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1 Introduction

Let K be a nonempty subset of a metric space (X, d). The set K is called proximinal if for
any x ∈ X, there exists an element k ∈ K such that d(x, k) = d(x,K), where d(x,K) =
inf {d(x, y) : y ∈ K}. We shall denote CB(K) and P (K) be the family of nonempty closed
bounded all subsets and nonempty proximinal bounded all subsets of K, respectively. The
Hausdorff metric on CB(X) is defined by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
for all A,B ∈ CB(X).

Let T : K → CB(K) be a multi-valued mapping. An element p ∈ K is a fixed point of T if p ∈
Tp. Denote by F (T ) the set of all fixed points of T and PT (x) = {y ∈ Tx : d(x, y) = d(x, Tx)}.
It follows from the definition of PT that d(x, Tx) ≤ d(x, PT (x)) for any x ∈ K. The mapping T
is said to be

(i) nonexpansive if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ K;

(ii) quasi-nonexpansive [17] if F (T ) 6= ∅ and H(Tx, Tp) ≤ d(x, p) for all x ∈ K and p ∈ F (T );

(iii) Lipschitzian if there exists a constant L > 0 such that H(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ K;

(iv) Lipschitzian quasi-nonexpansive if both (ii) and (iii) hold.

It is clear that each multi-valued nonexpansive mapping with F (T ) 6= ∅ is quasi-nonexpansive.
But there exist the multi-valued quasi-nonexpansive mappings that are not nonexpansive (see
[16, 17]). Moreover, each multi-valued nonexpansive mapping is Lipschitzian with L = 1.

Agarwal, O’Regan and Sahu [1] introduced the following iteration process, which is independent
of both Mann [13] and Ishikawa [7] iterations, for a single-valued nonexpansive mapping in a
Banach space:
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x1 ∈ K,
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, ∀n ∈ N,
(1)

where {αn} and {βn} are real sequences in (0, 1). They showed that the rate convergence of
this iteration process is similar to the Picard iteration and faster than the Mann iteration for
contraction mappings.

Recently, Khan and Abbas [8] studied the two multi-valued mappings version of the iteration
process (1) in a hyperbolic space.

Motivated by these results, we now modify the iteration process (1) for three multi-valued
mappings in a hyperbolic space as follows:

Let K be a nonempty convex subset of a hyperbolic space X and Q,S, T : K → P (K) be three
multi-valued mappings. Then the sequence {xn} is generated as

x0 ∈ K,
yn = W

(
tn, xn,

βn
1−αn

)
,

xn+1 = W (un, vn, αn), ∀n ≥ 0,

(2)

where tn ∈ PQ(xn), vn ∈ PS(xn), un ∈ PT (yn) = PT (W (tn, xn,
βn

1−αn
)) and {αn} , {βn} ⊂ (0, 1)

such that αn + βn < 1.

In this paper, we prove some convergence theorems of the iteration process (2) for approximating
a common fixed point of three multi-valued Lipschitzian quasi-nonexpansive mappings in a
hyperbolic space. Our results generalize some recent results given in [8, 15].

2 Preliminaries and lemmas

We consider the concept of hyperbolic space introduced by Kohlenbach [10] which is more
restrictive than the hyperbolic type introduced in Goebel and Kirk [4] and more general than
the concept of hyperbolic space in Reich and Shafrir [14].

A hyperbolic space [10] is a triple (X, d,W ) where (X, d) is a metric space and W : X ×X ×
[0, 1]→ X is a function satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| d(x, y),

(W3) W (x, y, λ) = W (y, x, (1− λ)),

(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w)

for all x, y, z, w ∈ X and λ, λ1, λ2 ∈ [0, 1].

If a space satisfies only (W1), it coincides with the convex metric space introduced by Takahashi
[20]. A subset K of a hyperbolic space X is convex if W (x, y, λ) ∈ K for all x, y ∈ K and
λ ∈ [0, 1]. CAT(0) space in the sense of Gromov (see [2]) and Banach space are the examples of
hyperbolic space. The class of hyperbolic space also contains Hadamard manifolds (see [3]), the
Hilbert balls equipped with the hyperbolic metric (see [5]), Cartesian products of Hilbert balls
and R-trees, as special cases.

