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Abstract. In this paper, we investigate the ralations between the growth of
entire or meromorphic coefficients and the growth of meromorphic solutions of gen-
eral complex linear differential-difference equation, and obtain the lower bound of
the order of meromorphic solutions by comparing the (lower) orders or the (lower)
types of the coefficients. Our results can be seen as generalizations for both the
case of complex linear differential equation and the case of complex linear difference
equation.
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1. Introduction and main results

Throughout this paper, we assume that f(z) is a meromorphic function in the
whole complex plane, and use standard notations, such as m(r, f), T (r, f), M(r, f),
in the classic Nevanlinna theory [5,7,13]. And we also use the notations σ(f) and µ(f)
to denote respectively the order and the lower order of f(z). Moreover, we give the
definitions of the type and the lower type as follows.

Definition 1. (see[5,6]) Let f(z) be a meromorphic function with the order σ(f)(0 <
σ(f) < ∞) and the lower order µ(f)(0 < µ(f) < ∞), then the type and the lower
type of f(z) are defined respectively by

τ(f) = lim
r→∞

T (r, f)

rσ(f)
and τ(f) = lim

r→∞

T (r, f)

rµ(f)
.

If f(z) is also an entire function, then we denote

τM (f) = lim
r→∞

logM(r, f)

rσ(f)
and τM (f) = lim

r→∞

logM(r, f)

rµ(f)
.
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Many scholars applied Nevanlinna theory and its difference analogues to study
the properties of meromorphic solutions of complex linear differential equation

f (n) +An−1(z)f
(n−1) + · · ·+A1(z)f

′ +A0(z)f = 0 (1)

and complex linear difference equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0, (2)

and obtained fruitful results (see e.g. [1,2,8,9,11,12,14]). Interestingly, we find there
are many similar properties for both the case of complex linear differential equation
(1) and the case of complex linear difference equation (2). We give examples on this
topic as follows.

For the case of complex linear differential equation (1), Wu and Zheng [12]
weakened the normal condition (see e.g. [1,11]) that only one dominant coefficient
of (1) has the (lower) order or the (lower) type strictly greater than the order or the
type of other coefficients, and obtained the following Theorems 1 and 2.

Theorem 1. (see[12]) Let Ai(z), i = 0, 1, · · · , n − 1 be entire functions and j ∈
{1, 2, · · · , n− 1}. If the following three assumptions hold simultaneously:

(1) max{µp(Aj), σp(Ai), i 6= 0, j} = σ ≤ µp(A0) <∞, µp(A0) > 0;
(2) τp(A0) > τp(Aj), when µp(A0) = µp(Aj);
(3) τp(A0) > max{τp(Ai) : σp(Ai) = µp(A0), i 6= 0, j}, when µp(A0) = max{σp(Ai),

i 6= 0, j}.
Then any solution f(z)(6≡ 0) of (1) satisfies σp+1(f) ≥ µp(A0).

Theorem 2. (see[12]) Let Ai(z), i = 0, 1, · · · , n − 1 be entire functions and j ∈
{1, 2, · · · , n− 1}. If the following three assumptions hold simultaneously:

(1) max{µp(A0), σp(Ai), i 6= 0, j} = δ ≤ µp(Aj) <∞, µp(Aj) > 0;
(2) τp(Aj) > τp(A0), when µp(Aj) = µp(A0);
(3) τp(Aj) > max{τp(Ai) : σp(Ai) = µp(Aj), i 6= 0, j}, when µp(Aj) = max{σp(Ai),

i 6= 0, j}.
Then any transcendental solution f(z) of (1) satisfies max{σp+1(f), λp(f)} ≥ µp(Aj),
and the non-transcendental solution can only be polynomials that have degree no more
than j − 1.

For the case of complex linear difference equation (2), Luo and Zheng [9] obtained
the similar results as Theorems 1 and 2, which also generalize the acknowledged good
results (see e.g. [2, 8]) in the field of complex linear difference equations.

Theorem 3. (see[9]) Let Aj(z), j = 0, 1, · · · , n be entire functions and k, l( 6= k) ∈
{0, 1, · · · , n}. If the following three assumptions hold simultaneously:
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(1) max{µ(Ak), σ(Aj), j 6= k, l} = σ ≤ µ(Al) <∞, µ(Al) > 0;
(2) τM (Al) > τM (Ak), when µ(Al) = µ(Ak);
(3) τM (Al) > max{τM (Aj) : σ(Aj) = µ(Al), j 6= k, l}, when µ(Al) = max{σ(Aj),

j 6= k, l}.
Then any meromorphic solution f(z)(6≡ 0) of (2) satisfies σ(f) ≥ µ(Al) + 1.

