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Abstract. This paper mainly focuses on the recent advances in the approxi-
mated methods for solving fuzzy Volterra-Fredholm integral equations, namely, Ado-
mian decomposition method, modified Adomian decomposition method, variational
iteration method and homotopy analysis method. We converted fuzzy Volterra-
Fredholm integral equation of the first kind to the second kind. That, a fuzzy
Volterra-Fredholm integral equation has been converted to a system of Volterra-
Fredholm integral equation in crisp case. The approximated methods using to find
the approximate solution of this system and hence obtain an approximation for the
fuzzy solution of the fuzzy Volterra-Fredholm integral equation. Moreover, we will
prove the uniqueness of the solution and convergence of the proposed methods. The
study outlines presumed features of these methods as well as sheds some light on
advantages of one method over the other. To assess the accuracy of each method, al-
gorithms with Mathematica 6 according is used. Also, some numerical examples are
included to demonstrate the validity and applicability of the proposed techniques.
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1. Introduction

In recent years, the topics of fuzzy integral equations which attracted increasing
interest, in particular in relation to fuzzy control, have been rapidly developed. The
concept of fuzzy numbers and arithmetic operations firstly introduced by Zadeh
[13, 15], and then by Dubois and Prade [15]. Also, they have introduced the concept
of integration of fuzzy functions. The fuzzy mapping function was introduced by
Cheng and Zadeh [13]. Moreover, [14] presented an elementary fuzzy calculus based
on the extension principle. Later, Goetschel and Voxman [18] preferred a Riemann
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integral type approach. Kaleva [19] chose to define the integral of the fuzzy function,
using the Lebesgue-type concept for integration. One of the first applications of
the fuzzy integral equation was given by Ma and Wu who investigated the fuzzy
Fredholm integral equation of the second kind. Recently, some mathematicians
have studied fuzzy integral and integro-differential equation by numerical techniques
[6, 8, 9, 12, 17, 29]. As we know the fuzzy integral and differential equations are
one of the important parts of the fuzzy analysis theory that play a main role in the
numerical analysis.

In this work, we will suggest recent advances in the approximated methods for
solving fuzzy Volterra-Fredholm integral equations of the first and second kind,
namely, Adomian decomposition method, modified decomposition method, varia-
tional iteration method and homotopy analysis method.

The rest of the paper is organized as follows: In Section 2, we will discuss the
basic concepts of basic notations and definitions in fuzzy calculus. In Section 3, the
fuzzy Volterra-Fredholm integral equation of the first kind is briefly presented and we
will convert fuzzy Volterra-Fredholm integral equation of the first kind to the second
kind. In Section 4, we will convert a fuzzy Volterra-Fredholm integral equation of
the second kind to the system of Volterra-Fredholm integral equation of the second
kind in a crisp case. In Section 5, we will highlight briefly on some reliable methods
for solving this type of equations. In Section 6, we will prove the uniqueness of the
solution and convergence of the methods. In Section 7, the numerical examples are
presented to illustrate the accuracy of these methods. In Section 8, we will discuss
the results and comparison among these methods. Finally, we will give a report on
our paper and a brief conclusion are given in Section 9.

2. Basic concepts

The concept of fuzzy numbers is generalized of classical real numbers and we
can say that a fuzzy number is a fuzzy subset of the real line which has some
additional properties. The concept of fuzzy number is vital for fuzzy analysis, fuzzy
integral equations and fuzzy differential equations, and a very helpful tool in different
applications of fuzzy sets. Basic definition of fuzzy numbers is given in [3, 11, 13, 15].

Definition 1. A fuzzy number is a fuzzy set like u : R → [0, 1] with the following
properties:

• u is upper semi-continuous function,

• u is fuzzy convex,i.e, u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for all x, y ∈ R, λ ∈
[0, 1],
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• u is normal, i.e, ∃x0 ∈ R for which u(x0) = 1,

• supu = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl(supu) is
compact.

Let E be the set of all fuzzy numbers on R. The (α− cut) α-level set of a fuzzy
number u ∈ E, 0 ≤ α ≤ 1, denoted by [u]α, is defined as

[u]α =

{
{x ∈ R : u(x) ≥ α}, 0 < α ≤ 1,
cl(supu), α = 0.

where cl(supu = x ∈ R|u(x) > 0) denotes the closure of the support of u. It is clear
that the α-level set of a fuzzy number is a closed and bounded interval [u(α), u(α)],
where u(α) denotes the left-hand end point of [u]α and u(α) denotes the right-hand
end point of [u]α. Since each u ∈ R can be regarded as a fuzzy number ũ defined
by:

ũ(t) =

{
1, t = u
0, t 6= u.

An equivalent parametric definition is also given in [13] as:

Definition 2. A fuzzy number ũ in parametric form is a pair (u, u) of functions
u(α), u(α), 0 ≤ α ≤ 1, which satisfy the following requirements:

• u(α) is a bounded non-decreasing left continuous function in (0, 1], and right
continuous at 0,

• u(α) is a bounded non-increasing left continuous function in (0, 1], and right
continuous at 0,

• u(α) ≤ u(α), 0 ≤ α ≤ 1.