A hyperbolic space (X, d,W ) is said to be uniformly convex [18] if for all u, x, y ∈ X, r > 0 and
ε ∈ (0, 2], there exists a constant δ ∈ (0, 1] such that d

(
W
(
x, y, 12

)
, u
)
≤ (1 − δ)r whenever

d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
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A mapping η : (0,∞) × (0, 2] → (0, 1] is called the modulus of uniform convexity if δ = η(r, ε)
for given r > 0 and ε ∈ (0, 2]. The function η is monotone if it decreases with r (for a fixed ε).

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define a continuous functional
r(., {xn}) : X → [0,∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius rK({xn}) of {xn} with respect to a subset K of X is given by

rK({xn}) = inf {r(x, {xn}) : x ∈ K}.

The asymptotic center AK({xn}) of {xn} with respect to K ⊂ X is the set

AK ({xn}) = {x ∈ K : r (x, {xn}) = rK({xn})}.

r({xn}) and A({xn}) will denote the asymptotic radius and the asymptotic center of {xn} with
respect to X, respectively. In general, the set AK ({xn}) may be empty or may even contain
infinitely many points. It has been shown in Proposition 3.3 of [11] that every bounded sequences
have unique asymptotic center with respect to nonempty closed convex subsets in a complete
uniformly convex hyperbolic space with the monotone modulus of uniform convexity.

A sequence {xn} in X is said to be 4-convergent to x ∈ X if x is the unique asymptotic center
of {un} for every subsequence {un} of {xn} (see [12]). In this case, we write 4-limn→∞ xn = x
and call x as 4-limit of {xn} .
In the sequel, we shall need the following results.

Lemma 1 (see [9, Lemma 2.5]) Let (X, d,W ) be a uniformly convex hyperbolic space with the
monotone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for
some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that lim supn→∞ d (xn, x) ≤
r, lim supn→∞ d (yn, x) ≤ r and limn→∞ d (W (xn, yn, αn) , x) = r for some r ≥ 0, then

lim
n→∞

d (xn, yn) = 0.

Lemma 2 (see [9, Lemma 2.6]) Let K be a nonempty closed convex subset of a uniformly
convex hyperbolic space X and {xn} be a bounded sequence in K with A({xn}) = {y}. If {ym}
is another sequence in K such that limm→∞ r(ym, {xn}) = r(y, {xn}), then limm→∞ ym = y.

Lemma 3 (see [19, Lemma 1]) Let K be a nonempty subset of a metric space (X, d) and
T : K → P (K) be a multi-valued mapping. Then the followings are equivalent:

(1) x ∈ F (T ), that is, x ∈ Tx;

(2) PT (x) = {x} , that is, x = y for each y ∈ PT (x);

(3) x ∈ F (PT ), that is, x ∈ PT (x).

Further, F (T ) = F (PT ).

3 Main results

From now on for three multi-valued mappings Q, S and T, we set F = F (Q)∩F (S)∩F (T ) 6= ∅.
We start with proving key lemmas for later use.

Lemma 4 Let K be a nonempty closed convex subset of a hyperbolic space X and Q,S, T : K →
P (K) be three multi-valued mappings such that PQ, PS and PT are quasi-nonexpansive. Then
for the sequence {xn} defined by (2), limn→∞ d(xn, p) exists for each p ∈ F .
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Proof. Let p ∈ F . Then by Lemma 3, p ∈ PQ(p) = {p} = PS(p) = PT (p). From (2), we have

d(xn+1, p) = d(W (un, vn, αn), p)

≤ (1− αn)d(un, p) + αnd(vn, p)

= (1− αn)d(un, PT (p)) + αnd(vn, PS(p))

≤ (1− αn)H(PT (yn), PT (p)) + αnH(PS(xn), PS(p))

≤ (1− αn)d(yn, p) + αnd(xn, p) (3)

and

d(yn, p) = d

(
W

(
tn, xn,

βn
1− αn

)
, p

)
≤

(
1− βn

1− αn

)
d(tn, p) +

βn
1− αn

d(xn, p)

≤
(

1− βn
1− αn

)
H(PQ(xn), PQ(p)) +

βn
1− αn

d(xn, p)

≤
(

1− βn
1− αn

)
d(xn, p) +

βn
1− αn

d(xn, p)

= d(xn, p). (4)

Combining (3) and (4), we get

d(xn+1, p) ≤ d(xn, p).

