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Abstract. In this paper, we present a new and novel generalization of the
expansion principle on a metric space endowed with a binary relation which, under
universal relation, reduces to the well-known expansion principle due to Wang et al.
[Math. Japon. 29, 4 (1984), 631-636]. Our findings possibly pave the way for
another direction of relation-theoretic metrical fixed point results. We furnish an
example to exhibit the utility of our results. Finally, we utilize one of our results to
prove a fixed point theorem for cyclic expansive mappings.
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1. Introduction

The advancement and the rich growth of fixed point theory have important theoreti-
cal and practical applications in almost all scientific fields of study. The development
has been tremendous in yesteryears. Usually, fixed point theory uses to prove the
existence and uniqueness of the solutions of huge variety of equations arising in
theoretical and practical disciplines of Mathematics. The celebrated Banach con-
traction principle is one of the most efficient as well as powerful tools to study such
problems. Due to enormous utility and applications, Banach contraction principle
has been generalized in several ways and with the same spirit Wang et al. [32] initi-
ated the study of expansion mappings in metric spaces wherein the authors defined
expansion mapping and utilize the same to prove the following theorem:

Theorem 1. Let (M,d) be a complete metric space and g a self-mapping on M . If
g is surjective and satisfies

d(gu, gv) ≥ λd(u, v),

for all u, v ∈M with λ > 1, then g has a unique fixed point in M .
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Observe that the condition λ > 1 is crucial, e. g. the function g : [0,∞)→ [0,∞)
given by gu = 2u + eu satisfies d(gu, gv) ≥ d(u, v) for all u, v ∈ [0,∞), and g has
no fixed point, where d stands for the usual metric on [0,∞).

Theorem 1 has been extend and generalized in many directions (see [2, 14, 24,
30, 12, 1, 9, 20, 11, 22, 23] and references cited therein).

In resent years, various results in fixed point theory were proved in metric spaces
endowed with different types of binary relations (see [4, 3, 6, 7, 21, 25, 26, 27, 29, 31]
and references cited therein). In this context, we employ an arbitrary binary relation
to present a new generalization of Theorem 1.

In this paper, we extend the well known expansion principle to a metric space
endowed with a binary relation. In this context, the expansion condition is relatively
weaker than the usual condition as it is required to hold only on those elements which
are related under the underlying relation rather than the whole space. Particularly,
under the universal relation, our main result reduces to the well known expansion
principle due to Wang et al. [32]. In the process, we require to introduce some new
notions namely: orbitally S-continuous and S-precompleteness which are relatively
weaker than their analogous conditions existing in the literature. Further, we furnish
an example to show the utility of our results. Finally, we apply one of our results to
prove a fixed point theorem for cyclic expansive mappings.

As usual N is the set of natural numbers while N0 = {0} ∪ N. In the sequel, M
is a nonempty set, g : M →M a surjective map and g−1r refers for a right inverse of
g under composition, i.e., g ◦ g−1r = IM (IM is the identity map on M). For brevity,
we write gu instead of g(u), {un} → u whenever the sequence {un} converges to u
and for all n one means that for all n ∈ N0. A point u ∈ M is said to be a fixed
point of g if gu = u whereas Fix(g) denotes the set of all such points. Let u0 ∈M ,
a sequence {un} ⊆ M which is defined by un+1 = gnu0 = gun, for all n, is called a
Picard sequence based on u0.

2. Relation theoretic notions and auxiliary results

In this section, we present some definitions and basic results which are needed in
the sequel.

A binary relation on M is a non-empty subset S of M ×M . Trivially, M ×M is
always a binary relation on M known as universal relation. For simplicity, we write
uSv whenever (u, v) ∈ S and uS/v whenever uSv and u 6= v. Observe that S/ is
also a binary relation on M such that S/ ⊆ S. The points u and v are said to be
S-comparable if uSv or vSu, this is denoted by [u, v] ∈ S. Throughout this work, S
stands for a binary relation defined on M , SM stands for the universal relation on
M and M(g,S) = {u ∈M : uSgu}.