Theorem 4. (see[9]) Let Aj(z), j = 0, 1, · · · , n be meromorphic functions and k, l(6=
k) ∈ {0, 1, · · · , n}. If the following four assumptions hold simultaneously:

(1) max{µ(Ak), σ(Aj), j 6= k, l} = σ ≤ µ(Al) <∞, µ(Al) > 0;
(2) τ(Al) > τ(Ak), when µ(Al) = µ(Ak);
(3) τ(Al) > max{τ(Aj) : σ(Aj) = µ(Al), j 6= k, l}, when µ(Al) = max{σ(Aj), j 6=

k, l};
(4) δ(∞, Al) = δ > 0.

Then any meromorphic solution f(z)(6≡ 0) of (2) satisfies σ(f) ≥ µ(Al) + 1.

Remark 1. By a careful examination of the proof of Theorem 4, we note that
“τ(Al)” in Theorem 4 should be replaced by “δτ(Al)”.

Inspired by the above results, we proceed to investigate the more general case
than (1) and (2), that is, complex linear differential-difference equation

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = 0. (3)

This is an interesting and meaningful topic. Not only for the sake that (3) is a
combination of (1) and (2), and consequently inherits some common properties from
(1) and (2). But also for the sake that (3) has its own application fields distinct from
(1) and (2), and consequently (3) is of importance. There are already some results
on this topic (see e.g. [10, 15]). As generalizations of Theorems 1-4, we obtain the
following two results in the filed of complex linear differential-difference equations.

Theorem 5. Let Aij(z), i = 0, 1, · · · , n, j = 0, 1, · · ·m be entire functions, and
a, l ∈ {0, 1, · · · , n}, b ∈ {0, 1, · · · ,m} such that (a, b) 6= (l, 0). If the following three
assumptions hold simultaneously:

(1) max{µ(Aab), σ(Aij), (i, j) 6= (a, b), (l, 0)} = σ ≤ µ(Al0) <∞, µ(Al0) > 0;
(2) τM (Al0) > τM (Aab), when µ(Al0) = µ(Aab);
(3) τM (Al0) > max{τM (Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}, when

µ(Al0) = max{σ(Aij), (i, j) 6= (a, b), (l, 0)}.
Then any meromorphic solution f(z)(6≡ 0) of (3) satisfies σ(f) ≥ µ(Al0) + 1.

Theorem 6. Let Aij(z), i = 0, 1, · · · , n, j = 0, 1, · · ·m be meromorphic functions,
and a, l ∈ {0, 1, · · · , n}, b ∈ {0, 1, · · · ,m} such that (a, b) 6= (l, 0). If the following
four assumptions hold simultaneously:
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(1) δ(∞, Al0) = δ > 0;
(2) max{µ(Aab), σ(Aij), (i, j) 6= (a, b), (l, 0)} = σ ≤ µ(Al0) <∞, µ(Al0) > 0;
(3) δτ(Al0) > τ(Aab), when µ(Al0) = µ(Aab);
(4) δτ(Al0) > max{τ(Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}, when µ(Al0) =

max{σ(Aij), (i, j) 6= (a, b), (l, 0)}.
Then any meromorphic solution f(z)(6≡ 0) of (3) satisfies σ(f) ≥ µ(Al0) + 1.

Remark 2. The assumption (1) in Theorem 6 can be replaced by one of λ( 1
Al0

) <

µ(Al0), or N(r,Al0) = o(m(r,Al0)) (r →∞), or µ(Al0) = lim
r→∞

logm(r,Al0)
log r .

Remark 3. It is obvious that Theorems 1-4 are special cases of Theorems 5 and 6.

2. Lemmas for proofs of main results

Lemma 7. (see[2]) Let f(z) be a meromorphic function, η(6= 0), η1, η2(η1 6= η2) be
arbitrary complex numbers, and let γ(> 1) and ε(> 0) be given real constants. Then
there exists a subset E ⊂ (1,+∞) with finite logarithmic measure,

(1) and a constant A depending only on γ and η, such that for all |z| = r 6∈
[0, 1] ∪ E, we have∣∣∣∣log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ A(T (γr, f)

r
+
n(γr)

r
logγ r log+ n(γr)

)
;

(2) and if in addition that f(z) has finite order σ, and such that for all |z| = r 6∈
[0, 1] ∪ E, we have

exp{−rσ−1+ε} ≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp{rσ−1+ε}.

