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RICCI ALMOST SOLITON ON (κ, µ) SPACE FORMS
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Abstract. The object of the present paper is to study Ricci almost solitons on
(κ, µ) space forms. It is shown that the scalar curvature of a (κ, µ) space form with
Ricci almost soliton is invariant by the application of ξ. We have also studied gra-
dient Ricci soliton on (κ, µ) space forms. We have proved that the scalar curvature
of a (κ, µ) space form admitting Ricci soliton is constant.
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1. Introduction

The notion of (κ, µ) contact metric manifolds was introduced by Blair[2]. T. Koufo-
giorgos [9] studied (κ, µ) contact metric manifolds with constant φ-sectional curva-
ture. A manifold with constant φ-sectional curvature is known as a space-form. A
(κ, µ) contact metric manifold with constant φ-sectional curvature is called (κ, µ)
space form. (κ, µ) space forms have been also studied in the paper [1]. A full clas-
sification of (κ, µ) contact metric manifolds has been given in the paper [3] . (κ, µ)
contact metric manifolds have been also studied by the first author in the papers [5]
and [13].

The notion of Ricci flow has become a popular topic of research due to its applica-
tion by Perelman [10] to solve the long standing open problem ’Poincare conjecture’.
The notion of Ricci flow was introduced by Hamilton [8]. In the same time D. Fridan
[6] introduced the concept of Ricci flow to apply it in some relativistic problems in
physics. A Ricci soliton is a constant solution of Ricci flow up to diffeomorphism
and scaling. A Ricci flow is a heat type parabolic partial differential equation given
by

∂

∂t
gij = −2Sij , gij(0) = g0,
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where gij are components of Riemannian metric and Sij are components of Ricci
curvature. For more details please see [4] . The study of Ricci soliton in contact
manifolds was first started by R. Sharma [12]. Again in the paper [7] Ricci soliton
on Kenmotsu 3-manifolds has been studied. The notion of Ricci almost soliton has
been given by S.Pigola [11]. Ricci solitons have also been studied by the first author
in the papers [14] and [15].

The present paper is organized as follows:
Section 2 contains preliminary results. In section 3, we study Ricci almost soliton

in (κ, µ)-space forms. Section 4 contains the study of (κ, µ)-space forms with gradient
almost Ricci solitons. The last section contains an example.

2. Preliminaries

A (2n + 1) dimensional differential manifold M is said to admit an almost contact
metric structure (φ, ξ, η, g) if it satisfies the following relations [2]:

φ2X = −X + η(X)ξ, η(ξ) = 1, (1)

φξ = 0, η(φX) = 0, g(X, ξ) = η(X). (2)

For a contact metric manifold we know

∇Xξ = −φX − φhX, (3)

hξ = 0, hφ = −φh (4)

for all vector fields X,Y and Z on M . In a contact metric manifold the (1, 1)
tensor field h defined by h = 1

2Lξφ, where L denotes the Lie differentiation is a
symmetric operator anti-commutative with φ. In [2] Blair et al, introduced a class
of contact metric manifold M satisfying

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (5)

where κ, µ are real constants. This class of contact metric manifolds are called (κ, µ)
contact manifolds.
In a (κ, µ) contact metric manifold, the following relations also hold [2]:

g(QX,Y ) = S(X,Y ), (6)

h2 = (κ− 1)φ2, κ 6 1, (7)
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S(X,Y ) =
1

4
{(c(2n+ 1) + 6n+ 4κ− 5)g(X,Y )− (c(2n+ 1)

+ 6n+ 4κ− 5− 8nκ)η(X)η(Y ) + (8− 8n+ 4µ)g(Y, hX)}, (8)

r =
n

2
{c(2n+ 1) + 6n+ 4κ− 5}+ 2nκ, (9)

2g((LV∇)(X,Y ), Z) = (∇XLV g)(Y,X) + (∇Y LV g)(Z,X)

+ (∇ZLV g)(X,Y ), (10)

where S is the Ricci tensor of type (0, 2) and r is the scalar curvature of the
manifold. If µ=0, the (κ, µ)-nullity distribution reduces to the κ-nullity distribution,
where the κ-nullity distribution N(κ) of a Riemannian manifold M is defined by

N(κ) : p→ Np(κ) = {W ∈ Tp(M)/R(X,Y )W = κ(g(Y,W )X − g(X,W )Y )}.