56



M. Imdad, W.M. Alfaqih – A relation-theoretic expansion principle . . .

Definition 1. (see [18, 19, 26]) A binary relation S is said to be:

(i) amorphous if it is an arbitrary relation;

(ii) reflexive if for all u ∈M , uSu;

(iii) transitive if for any u, v, z ∈M , uSv and vSz imply uSz;

(iv) antisymmetric if for any u, v ∈M , uSv and vSu imply u = v;

(v) partial order if it is reflexive, transitive and antisymmetric;

(vi) complete, connected or dichotomous if [u, v] ∈ S for all u, v ∈M .

Definition 2. [28] Let M be a non-empty set, E ⊆ M and S a binary relation on
M . If for each u, v ∈ E, there exists z ∈M such that uSz and vSz, then E is called
S-directed.

Definition 3. [16] Let M be a non-empty set and u, v ∈ M . A path of length p
(p ∈ N) in S from u to v is a finite sequence {u0, u1, ..., up} ⊆ M satisfying the
following:

(i) u0 = u and up = v;

(ii) (ui, ui+1) ∈ S for each i ∈ {0, 1, ..., p− 1}.

Observe that if L is a path from u to v of length p, then L involves p + 1 elements
of M , although they are not necessarily distinct.

Definition 4. [5] Let M be a non-empty set and E ⊆M . If for each u, v ∈ E there
exists a path in S from u to v, then E is said to be S-connected.

Definition 5. [17] Let S a binary relation on a non-empty set M .

• S−1 = {(u, v) ∈ M2 : (v, u) ∈ S} known as the inverse, transpose or dual
relation of S;

• Ss = S ∪ S−1 is the symmetric closure of S.

The following proposition immediate follows from the fact that S ⊆ Ss.

Proposition 1. Let S a be binary relation on a non-empty set M . If M is S-
connected, then it is also Ss-connected.

Definition 6. [4] Let M be a non-empty set, S a binary relation on M and g :
M →M . Then S is called g-closed if uSv implies guSgv (for any u, v ∈M).
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Definition 7. [5] Let S be a binary relation on a non-empty set M and {un} ⊆M .
If unSun+1 for all n, then {un} is called S-preserving sequence .

Definition 8. [10] Let M be a non-empty set, S a binary relation on M and g :
M → M . A sequence {un} ⊆ M is said to be (g,S)-Picard sequence if it is a
Picard sequence with unSun+1 (for all n).

In what follows we discuss certain types of continuity of a mapping. The first
one of them is well known and often used in metric fixed point theory.

Definition 9. [8] Let (M,d) be a metric space. A self-mapping g : M →M is said
to be an orbitally continuous if for all u, v ∈ M and any sequence {ni} of positive
integers with {gniu} → v, we have {ggniu} → gv.

Observe that every continuous mapping is orbitally continuous.

Definition 10. [5] Let (M,d) be a metric space, S a binary relation on M and
u ∈ M . A self-mapping g : M → M is said to be S-continuous at u if for any
S-preserving sequence {un} ⊆ M such that {un} → u, we have {gun} → gu. Fur-
thermore, g is called S-continuous if it is S-continuous at each point of M .

Remark 1. Every continuous mapping is S-continuous, for any binary binary re-
lation S. Particularly, under the universal relation SM the notion of SM -continuity
coincides with usual continuity.

Inspired by the above types of continuity, we introduce the notion of orbital
S-continuity as follows:

Definition 11. Let (M,d) be a metric space and S a binary relation on M . A
self-mapping g : M →M is said to be an orbitally S-continuous if for all u, v ∈M
and any sequence {ni} of positive integers, we have

{gniu} → v and gniuSgni+1u for all i ∈ N imply {ggniu} → gv.

Remark 2. Every orbitally continuous mapping is orbitally S-continuous, for any
arbitrary binary relation S. Especially, under the universal relation SM the notion
of orbital SM -continuity coincides with orbital continuity.

Remark 3. The following implications are obvious:

Continuity =⇒ orbital continuity
⇓ ⇓

S-continuity =⇒ orbitally S-continuity.

Definition 12. [29] Let (M,d) be a metric space. A subset E ⊆ M is said to be
precomplete if each Cauchy sequence {un} ⊆ E converges to some u ∈M .
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Observe that every complete subset of M is precomplete.