Lemma 8. (see[4]) (1) Let f(z) be a transcendental meromorphic function, Γ =
{(k1, j1), · · · , (kq, jq)} be a finite set of distinct pairs of integers such that ki >
ji ≥ 0, i = 1, · · · , q, α(> 1) be a given real constant. Then there exists a subset
E ⊂ (1,+∞) with finite logarithmic measure, and there exists a constant B(> 0)
that depend only on α and Γ, such that for all z satisfying |z| 6∈ [0, 1] ∪ E and for
all (k, j) ∈ Γ, we have∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ B
(
T (αr, f)

r
logα rlog T (αr, f)

)k−j
;

(2) if σ(f) = σ < ∞, then for any given ε(> 0), there exists a subset E ⊂
(1,+∞) with finite logarithmic measure such that for all z satisfying |z| 6∈ [0, 1]∪E

4



Zhen Chen, Xiu-Min Zheng – Meromorphic solutions of differential-difference . . .

and for all (k, j) ∈ Γ, we have∣∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).
Lemma 9. (see[3]) Let f(z) be a meromorphic function, c is a non-zero complex
constant. Then the following inequalities

(1 + o(1))T (r − |c|, f) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f)

hold as r →∞. Therefore, it is easy to obtain that

σ(f(z + c)) = σ(f), µ(f(z + c)) = µ(f).

Lemma 10. (see[2]) Let η1, η2 be distinct complex numbers, and let f(z) be a finite
order meromorphic function. Let σ be the order of f(z). Then for each ε(> 0), we
have

m

(
r,
f(z + η1)

f(z + η2)

)
= O(rσ−1+ε).

The following two lemmas are the special case p = 1 of the original ones in [6]
and [12] respectively.

Lemma 11. (see[6]) Let f(z) be an entire function with µ(f) < ∞, then for any
given ε(> 0), there exists a subset H ⊂ (1,+∞) with infinite logarithmic measure
such that for all r ∈ H, we have

µ(f) = lim
r→∞
r∈H

log logM(r, f)

log r
and M(r, f) < exp{rµ(f)+ε}.

Lemma 12. (see[12]) Let f(z) be an entire function with 0 < µ(f) < ∞, then
for any given ε(> 0), there exists a subset H ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ H, we have

τM (f) = lim
r→∞
r∈H

logM(r, f)

rµ(f)
and M(r, f) < exp{(τM (f) + ε)rµ(f)}.

We also have the similar two lemmas for the case of meromorphic functions.

Lemma 13. (see[14]) Let f(z) be a meromorphic function with µ(f) < ∞. Then
for any given ε(> 0), there exists a subset H ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ H, we have

T (r, f) < rµ(f)+ε.

Lemma 14. (see[9]) Let f(z) be a meromorphic function with 0 < µ(f) <∞. Then
for any given ε(> 0), there exists a subset H ⊂ (1,+∞) with infinite logarithmic
measure such that for all r ∈ H, we have

T (r, f) < (τ(f) + ε)rµ(f).
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3. Proofs of Theorems 5 and 6

3.1 Proof of Theorem 5

Suppose that f(z) is a non-zero meromorphic solution of (3). If f(z) has infinite
order, the result holds yet. Then we assume that f(z) has finite order without loss
of generality.

We divide (3) by f(z + cl) to get

−Al0(z) =

n∑
i=0
i6=l

m∑
j=0

Aij(z)
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)
+

m∑
j=1

Alj(z)
f (j)(z + cl)

f(z + cl)
, (4)

consequently

|Al0(z)| ≤
n∑

i=0
i6=l

m∑
j=0
|Aij(z)|

∣∣∣f (j)(z+ci)f(z+ci)

∣∣∣ ∣∣∣f(z+ci)f(z+cl)

∣∣∣
+

m∑
j=1
|Alj(z)|

∣∣∣f (j)(z+cl)f(z+cl)

∣∣∣ . (5)

It follows by Lemma 7 that for any given ε(> 0), there exists a subset E1 ⊂
(1,+∞) with finite logarithmic measure such that for all |z| = r 6∈ [0, 1] ∪ E1, we
have ∣∣∣∣f(z + ci)

f(z + cl)

∣∣∣∣ ≤ exp{rσ(f)−1+ε}, i 6= l. (6)