Hence limn→∞ d(xn, p) exists for each p ∈ F .

Lemma 5 Let K be a nonempty closed convex subset of a uniformly convex hyperbolic space
X with the monotone modulus of uniform convexity η and Q,S, T : K → P (K) be three multi-
valued mappings such that PQ, PS and PT are Lipschitzian quasi-nonexpansive with d(xn, vn) ≤
d(un, vn). Let {xn} be the sequence defined by (2) with 0 < a ≤ αn, βn ≤ b < 1. Then

lim
n→∞

d(xn, PQ(xn)) = lim
n→∞

d(xn, PS(xn)) = lim
n→∞

d(xn, PT (xn)) = 0.

Proof. By Lemma 4, limn→∞ d(xn, p) exists for each given p ∈ F . We assume that

lim
n→∞

d(xn, p) = r for some r ≥ 0. (5)

The case r = 0 is trivial. Next, we deal with the case r > 0. Now (3) can be rewritten as

(1− αn)d(xn+1, p) ≤ (1− αn)d(yn, p) + αnd(xn, p)− αnd(xn+1, p).

This implies that

d(xn+1, p) ≤ d(yn, p) +
αn

1− αn
[d(xn, p)− d(xn+1, p)]

≤ d(yn, p) +
b

1− b
[d(xn, p)− d(xn+1, p)]

and so r ≤ lim infn→∞ d(yn, p). Taking limit superior on both sides in the inequality (4), we get
lim supn→∞ d(yn, p) ≤ r. Hence

lim
n→∞

d(yn, p) = lim
n→∞

d

(
W

(
tn, xn,

βn
1− αn

)
, p

)
= r. (6)
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Since
d(tn, p) ≤ H(PQ(xn), PQ(p)) ≤ d(xn, p),

then we have
lim sup
n→∞

d(tn, p) ≤ r. (7)

From (5)-(7) and Lemma 1, we obtain

lim
n→∞

d(tn, xn) = 0. (8)

Since d(x, PQ(x)) = infz∈PQ(x) d(x, z), therefore

d(xn, PQ(xn)) ≤ d(xn, tn)→ 0 as n→∞.

By (4) and the quasi-nonexpansiveness of PT , we have

d(un, p) ≤ H(PT (yn), PT (p)) ≤ d(yn, p) ≤ d(xn, p).

Hence
lim sup
n→∞

d(un, p) ≤ r. (9)

Since
d(vn, p) ≤ H(PS(xn), PS(p)) ≤ d(xn, p),

then we have
lim sup
n→∞

d(vn, p) ≤ r. (10)

In addition,
lim
n→∞

d(xn+1, p) = lim
n→∞

d(W (un, vn, αn), p) = r. (11)

From (9)-(11) and Lemma 1, we obtain

lim
n→∞

d(un, vn) = 0.

Hence, from the hypothesis d(xn, vn) ≤ d(un, vn), we have

d(xn, PS(xn)) ≤ d(xn, vn) ≤ d(un, vn)→ 0 as n→∞.

Since
d(xn, un) ≤ d(xn, vn) + d(vn, un) ≤ 2d(un, vn)→ 0 as n→∞, (12)

we conclude that
d(xn, PT (yn)) ≤ d(xn, un)→∞ as n→∞.

In addition, by (8) and (12), we get

d(xn, PT (xn)) ≤ d(xn, un) + d(un, PT (xn))

≤ d(xn, un) +H(PT (yn), PT (xn))

≤ d(xn, un) + Ld(yn, xn)

≤ d(xn, un) + L

(
1− βn

1− αn

)
d(tn, xn)

≤ d(xn, un) + L

(
1− a

1− a

)
d(tn, xn)

→ 0 as n→∞.

This completes the proof.

We now give our 4-convergence theorem.
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Theorem 6 Let X,K and {xn} satisfy the hypotheses of Lemma 5 and Q,S, T : K → P (K) be
three multi-valued mappings such that PQ, PS and PT are nonexpansive. If X is complete, then
the sequence {xn} is 4-convergent to a point in F .