Definition 13. Let S be a binary relation on a non-empty set M and d a metric
on M . A subset E ⊆ M is said to be S-precomplete if each S-preserving Cauchy
sequence {un} ⊆ E converges to some u ∈M .

Remark 4. Every precomplete subset of M is S-precomplete, for an arbitrary binary
relation S.

Observe that the converse of Remark 4 need not to be true in general. To
substantiate the claim, we present the following example:

Example 1. Let M = (0,∞) equipped with the usual metric. Define a binary
relation S on M as follows:

uSv ⇐⇒ u ≥ v ≥ 1 and u, v ∈ Q.

Observe that { 1n} is a Cauchy sequence which has no limit point in M so that M is
not precomplete. Clearly, M is S-precomplete.

Definition 14. [4] Let (M,d) be a metric space endowed with a binary relation
S. Then S is said to be d-self-closed if whenever {un} is an S-preserving sequence
converging to u, there exists a subsequence {unk

} ⊆ {un} such that [unk
, u] ∈ S for

all k ∈ N0.

Lemma 2. If g : M →M is a surjective mapping, then it has g−1r .

Proof. Let u ∈M be an arbitrary point. Let vu ∈M be any point such that gvu = u.
Define a mapping G : M → M by: Gu = vu for all u ∈ M . Observe that, for all
u ∈M , we have (g ◦G)u = g(Gu) = gvu = u. Hence, G = g−1r .

Proposition 2. If g is a surjective self-mapping on a non-empty set M , then
Fix(g−1r ) ⊆ Fix(g).

Proof. Lemma 2 ensures the existence of g−1r . Now, let u ∈ Fix(g−1r ). Then g−1r u =
u which implies that g ◦ g−1r u = gu implying thereby u = gu so that u ∈ Fix(g).
This shows that Fix(g−1r ) ⊆ Fix(g).

Proposition 3. If g is a bijective self-mapping on a non-empty set M , then Fix(g) =
Fix(g−1).

Proof. As g is bijective mapping, then g−1 exists and is also bijective. In view of
Proposition 2, we have Fix(g−1) ⊆ Fix(g). Now, let u ∈ Fix(g). Then we have
gu = u which implies that g−1u = u yielding there by Fix(g) ⊆ Fix(g−1). Hence,
Fix(g) = Fix(g−1).
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The following proposition immediate owing to the symmetricity of the metric d.

Proposition 4. If g is a self-mapping on a metric space (M,d), then for each λ > 1,
the following are equivalent:

(a) d(gu, gv) ≥ λd(u, v) for all u, v ∈M such that (u, v) ∈ S;

(b) d(gu, gv) ≥ λd(u, v) for all u, v ∈M such that [u, v] ∈ S.

3. Fixed point results

Before giving our results, let us highlight the fact that we utilize the ”S/-precompleteness
of gM” in our results which is relatively weaker than the following conditions utilized
by earlier authors:

1. gM is S-complete;

2. gM is precomplete;

3. M or gM is complete;

4. there exists a complete subset H ⊆M such that gM ⊆ H ⊆M ;

5. M is complete and gM is closed.

Observe that if any one of these five conditions holds, then gM is S/-precomplete.
Also, we use orbital S/-continuity which is relatively weaker as compare to orbital
continuity as well as S-continuity.

Now, we are equipped to prove our main results starting with the following
existence result:

Theorem 3. Let (M,d) be a metric space endowed with a binary relation S and g
a surjective self-mapping on M . Assume that the following conditions are satisfied:

(a) M(g−1r ,S) is non-empty;

(b) S is g−1r -closed;

(c) gM is S/-precomplete;

(d) g is orbitally S/-continuous;

(e) there exists λ > 1 such that

d(gu, gv) ≥ λd(u, v) for all u, v ∈Msuch that uS/v.
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Then g has a fixed point. Indeed, if {un} is any (g−1r ,S)-Picard sequence, then either
{un} contains a fixed point of g or {un} converges to a fixed point of g.