If ξ ∈ N(κ), then we call M a N(κ)-contact metric manifold.
The class of (κ, µ)-contact metric manifolds contain both the class of Sasakian

(κ = 1 and h = 0) and non-Sasakian (κ 6= 1 and h 6= 0) manifolds. Through out the
paper we denote by M2n+1 a (2n+ 1)-dimensional non-Sasakian (κ, µ)-space form.
A contact metric manifold is said to be η-Einstein if Q = aId + bη ⊗ η, where a, b
are smooth functions on M2n+1.

A space form is said to be (κ, µ)-space form if the φ-sectional curvature is con-
stant. In this space form the curvature tensor is given by [1]

4R(X,Y )Z = [(c+ 3)){g(Y,Z)X − g(x, Z)Y }+ (c+ 3− 4κ){η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}
+ (c− 1){2g(X,φY )φZ + g(X,φZ)φY − g(Y, φZ)φX}
− 2{g(hX,Z)hY − g(hY, Z)hX) + 2g(X,Z)hY − 2g(Y,Z)hX

− 2η(X)η(Z)hY + 2η(Y )η(Z)hX + 2g(hX,Z)Y − 2g(hY,Z)X

+ 2g(hY, Z)η(X)ξ − 2g(hX,Z)η(Y )ξ − g(φhX,Z)φhY

+ g(φhY,Z)φhX}+ 4µ{η(Y )η(Z)hX − η(X)η(Z)hY

+ g(hY, Z)η(X)ξ − g(hX,Z)η(Y )ξ}]. (11)

3. Ricci almost soliton on (κ, µ) space forms

Definition 3.1. A metric g of a manifold M is called Ricci almost soliton if it
satisfies

(LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0 (12)
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for a function λ. The notion of Ricci almost soliton was introduced in the paper [11]
by S.Pigola. Let us consider a (κ, µ) space form. From (8) we get

QY =
1

4
{(c(2n+ 1) + 6n+ 4κ− 5)Y − (c(2n+ 1)

+ 6n+ 4κ− 5− 8nκ)η(Y )ξ + (8− 8n+ 4µ)hY }. (13)

From the property of covariant derivative and Lie derivative we have from (13)

(∇XQ)Y = −{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(∇Xη(Y ))ξ + η(Y )∇Xξ}

+
1

2
(8− 8n+ 4κ){∇XLξφ)Y + Lξφ∇XY }

+ {c(2n+ 1) + 6n+ 4κ− 5− 8nκ}η(∇XY )ξ

+ (8− 8n+ 4µ)h∇XY. (14)

Now, from (14),

g((∇XQ)Y,X) = −{c(2n+ 1) + (6n+ 4κ− 5− 8nκ)}
{g((∇Xη(Y ))ξ,X) + g(η(Y )∇Xξ,X)}

+
1

2
(8− 8n+ 4κ){g(∇XLξφ)Y,X)

+ {c(2n+ 1) + 6n+ 4κ− 5− 8nκ}g(η(∇XY )ξ,X). (15)

Let{e1,e2,ξ} be an orthonormal φ-basis of the tangent space of the manifold at any
point. Then we know

divQY = g((∇e1Q)Y, e1) + g((∇e2Q)Y, e2) + g((∇e3Q)Y, e3). (16)

Using (15) in (16) we have

divQY = −{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{g(∇e1η(Y )ξ, e1) + g(η(Y )∇e1ξ, e1)
+ g(∇e2η(Y )ξ, e2) + g(η(Y )∇e2ξ, e2) + g(∇e3η(Y )ξ, e3)

+ g(η(Y )∇e3ξ, e3)}+
1

2
(8− 8n+ 4κ){g((∇e1Lξφ)Y, e1)

+ g((∇e2Lξφ)Y, e2) + g((∇e3Lξφ)Y, e3)}
+ {c(2n+ 1) + 6n+ κ− 5− 8nκ}{g(η(∇e1Y )ξ, e1)

+ g(η(∇e2Y )ξ, e2) + g(η(∇e3Y )ξ, e3). (17)

But it is well known that
1

2
dr(Y ) = divQY.
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So, from (17) we get

1

2
dr(Y ) = −{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{g(∇e1η(Y )ξ, e1) + g(η(Y )∇e1ξ, e1)

+ g(∇e2η(Y )ξ, e2) + g(η(Y )∇e2ξ, e2) + g(∇e3η(Y )ξ, e3)

+ g(η(Y )∇e3ξ, e3)}+
1

2
(8− 8n+ 4κ){g((∇e1Lξφ)Y, e1)