Proof. It follows from Lemma 4 that the sequence {xn} is bounded. Then {xn} has a unique
asymptotic center AK ({xn}) = {x}. Let {zn} be any subsequence of {xn} with AK ({zn}) = {z}.
By Lemma 5, we have

lim
n→∞

d(zn, PQ(zn)) = lim
n→∞

d(zn, PS(zn)) = lim
n→∞

d(zn, PT (zn)) = 0.

Now, we claim that z is a common fixed point of PQ, PS and PT . For this, we define a sequence
{wm} in PT (z). So, we calculate

d(wm, zn) ≤ d(wm, PT (zn)) + d(PT (zn), zn)

≤ H(PT (z), PT (zn)) + d(PT (zn), zn)

≤ d(z, zn) + d(PT (zn), zn).

Then
r(wm, {zn}) = lim sup

n→∞
d(wm, zn) ≤ lim sup

n→∞
d(z, zn) = r(z, {zn}).

This implies that |r(wm, {zn})− r(z, {zn})| → 0 as m → ∞. It follows from Lemma 2 that
limm→∞wm = z. Note that Tz ∈ P (K) being proximinal is closed, hence PT (z) is closed.
Consequently limm→∞wm = z ∈ PT (z) and so z ∈ F (PT ). Similarly, z ∈ F (PS) and z ∈ F (PQ).
Hence z ∈ F . By the uniqueness of asymptotic center, we can get x = z. It implies that the
sequence {xn} is 4-convergent to x ∈ F . The proof is completed.

Remark 1 If we take Q = S in Theorem 6, we get the 4-convergence theorem in [8].

Theorem 7 Let X,K,Q, S, T and {xn} be the same as in Lemma 5. Then

(i) lim infn→∞ d(xn, F ) = lim supn→∞ d(xn, F ) = 0 if {xn} converges strongly to a common fixed
point in F .

(ii) {xn} converges strongly to a common fixed point in F if X is complete and either lim infn→∞
d(xn, F ) = 0 or lim supn→∞ d(xn, F ) = 0.

Proof. (i) Let p ∈ F . Since {xn} converges strongly to p, limn→∞ d(xn, p) = 0. So, for a given
ε > 0, there exists n0 ∈ N such that d(xn, p) < ε for all n ≥ n0. Taking infimum over p ∈ F, we
get

d(xn, F ) < ε for all n ≥ n0.

This means limn→∞ d(xn, F ) = 0 so that

lim inf
n→∞

d(xn, F ) = lim sup
n→∞

d(xn, F ) = 0.

(ii) Suppose that X is complete and lim infn→∞ d(xn, F ) = 0 or lim supn→∞ d(xn, F ) = 0. It
follows from Lemma 4 that limn→∞ d(xn, F ) exists. Then, we get

lim
n→∞

d(xn, F ) = 0.

The proof of the remaining part follows the proof of Theorem 2.5 in [8].

Recall that a multi-valued mapping T : K → P (K) is semi-compact if any bounded sequence
{xn} satisfying d(xn, Txn)→ 0 as n→∞ has a strongly convergent subsequence.
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Gu and He [6] defined the concept of condition (A
′
) for N multi-valued mappings. We can define

this concept for three multi-valued mappings as follows.

The mappings Q,S and T are said to satisfy condition (A
′
) if there exists a non-decreasing

function f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

f(d(x, F )) ≤ 1

3
[d(x,Qx) + d(x, Sx) + d(x, Tx)] for all x ∈ K.

By using the above definitions, we can easily prove the following strong convergence result.

Theorem 8 Let X,K,Q, S, T and {xn} be satisfy the hypotheses of Lemma 5 and X be a
complete. If one of the mappings PQ, PS and PT is semi-compact or PQ, PS and PT satisfy
condition (A

′
), then the sequence {xn} is convergent strongly to a point in F.

Remark 2 (i) Theorems 7, 8 contain the corresponding results of Khan and Abbas [8] when
S, T are two multi-valued mappings such that PS and PT are nonexpansive and Q = S.

(ii) Our results generalize the corresponding results of Şahin and Başarır [15] from three non-
expansive self mappings to three multi-valued Lipschitzian quasi-nonexpansive mappings.
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