Proof. In view of Lemma 2, g has g−1r . Now, let u, v ∈ M be arbitrary points such
that uS/v and let z = g−1r u and w = g−1r v (obviously, zS/w as S is g−1r -closed and
u 6= v). Now, applying condition (e), with z and w, we have

d(gz, gw) ≥ λd(z, w),

as gz = gg−1r u = u and gw = gg−1r v = v, we get

d(g−1r u, g−1r v) ≤ 1

λ
d(u, v). (1)

Since u and v were arbitrary, therefore (1) holds for all u, v such that uS/v. Observe
that hypothesis (a) guarantees the existence of a point u0 ∈M such that u0Sg−1r u0.
Let u1 ∈M such that u1 = g−1r u0. Hence, we have u0Su1 and as S is g−1r -closed, we
have g−1r u0Sg−1r u1. Similarly, there exists u2 ∈M such that u2 = g−1r u1 and u1Su2.
Thus, inductively, we can construct a sequence {un} ⊆ M such that un+1 = g−1r un
and unSun+1 for all n. If there exists n0 ∈ N0 such that un0 = g−1r un0 , then
gun0 = un0 and the result is established. Assume that un+1 6= un for all n. Then
{un} is S/-preserving sequence. On using (1), for all n, we have

d(g−1r un+1, g
−1
r un) ≤ 1

λ
d(un+1, un),

which by induction yields that

d(un+2, un+1) ≤
( 1

λ

)n+1
d(u1, u0) for all n. (2)

Let n,m ∈ N0 such that n < m.
Now, on using triangle inequality and (2), we have

d(un, um) ≤ d(un, un+1) + d(un+1, un+2) + ...+ d(um−1, um)

≤
(( 1

λ

)n
+
( 1

λ

)n+1
+ ...+

( 1

λ

)m−1)
d(u0, u1)

=
( 1

λ

)n(m−n−1∑
i=0

( 1

λ

)i)
d(u0, u1)

=
( 1

λ

)n(1−
(
1
λ

)m−n
1− 1

λ

)
d(u0, u1)

<
( 1

λ

)n( 1

1− 1
λ

)
d(u0, u1)→ 0 as n→∞,
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which implies that {un} is a Cauchy sequence. Thus, {un}n≥1 ⊆ gM is a Cauchy
S/-preserving sequence. Hence, there exists u ∈ M such that {un} → u (due
to condition (c)). Observe that un = gnu0 for all n ∈ N so that {gnu0} → u.
Moreover, gnu0S/gn+1u0 for all n ∈ N. Since g is orbitally S/-continuous, we get
{un+1 = ggnu0}n≥1 → gu. Owing to the uniqueness of the limit, we obtain gu = u,
i.e., u is a fixed point of g. This concludes the proof.

Next, we use d-self-closedness to prove an analog of Theorem 3 wherein the
continuity assumption of g is avoided.

Theorem 4. Conclusions of Theorem 3 remain true if condition (d) is replaced by
the following:

(d′) S/ is d-self-closed.

Proof. Following the proof of Theorem 3, we have {un} → u. Now, we are required
to prove that gu = u.
Since {un} is S/-preserving and {un} → u and S/ is d-self-closed, therefore there
exists a subsequence {unk

} of {un} such that

[unk
, u] ∈ S/ for all k ∈ N0. (3)

Using (1), (3) and Proposition 4, we obtain

d(unk+1, g
−1
r u) = d(g−1r unk

, g−1r u) ≤
( 1

λ

)
d(unk

, u),

which on letting k → ∞ gives rise {unk
} → g−1r u. Again, owing to the uniqueness

of the limit, we obtain u = g−1r u, which in turn implies that gu = u, i.e., u is a fixed
point of g.

The following result describes a set of sufficient conditions to ensure the unique-
ness of the fixed point of g which runs as follows:

Theorem 5. If in addition to the hypotheses of Theorem 3(or Theorem 4), we
assume that, at least, one of the following conditions are fulfilled:

(i) Fix(g) is Ss-connected;

(ii) g is bijective and for each u, v ∈ Fix(g), there exists z ∈ M such that z is
S-comparable to u and v (at the same time).

