (80)

for any vector fields X,Y on M . By the virtue of (79) and (80) we obtain

R(X,Y )Df = (∇YQ)X − (∇XQ)Y + {(Xλ)Y − (Y λ)X}. (81)

Thus we have the following:

Lemma 12. Let M2n+1 be an (k, µ)-almost CoKähler manifolds admitting almost
conformal gradient Ricci solitons. Then the curvature tensor R of type (1, 3) can be
expressed as follows:
R(X,Y )Df = (∇YQ)X − (∇XQ)Y + {(Xλ)Y − (Y λ)X

Taking covarient derivative of (17) with respect to any vector field X on M we
have

(∇XQ)ξ = 2nkh′X −Qh′X. (82)

Taking inner product of (81) with ξ and using (82) we get

g(R(X,Y )Df, ξ) = S(h′X,Y )− S(X,h′Y ) + {(Xλ)η(Y )− (Y λ)η(X)}, (83)

for any vector fields X and Y on M .
Again, with the help of (14) we obtain

g(R(X,Y )Df, ξ) = −g(R(X,Y )ξ,Df)

= −k{(Xf)η(Y )− (Y f)η(X)}
−µ{η(Y )g(Df, hX)− η(X)g(Df, hY )}, (84)
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for any vector fields X,Y on M .
Compairing (83) and (84) we have

S(h′X,Y )− S(X,h′Y ) + {(Xλ)η(Y )− (Y λ)η(X)}
= −k{(Xf)η(Y )− (Y f)η(X)}
−µ{η(Y )g(Df, hX)− η(X)g(Df, hY )}, (85)

for any vector fields X,Y on M .
Substituting X = hX and Y = h2Y in the last equation we infer

QφX − φQX = 0. (86)

Let {ei, φei, ξ}, i = 1, 2, 3, ..., n, be an orthonormal φ−basis of M such that Qei =
σiei. Then we have Qφei = σiφei. Substituting ei for X in the last equation we get

Qφei = σiφei. (87)

Making use of φ-basis and (17) we obtain

r = g(Qξ, ξ) +

n∑
i=1

[g(Qei, ei) + g(Qφei, φei)]

= 2nk + 2

n∑
i=1

σi. (88)

As σi are the eigen values,
∑n

i=1 σi is constant and hence r is constant. Thus,
following the Theorem 1.1 we can state our last theorem as follows:

Theorem 13. Let M2n+1(φ, ξ, η, g) be a compact (k, µ)-almost CoKähler manifold
admitting almost conformal gradient Ricci solitons. Then M is isometric to a sphere

S2n+1(c) of radius c =

√
2(n+1)(4n+3)

r .
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Math., Birkhäuser, Boston, 203 (2010).

[5] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds
satisfying a nullity condition, Israel J. of Math., 91 (1995), 189-214.

[6] Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons
in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3) (2010), 361-368.
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