A crisp number α is simply represented by u(α) = u(α) = α, 0 ≤ α ≤ 1.
We recall that for a < b < c which a, b, c ∈ R, the triangular fuzzy number

u = (a, b, c) determined by a, b, c are given such that u(α) = a + (b − a)α and
u(α) = c− (c− b)α are the end points of the α-level sets, for all α ∈ [0, 1].

The Hausdorff distance between fuzzy numbers given by d : E× E→ R+ ∪ {0}.

d(u, υ) = sup
α∈[0,1]

max{|u(α)− υ(α)|, |u(α)− υ(α)|},

wehre u = (u(α), u(α)), υ = (υ(α), υ(α)) ⊂ R is utilized in [13]. Then, it is easy to
see that d is a metric in E and has the following properties [11]:
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• d(u+ ρ, υ + ρ) = d(u, υ), ∀u, υ, ρ ∈ E,

• d(ku, kυ) = |k|d(u, υ), ∀k ∈ R;u, υ ∈ E,

• d(ω + υ, ρ+ e) ≤ d(ω, ρ) + d(υ, e), ∀ω, υ, ρ, e ∈ E,

• (d,E) is a complete metric space.

Definition 3. [11] Let f : R → E be a fuzzy valued function. If for arbitrary fixed
t0 ∈ R and ∀ε > 0,∃δ > 0 such that |t− t0| < δ =⇒ |f(t)− f(t0)| < ε, then f is said
to be continuous.

Theorem 1. [11] Let f(x) be a fuzzy-valued function on [a,∞) and it is repre-
sented by (f(x, α), f(x, α)). For any fixed t ∈ [0, 1] assume f(x, α) and f(x, α) are
Riemann-integrable on [a, b] for every b ≥ a, and assume there are two positive M(α)

and M(α) such that
∫ b
a

∣∣f(x, α)
∣∣ dx ≤ M(α) and

∫ b
a

∣∣f(x, α)
∣∣ dx ≤ M(α) for every

b ≥ a. Then f(x) is improper fuzzy Riemann-integrable on [a,∞) and the improper
fuzzy Riemann-integral is a fuzzy number. Furthermore, we have:∫ ∞

a
f(x)dx = (

∫ ∞
a

f(x, α)dx,

∫ ∞
a

f(x, α)dx).

Proposition 1. [27]. If each of f(x) and g(x) is fuzzy-valued function and fuzzy
Riemman integrable on Ω = [a,∞) then f(x) + g(x) is fuzzy Riemman integrable on
Ω. Moreover, we have:∫

Ω
(f(x) + g(x))dx =

∫
Ω
f(x)dx+

∫
Ω
g(x)dx.

Definition 4. [9] The integral of a fuzzy function was define by using the Riemann
integral concept. Let f : [a, b] → E, for each partition P = t0, t1, ..., tn of [a, b] and
for arbitrary ξi ∈ [ti−1, ti], 1 ≤ i ≤ n , suppose

Rp =
n∑
i=1

f(ξi)(ti − ti−1).

∆ := max |ti − ti−1|, 1 ≤ i ≤ n.

The definite integral of f(t) over [a, b] is∫ b

a
f(t)dt = lim

∆→0
Rp,

Provided that this limit exists in the metric d. If the fuzzy function f(t) is continuous
in the metric d, its definite integral exists [17], and also
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∫ b

a
f(t, r)dt =

∫ b

a
f(t, r)dt

, ∫ b

a
f(t, r)dt =

∫ b

a
f(t, r)dt

It should be noted that the fuzzy integral can be also defined using the Lebesgue-
type approach [3]. However, if f(t) is continuous, both approaches yield the same
value. More details about the properties of the fuzzy integral are given in [15, 29, 27].

3. Fuzzy Volterra-Fredholm Integral Equations of the First Kind

We consider the fuzzy Volterra-Fredholm integral equation of the first kind given by

f̃(x) = λ1

∫ x

a
k1(x, t)G1(ũ(t))dt+ λ2

∫ b

a
k2(x, t)G2(ũ(t))dt, (1)

where a, b, λ1 and λ2 are constant values and λ1 6= 0, also f(x), k1(x, t), k2(x, t), G1(ũ(t))
and G2(ũ(t)) are functions that have suitable derivatives on an interval a ≤ t ≤ x ≤ b
and ũ(t) is unknown function. The solution is expressed in the form [9]:

ũ(x) =
∞∑
i=0

ũi(x). (2)

We reduce integral equation of the first kind to the second kind by differentiating
one time with respect to x. Consider the nonlinear Volterra-Fredholm integral equa-
tion of the first kind Eq.(1) where ũ(t) is an unknown function, and f̃(x), k1(x, t)
and k2(x, t) are analytical functions. To obtain the solution of equation Eq.(1) in
the form of expression Eq.(2) we first differentiate it one time with respect to x:

f̃ ′(x) = λ1k1(x, x)G1(ũ(x)) + λ1

∫ x

a

∂k1(x, t)