It follows by Lemmas 8 and 9 that for the above ε, there exists a subset E2 ⊂ (1,+∞)
with finite logarithmic measure such that for all |z| = r 6∈ [0, 1] ∪ E2, we have∣∣∣∣∣f (j)(z + ci)

f(z + ci)

∣∣∣∣∣ ≤ rj(σ(f(z+ci))−1+ε) = rj(σ(f)−1+ε), (i, j) 6= (l, 0). (7)

In the following, we divide the proof into four cases.
Case (i) We suppose that σ < µ(Al0).
By the definitions of σ(Aij), (i, j) 6= (a, b), (l, 0), we have for the above ε and

sufficiently large r,

M(r,Aij) ≤ exp{rσ(Aij)+ε} ≤ exp{rσ+ε}, (i, j) 6= (a, b), (l, 0). (8)

By the definition of µ(Al0), we have for sufficiently small ε and sufficiently large r,

M(r,Al0) ≥ exp{rµ(Al0)−ε}. (9)
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By the definition of µ(Aab) and Lemma 11, there exists a subset H1 ⊂ (1,+∞) with
infinite logarithmic measure such that for all r ∈ H1, we have

M(r,Aab) ≤ exp{rµ(Aab)+ε}. (10)

Then for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E1 ∪ E2), r → ∞ and |Al0(z)| =
M(r,Al0), we deduce from (5)-(10) that

exp{rµ(Al0)−ε}
≤ [exp{rσ+2ε}+ exp{rµ(Aab)+ε}] exp{rσ(f)−1+ε}rm(σ(f)−1+ε).

(11)

Now, we may choose sufficiently small ε satisfying 0 < 3ε < µ(Al0) − σ and
deduce from (11) that for r ∈ H1\([0, 1] ∪ E1 ∪ E2), r →∞,

exp{rµ(Al0)−2ε} ≤ exp{rσ(f)−1+ε},

that is, σ(f) ≥ µ(Al0) + 1− 3ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (ii) We suppose that max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = α < µ(Aab) =

µ(Al0) and τM (Al0) > τM (Aab).
By the definitions of σ(Aij), (i, j) 6= (a, b), (l, 0), we have for the above ε and

sufficiently large r,

M(r,Aij) ≤ exp{rσ(Aij)+ε} ≤ exp{rα+ε}, (i, j) 6= (a, b), (l, 0). (12)

By the definition of τM (Al0), we have for sufficiently small ε and sufficiently large
r,

M(r,Al0) ≥ exp{(τM (Al0)− ε)rµ(Al0)}. (13)

By the definition of τM (Aab) and Lemma 12, there exists a subset H2 ⊂ (1,+∞)
with infinite logarithmic measure such that for all r ∈ H2, we have

M(r,Aab) ≤ exp{(τM (Aab) + ε)rµ(Aab)} = exp{(τM (Aab) + ε)rµ(Al0)}. (14)

Then for all z satisfying |z| = r ∈ H2\([0, 1] ∪ E1 ∪ E2), r → ∞ and |Al0(z)| =
M(r,Al0), we deduce from (5)-(7), (12)-(14) that

exp{(τM (Al0)− ε)rµ(Al0)} ≤ [exp{rα+2ε}+ exp{(τM (Aab) + ε)rµ(Al0)}]
exp{rσ(f)−1+ε}rm(σ(f)−1+ε).

(15)

Now, we may choose sufficiently small ε satisfying 0 < 3ε < min{µ(Al0) −
α, τM (Al0) − τM (Aab)} and deduce from (15) that for r ∈ H2\([0, 1] ∪ E1 ∪ E2),
r →∞,

exp{(τM (Al0)− τM (Aab)− 3ε)rµ(Al0)} ≤ exp{rσ(f)−1+ε},
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that is, σ(f) ≥ µ(Al0) + 1− ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (iii) We suppose that µ(Aab) < max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = µ(Al0)

and τM (Al0) > τ1 = max{τM (Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}.
By the definitions of σ(Aij) and τM (Aij), (i, j) 6= (a, b), (l, 0), we have for suffi-

ciently small ε and sufficiently large r,

M(r,Aij) ≤
{

exp{rµ(Al0)−ε}, if σ(Aij) < µ(Al0), (i, j) 6= (a, b), (l, 0);

exp{(τ1 + ε)rµ(Al0)}, if σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0).
(16)

Then for all z satisfying |z| = r ∈ H1\([0, 1] ∪ E1 ∪ E2), r → ∞ and |Al0(z)| =
M(r,Al0), we deduce from (5)-(7), (10), (13) and (16) that

exp{(τM (Al0)− ε)rµ(Al0)}
≤ [exp{rµ(Al0)− ε

2 }+ exp{rµ(Aab)+ε}+ exp{(τ1 + 2ε)rµ(Al0)}]
exp{rσ(f)−1+ε}rm(σ(f)−1+ε).