+ g((∇e2Lξφ)Y, e2) + g((∇e3Lξφ)Y, e3)}
+ {c(2n+ 1) + 6n+ κ− 5− 8nκ}{g(η(∇e1Y )ξ, e1)

+ g(η(∇e2Y )ξ, e2) + g(η(∇e3Y )ξ, e3). (18)

Putting Y = ξ in (18) and using (3) we have

1

2
dr(ξ) = (8− 8n+ 4µ){g(−h(−φe1 − φhe1), e1) + g(−h(−(φe2 − φhe2), e2)

+ g(−h(−φe3 − φhe3), e3)}. (19)

If we consider {e1,e2,e3} as a φ-basis and e3 = ξ then (18) and (4) we have

ξr = 0.

Thus we can state the following:

Theorem 3.1. If a (2n+1)-dimensional (κ, µ)-space form admits Ricci almost
soliton, then the scalar curvature is invariant by the application of ξ.

Since the manifold is Ricci almost soliton, we get

(LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (20)

here λ is a function.
Using (8) in (20) we get,

(LV g)(X,Y ) = 2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}η(X)η(Y )

− 1

2
(8− 8n+ 4µ)g(Y, hX)

− {1

2
(c(2n+ 1) + 6n+ 4κ− 5) + 2λ}g(X,Y ). (21)

Differentiating covariantly with respect to W we get from (21)

(∇WLV g)(X,Y ) = 2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(∇W η(X))η(Y )

+ η(X)(∇W η(Y ))}. (22)
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Replacing W by Z in (22) we get,

(∇ZLV g)(X,Y ) = 2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(∇Zη(X))η(Y )

+ η(X)(∇Zη(Y ))}. (23)

Again replacing W by Y and X by Z , Y by X in (22) we get

(∇Y LV g)(Z,X) = 2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(∇Y η(Z))η(X)

+ η(Z)(∇Y η(X))}. (24)

Finally replacing W by X and X by Y , Y by Z in (22) we get

(∇XLV g)(Y,Z) = 2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(∇Xη(Y ))η(Z)

+ η(Y )(∇Xη(Z)}. (25)

From (10) we have,

2g((LV∇)(X,Y ), Z) = 2{c(2n+ 1) + 6n+ 4κ− 8nκ}{(∇XηY )η(Z)

+ η(Y )(∇Xη(Z)) + (∇Y η(Z))η(X) + η(Z)(∇Y η(X))

+ (∇Zη(X))η(Y ) + η(X)(∇Zη(Y )}. (26)

Replacing Z by φZ in (26) we get

2g((LV∇)(X,Y ), φZ) = 2{c(2n+ 1) + 6n+ 4κ− 8nκ}{(∇XηY )η(φZ)

+ η(Y )(∇Xη(φZ)) + (∇Y η(φZ))η(X) + η(Z)(∇Y η(X))

+ (φ∇Zη(X))η(Y ) + η(X)(φ∇Zη(Y )}. (27)

Putting Z = ξ in (27) and using (2) we get,

2{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}{(φ∇Zη(X))η(Y ) + (φ∇Zη(Y ))η(X)} = 0. (28)

Assume
(φ∇Zη(X))η(Y ) + φ(∇Zη(Y ))η(X)} 6= 0.

Then from (28) we get,

κ =
5− 6n− c(2n+ 1)

4(1− 2n)
.

Putting the value of κ in(9) we get,

r =
c(1.5n+ 4n2 + 2n3) + 4n2 + 12n3 − 5n

2(2n− 1)
.

Hence we can state the following:

Theorem 3.2. If a (2n+1) dimensional (κ, µ) space admits Ricci almost soliton
then, the scalar curvature is constant.
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4. (κ, µ) space forms admitting gradient almost Ricci soliton

Definition 4.1. A Ricci almost soliton on a (κ, µ) space form will be called gradient
Ricci almost soliton if the vector field V is equal to the gradient of a potential
function −f .