Then g has a unique fixed point.
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Proof. Assume that (i) holds. In view of Theorem 3 (or Theorem 4), Fix(g) is
non-empty. Now, let u, v ∈ Fix(g), then we are done if we show that u = v. Since
Fix(g) is Ss-connected, therefore there exists a path of some finite length p in Ss
[say {u0, u1, ..., up} ⊆ Fix(g)] from u to v so that

u0 = u, up = v and [ui, ui+1] ∈ S for each i, (0 ≤ i ≤ p− 1).

Since ui ∈ Fix(g), therefore gui = ui for each i ∈ {0, 1, ..., p}. Hence, on using (d),
we obtain

d(ui, ui+1) = d(gui, gui+1) ≥ λd(ui, ui+1) for each i, (0 ≤ i ≤ p),

which implies that d(ui, ui+1) = 0 for each i ∈ {0, 1, ..., p} yielding thereby u = v.
Hence, g has a unique fixed point.

Next, suppose that (ii) holds. Let u, v ∈ Fix(g), by our assumption, there exists
z0 ∈ X such that [u, z0] ∈ S and [v, z0] ∈ S. Let {zn} be a Picard sequence under
g−1 based on z0, i.e., zn+1 = g−1zn for all n. Now, we show that u = v by proving
that {zn} → u and {zn} → v.

As [u, z0] ∈ S, we assume that uSz0 (the case z0Su is similar). As S is g−1-closed
(in view of condition (b)), we have uSzn for all n. If u = zn0 for some n0 ∈ N0, then
u = zn for all n ≥ n0 so that {zn} → u. Assume that u 6= zn for all n. Then we
have uS/zn for all n. Setting u = u and v = zn−1 in inequality (1), we have

d(u, zn) = d(g−1u, g−1zn−1) ≤
1

λ
d(u, zn−1),

(for all n) so that inductively, we have

d(u, zn) ≤
( 1

λ

)n
d(u, z0)→ 0, as n→∞.

Thus, {zn} → u. Similarly, we can show that {zn} → v which concludes the proof.

Now, we consider some special cases wherein our results deduce the following
results of the existing literature.

• Under the universal relation SM , Theorem 5 reduces to Theorem 1.

• On setting S =�, the partial order relation, in Theorem 5, we obtain Corollary
3.4 of Karapnar et al. [13].

Corollary 6. Conclusions of Theorem 5 remain true if the Ss-connectedness of
Fix(g) is replaced by any one of the following:

(i) Fix(g) is S-connected;
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(ii) Fix(g) is Ss-directed;

(iii) S is complete on Fix(g).

Proof. Assume that (i) holds, then the proof is accomplished in view of Proposition
1 and part (i) of Theorem 5.

If (ii) holds, then for each u, v ∈ Fix(g), there exists z ∈ Fix(g) such that uSz
and vSz, i.e, [u, z] ∈ Ss and [v, z] ∈ Ss so that {u, z, v} ⊆ Fix(g) is a path of length
2 from u to v in Ss. Hence, Theorem 5 part (i) gives rise to the conclusion.

Finally, assume that (iii) holds, then for each u, v ∈ Fix(g), [u, v] ∈ S so that
{u, v} ⊆ Fix(g) is a path of length 1 in Ss from u to v. Hence, Theorem 5 part (i)
again gives the conclusion.

4. example

In this section, we present an example to exhibit that our results are genuine exten-
sions of several earlier results especially due to Wang et al. [32] and Karapnar et al.
[13].

Example 2. Let M = (0,∞) equipped with the usual metric. Define a binary
relation S on M as follows:

uSv ⇐⇒ u ≥ v ≥ 1 and u, v ∈ Q.

Define a mapping g : M →M by:

gu =

{
u
2 , if 0 < u ≤ 1;
2u− 3

2 , if 1 ≤ u <∞.

Observe that g is surjective, orbitally S/-continuous and g−1r is given by:

g−1r u =

{
2u, if 0 < u ≤ 1

2 ;
1
2u+ 3

4 , if 1
2 ≤ u <∞.

Now, clearly 3
2 ∈ M(g−1r ,S), S is g−1r -closed and gM is S/-precomplete. Also, for

all u, v ∈M with uS/v, we have

d(gu, gv) =
∣∣∣(2u− 3

2

)
−
(

2v − 3

2

)∣∣∣ = 2|u− v| > 3

2
|u− v| = 3

2
d(u, v),

i.e., g satisfies the expansion condition (e) with λ = 3
2 . Thus, all the hypotheses

of Theorem 3 are satisfied. Hence, g has a fixed point. Furthermore, notice that
Fix(g) = {32} is Ss-connected. Thus, Theorem 5 is applicable in the context of this
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example. Observe that g has a unique fixed point (namely u = 3
2).