(17)

Now, we may choose sufficiently small ε satisfying 0 < 4ε < min{µ(Al0)−µ(Aab),
τM (Al0)− τ1} and deduce from (17) that for r ∈ H1\([0, 1] ∪ E1 ∪ E2), r →∞,

exp{(τM (Al0)− τ1 − 4ε)rµ(Al0)} ≤ exp{rσ(f)−1+ε},

that is, σ(f) ≥ µ(Al0) + 1− ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (iv) We suppose that max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = µ(Aab) = µ(Al0)

and τM (Al0) > τ2 = max{τM (Aab), τM (Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}.
Then for all z satisfying |z| = r ∈ H2\([0, 1] ∪ E1 ∪ E2), r → ∞ and |Al0(z)| =

M(r,Al0), we deduce from (5)-(7), (13), (14) and (16) that

exp{(τM (Al0)− ε)rµ(Al0)} ≤ [exp{(τ2 + 2ε)rµ(Al0)}+ exp{rµ(Al0)− ε
2 }]

exp{rσ(f)−1+ε}rm(σ(f)−1+ε).
(18)

Now, we may choose sufficiently small ε satisfying 0 < 4ε < τM (Al0) − τ2 and
deduce from (18) that for r ∈ H2\([0, 1] ∪ E1 ∪ E2), r →∞,

exp{(τM (Al0)− τ2 − 4ε)rµ(Al0)} ≤ exp{rσ(f)−1+ε},

that is, σ(f) ≥ µ(Al0) + 1− ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Therefore, the proof of Theorem 5 is complete.

3.2 Proof of Theorem 6

Suppose that f(z) is a non-zero meromorphic solution of (3). If f(z) has infinite
order, the result holds yet. Then we assume that f(z) has finite order without loss
of generality.

8
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It follows by (4) that

m(r,Al0) ≤
n∑

i=0
i 6=l

m∑
j=0

m(r,Aij) +
m∑
j=1

m(r,Alj) +
n∑

i=0
i 6=l

m
(
r, f(z+ci)f(z+cl)

)
+

m∑
j=1

n∑
i=0

m
(
r, f

(j)(z+ci)
f(z+ci)

)
+O(1).

(19)

It follows by Lemmas 9 and 10 and the lemma of logarithmic derivative that for
any given ε(> 0), we have

m
(
r, f(z+ci)f(z+cl)

)
= O(rσ(f)−1+ε), i 6= l,

m
(
r, f

(j)(z+ci)
f(z+ci)

)
= O(log r), j 6= 0.

(20)

In the following, we divide the proof into four cases.
Case (i) We suppose that σ < µ(Al0).
By the definitions of σ(Aij), (i, j) 6= (a, b), (l, 0), we have for the above ε and

sufficiently large r,

m(r,Aij) ≤ T (r,Aij) ≤ rσ(Aij)+ε, (i, j) 6= (a, b), (l, 0). (21)

By the definition of µ(Al0) and the assumption δ(∞, Al0) = δ > 0, we have for
sufficiently small ε and sufficiently large r,

m(r,Al0) ≥
δ

2
T (r,Al0) ≥

δ

2
rµ(Al0)− ε

2 ≥ rµ(Al0)−ε. (22)

By the definition of µ(Aab) and Lemma 13, there exists a subset H1 ⊂ (1,+∞)
with infinite logarithmic measure such that for all r ∈ H1, we have

m(r,Aab) ≤ T (r,Aab) ≤ rµ(Aab)+ε. (23)

Then it follows by (19)-(23) that for sufficiently large r ∈ H1, we have

rµ(Al0)−ε ≤ rµ(Aab)+ε +O(rσ+ε) +O(rσ(f)−1+ε) +O(log r)

≤ rσ+2ε + rσ(f)−1+2ε.
(24)

Now, we may choose sufficiently small ε satisfying 0 < 3ε < µ(Al0) − σ and
deduce from (24) that for sufficiently large r ∈ H1,

rµ(Al0)−2ε ≤ rσ(f)−1+2ε,

9
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that is, σ(f) ≥ µ(Al0) + 1− 4ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (ii) We suppose that max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = α < µ(Aab) =