For the gradient Ricci almost soliton we get the following:

∇∇f = S + λg, (29)

where λ is a function. From (LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, we have

∇YDf = QY + λY, (30)

where D is the gradient operator of g and Q is the Ricci operator. Putting X=ξ
and Z=Df in (11) we get

R(ξ, Y )Df = −κη(Df)Y + κg(Y,Df)ξ

− µη(Df)hY + µg(hY,Df)ξ. (31)

Now,
g(R(ξ, Y )Df, ξ) = −κη(Df)η(Y ) + κg(Y,Df) + µg(hY,Df). (32)

From (30) we have
R(X,Y )Df = (∇XQ)Y − (∇YQ)X. (33)

Using (14) in (33) we get

R(ξ, Y )Df = −{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}
{(∇ξη(Y ))ξ + (QY + φhY )}+ (4− 4n+ 2κ)

{(∇ξ2h)Y + 2h∇ξY − (∇Y 2h)ξ + 2h(φ+ φhY )}
+ {c(2n+ 1) + 6n+ 4κ− 5− 8nκ}
{η(∇ξY )ξ − η(∇Y ξ)ξ}

+ (8− 8n+ 4µ)(h∇ξY + hφY + hφhY ). (34)

Now,

g(R(ξ, Y )Df, ξ) = {c(2n+ 1) + 6n+ 4κ− 5− 8nκ}
{η(∇ξY )− η(∇ξη(Y ))ξ}

+ (4− 4n+ 2κ)[η{(∇ξ2h)Y } − η{(∇Y 2h)ξ}]. (35)

81



A. Sarkar, P. Bhakta – Ricci almost soliton on (κ, µ) space forms

From (32) and (35) we get

−κη(Df)η(Y ) + κg(Y,Df) + µg(hY,Df)

= {c(2n+ 1) + 6n+ 4κ− 5− 8nκ}
{η(∇ξY )− η(∇ξη(Y )ξ)}

+ (4− 4n+ 2κ)[η{(∇ξ2h)Y }
− η{(∇Y 2h)ξ}]. (36)

Putting Y=φDf in (36) we obtain

µ =
{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}+ (4− 4n+ 2κ)η{(∇ξ2h)φDf}

g(hφDf,Df)
. (37)

So we state the following:

Theorem 4.1. In (2n+1) dimensional (κ, µ)-space forms admitting gradient
Ricci almost soliton, the potential function −f is related with µ by the formula

µ =
{c(2n+ 1) + 6n+ 4κ− 5− 8nκ}+ (4− 4n+ 2κ)η{(∇ξ2h)φDf}

g(hφDf,Df)
.

5. Example

In this section, we give an example of a (κ, µ)-space form which admits a Ricci al-
most soliton.

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3/x 6= 0}, where
(x, y, z) are the standard coordinates in R3. Let {e1, e2, e3} be linearly independent
global frame on M given by

e1 = 2
x
∂
∂y , e2 = 2 ∂

∂x −
4z
x

∂
∂y + xy ∂

∂z , e3 = ∂
∂z .

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.
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Let η be the 1-form defined by

η(U) = g(U, e3) for any U ∈ χ(M). Let φ be the (1, 1) tensor field defined
by

φe1 = e2, φe2 = −e1, φe3 = 0.

Then using the linearity of φ and g we have η(e3) = 1,
φ2(U) = −U + η(U)e3

and g(φU, φW ) = g(U,W )− η(U)η(W )for any U,W∈ χ(M).

Moreover he1 = −e1, he2 = e2 and he3 = 0. Thus for e3 = ξ, (φ, ξ, η, g) defines
a contact metric structure on M . Let ∇ be the Levi-Civita connection with respect
to the Riemannian metric g and R be the curvature tensor of g. Then we have

[e1, e2] = 2e3 + 2
xe1 , [e1, e3] = 0, [e2, e3] = 2e1.

The Riemannian connection ∇ of the metric tensor g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking e3 = ξ and using the above formula for the Riemannian metric g, we can
easily calculate that

∇e1e1 = −2e3, ∇e1e2 = 2
xe1, ∇e1e3 = 0,

∇e2e1 = − 2
xe2, ∇e2e2 = 0, ∇e2e3 = 2e1,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a (κ, µ)-contact metric
structure on M .

Using the above relations, we can easily deduce the following:

R(e1, e2)e2 = 4
x2
e2, R(e2, e1)e1 = (−4 + 4

x2
)e1 + 4

xe3, R(e3, e2)e2 = 4
xe1.
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Now
S(e1, e1) = 0, S(e2, e2) = 0, S(e3, e3) = 0, and S(e1, e2) = 4

x2
.

Thus S is not indetically zero.
Again r = 0, a constant. Which varifies Theorem (3.2).

We see that from (3.9)

(Le1g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (38)

(Le2g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (39)

(Le3g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (40)

where λ = − 2
x .

Hence the manifold M is a Ricci almost soliton.
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