Here it can be pointed out that in the context of the present example Theorem
1 is not applicable. Since M is incomplete space as well as for all u, v ∈ (0, 1), we
have

1

2
|u− v| = d(gu, gv) < d(u, v) = |u− v|.

Furthermore, the binary relation S given in this example is not a partial order on
M . Thus, Corollary 3.4 due to Karapnar et al. [13] cannot be used in this case.
These substantiate the utility of our results over corresponding noted results. Thus,
in all, we have extended all the related results.

5. Fixed point results for cyclical Expansion mappings

By considering a cyclical contractive condition, Kirk et al. [15] obtained a new
extension of the celebrated Banach contraction principle as given in the following
theorem:

Theorem 7. Let E and H be two non-empty closed subsets of a complete metric
space (M,d). Assume that g is a self-mapping on M satisfying the following:

(a) g(E) ⊆ H, g(H) ⊆ E;

(b) there exists λ ∈ (0, 1) such that

d(gu, gv) ≤ λd(u, v) ∀ u ∈ E, v ∈ H.

Then g has a unique fixed point in E ∩H.

In this section, we apply Theorem 4 to prove an analog theorem of Theorem 7
for expansive mappings which runs as follows:

Theorem 8. Let E and H be two non-empty closed subsets of a complete metric
space (M,d) such that M = E ∪H. Assume that g is a surjective self-mapping on
M satisfying the following:

(a) g−1r (E) ⊆ H, g−1r (H) ⊆ E;

(b) there exists λ > 1 such that

d(gu, gv) ≥ λd(u, v) ∀ u ∈ E, v ∈ H.

Then g has a fixed point.
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Proof. Define a binary relation S as follows:

uSv ⇐⇒ (u, v) ∈ (E ×H) ∪ (H × E).

We claim that S/ is d-self-closed. To prove this claim, let {un} ⊆ M be an S/-
preserving sequence which converges to some u ∈M . Observe that u 6= un for all n.
Let P = {n ∈ N0 : (un, un+1) ∈ E ×H} and P∗ = {n ∈ N0 : (un, un+1) ∈ H × E}.
Observe that P ∪ P∗ = N0 so that, at least, one of these sets is infinite. Assume
that P is infinite. Then it can be written as a strictly increasing sequence of ranks:
{n(i) : i ≥ 0}, where i 7−→ n(i) is strictly increasing so that limi→∞ n(i) =∞.
Let m(i) = n(i)+1 for all i ∈ N0. Then {m(i)}i≥0 is also strictly increasing sequence
of ranks: {m(i) : i ≥ 0} such that limi→∞m(i) =∞.
Notice that {un(i)} and {um(i)} are two subsequences of {un} having the following
properties:

(i) {un(i)} → u and {um(i)} → u;

(ii) un(i) 6= u and um(i) 6= u for all i ∈ N0;

(iii) un(i) ∈ E and um(i) ∈ H, for all i ∈ N0.

Now, as u ∈ M , we must have either u ∈ E or u ∈ H. If u ∈ E, then we have
(um(i), u) ∈ H × E so that um(i)S/u for all i ∈ N0. On the other hand, assume that
u ∈ H, then we have (un(i), u) ∈ E ×H so that un(i)S/u for all i ∈ N0. Hence, in
any case, we get a subsequence of {un} satisfying Definition 14. The proof is similar
in case P∗ is infinite. Therefore, the claim is established.
Next, from condition (a), we have

(u, v) ∈ S =⇒ (g−1r u, g−1r v) ∈ S,

for each u, v ∈M . Thus, S is g−1r -closed. Moreover, as E is nonempty, there exists
u0 ∈ E. On using condition (a) we have g−1r u0 ∈ H so that u0Sg−1r u0. Thus, all the
hypotheses of Theorem 4 are fulfilled. Hence, g has a fixed point.
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