µ(Al0) and δτ(Al0) > τ(Aab).
By the definition of τ(Al0) and the assumption δ(∞, Al0) = δ > 0, we have for

sufficiently small ε and sufficiently large r,

m(r,Al0) ≥ (δ − ε)T (r,Al0) ≥ (δ − ε)(τ(Al0)− ε)rµ(Al0)

≥ (δτ(Al0)− (τ(Al0) + 1)ε)rµ(Al0).
(25)

By the definition of τ(Aab) and Lemma 14, there exists a subset H2 ⊂ (1,+∞)
with infinite logarithmic measure such that for all r ∈ H2, we have

m(r,Aab) ≤ T (r,Aab) ≤ (τ(Aab) + ε)rµ(Aab) = (τ(Aab) + ε)rµ(Al0). (26)

Then it follows by (19)-(21), (25) and (26) that for sufficiently large r ∈ H2, we
have

(δτ(Al0)− (τ(Al0) + 1)ε)rµ(Al0)

≤ (τ(Aab) + ε)rµ(Al0) +O(rα+ε) +O(rσ(f)−1+ε) +O(log r)

≤ (τ(Aab) + ε)rµ(Al0) + rα+2ε + rσ(f)−1+2ε.

(27)

Now, we may choose sufficiently small ε satisfying 0 < (τ(Al0)+3)ε < min{µ(Al0)−
α, δτ(Al0)− τ(Aab)} and deduce from (27) that for sufficiently large r ∈ H2,

(δτ(Al0)− τ(Aab)− (τ(Al0) + 3)ε)rµ(Al0) ≤ rσ(f)−1+2ε,

that is, σ(f) ≥ µ(Al0) + 1− 2ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (iii) We suppose that µ(Aab) < max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = µ(Al0)

and δτ(Al0) > τ1 = max{τ(Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}.
By the definitions of σ(Aij) and τ(Aij), (i, j) 6= (a, b), (l, 0), we have for suffi-

ciently small ε and sufficiently large r,

T (r,Aij) ≤
{
rµ(Al0)−ε, if σ(Aij) < µ(Al0), (i, j) 6= (a, b), (l, 0);

(τ1 + ε)rµ(Al0), if σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0).
(28)

Then it follows by (19), (20), (23), (25) and (28) that for sufficiently large r ∈ H1,
we have

(δτ(Al0)− (τ(Al0) + 1)ε)rµ(Al0)

≤ rµ(Aab)+ε +O((τ1 + ε)rµ(Al0)) +O(rµ(Al0)−ε) +O(rσ(f)−1+ε) +O(log r)

≤ rµ(Aab)+ε + (τ1 + 2ε)rµ(Al0) + rσ(f)−1+2ε.

(29)
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Now, we may choose sufficiently small ε satisfying 0 < (τ(Al0)+3)ε < min{µ(Al0)−
µ(Aab), δτ(Al0)− τ1} and deduce from (29) that for sufficiently large r ∈ H1,

(δτ(Al0)− τ1 − (τ(Al0) + 3)ε)rµ(Al0) ≤ rσ(f)−1+2ε,

that is, σ(f) ≥ µ(Al0) + 1− 2ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Case (iv) We suppose that max{σ(Aij), (i, j) 6= (a, b), (l, 0)} = µ(Aab) = µ(Al0)

and δτ(Al0) > τ2 = max{τ(Aab), τ(Aij) : σ(Aij) = µ(Al0), (i, j) 6= (a, b), (l, 0)}.
Then it follows by (19), (20), (25), (26) and (28) that for sufficiently large r ∈ H2,

we have

(δτ(Al0)− (τ(Al0) + 1)ε)rµ(Al0)

≤ O((τ2 + ε)rµ(Al0)) +O(rµ(Al0)−ε) +O(rσ(f)−1+ε) +O(log r)

≤ (τ2 + 2ε)rµ(Al0) + rσ(f)−1+2ε.

(30)

Now, we may choose sufficiently small ε satisfying 0 < (τ(Al0)+3)ε < δτ(Al0)−τ2
and deduce from (30) that for sufficiently large r ∈ H2,

(δτ(Al0)− τ2 − (τ(Al0) + 3)ε)rµ(Al0) ≤ rσ(f)−1+2ε,

that is, σ(f) ≥ µ(Al0) + 1− 2ε. Since ε is arbitrary, we have σ(f) ≥ µ(Al0) + 1.
Therefore, the proof of Theorem 6 is complete.
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