∂x
G1(ũ(t))dt+ λ2

∫ b

a

∂k2(x, t)

∂x
G2(ũ(t))dt, (3)

Since k1(x, x) 6= 0, therefore,

G1(ũ(x)) =
f̃ ′(x)

λ1k1(x, x)
−
∫ x

a

∂k1(x,t)
∂x

k1(x, x)
G1(ũ(t))dt− λ2

λ1

∫ b

a

∂k2(x,t)
∂x

k1(x, x)
G2(ũ(t))dt, (4)
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we set

F̃ (x) =
f̃ ′(x)

λ1k1(x, x)
,

K ′1(x, t) = (
∂k1(x,t)
∂x

k1(x, x)
),

K ′2(x, t) = −λ2

λ1

∂k2(x,t)
∂x

k1(x, x)
.

Therefore,

ũ(x) = G−1
1 (F̃ (x)) +G−1

1 (

∫ x

a
K ′1(x, t)G1(ũ(t))dt) +G−1

1 (

∫ b

a
K ′2(x, t)G2(ũ(t))dt), (5)

where K ′1(x, t),K ′2(x, t) and G−1
1 (F̃ (x)) are functions that have suitable deriva-

tives on an interval a ≤ t ≤ x ≤ b. So, Eq.(1) reduces to the standard Volterra-
Fredholm integral equation of the second kind.

4. Fuzzy Volterra-Fredholm integral equation of the Second Kind

The fuzzy Volterra-Fredholm integral equation of the second kind is as follows:

ũ(x) = f̃(x) + µ1

∫ x

a
K1(x, t)G1(t, ũ(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, ũ(t))dt, (6)

where µ1, µ2 ≥ 0, f̃(x) is a fuzzy function of x : a ≤ x ≤ b, andKi(x, t), Gi(t, ũ(t)), i =
1, 2, are analytic functions on [a, b]. For solving in parametric form of Eq.(6), con-
sider (f(x, r), f(x, r)) and (u(x, r), u(x, r)), 0 ≤ r ≤ 1 and t ∈ [a, b] are parametric
form of f̃(x) and ũ(x), respectively. Then, parametric form of Eq.(6) is as follows:

u(x, r) = f(x, r) + µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt, (7)

u(x, r) = f(x, r) + µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt. (8)

Let for a ≤ t ≤ b, we have

H1(t, u, u) = min{G1(t, β)|u(t, r) ≤ β ≤ u(t, r)},
H2(t, u, u) = min{G2(t, β)|u(t, r) ≤ β ≤ u(t, r)},
F1(t, u, u) = max{G1(t, β)|u(t, r) ≤ β ≤ u(t, r)},
F2(t, u, u) = max{G2(t, β)|u(t, r) ≤ β ≤ u(t, r)}.
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Then,

K1(x, t)G1(t, u(t, r)) =

{
K1(x, t)H1(t, u, u), K1(x, t) ≥ 0,
K1(x, t)F1(t, u, u), K1(x, t) < 0.

K2(x, t)G2(t, u(t, r)) =

{
K2((x, t))H2(t, u, u), K2(x, t) ≥ 0,
K2((x, t))F2(t, u, u), K2(x, t) < 0.

K1(x, t)G1(t, u(t, r)) =

{
K1(x, t)F1(t, u, u), K1(x, t) ≥ 0,
K1(x, t)H1(t, u, u), K1(x, t) < 0.

K2(x, t)G2(t, u(t, r)) =

{
K2(x, t)F2(t, u, u), K2(x, t) ≥ 0,
K2(x, t)H2(t, u, u), K2(x, t) < 0.

For each 0 ≤ r ≤ 1 and a ≤ x ≤ b. We can see that Eq.(6) convert to a
system of Volterra-Fredholm integral equations in crisp case for each 0 ≤ r ≤ 1
and a ≤ t ≤ b. Now, we explain Adomian decomposition method and modified
Adomian decomposition method for approximating solution of this system of integral
equations in crisp case. Then, we find approximate solutions for ũ(x), a ≤ x ≤ b.

5. Description of the Methods

Here we will highlight briefly on some reliable methods for solving this type of
equations, where details can be found in [2, 3, 4, 5, 6, 7, 26, 28].

5.1. Adomian Decomposition Method (ADM)

Firstly, we explain Adomian decomposition method. The Adomian decomposition
method has been applied to a wild class of functional equations [2, 7, 8, 10, 16, 21, 22]
by scientists and engineers since the beginning of the 1980s. Adomian gives the
solution as a infinite series usually converging to a solution consider the following
fuzzy Volterra-Fredholm integral equation of the form

u(x, r) = f(x, r) + µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt,

u(x, r) = f(x, r) + µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt (9)
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The ADM assume an infinite series solution for the unknowns functions [u, u],
given by

u(x) =

∞∑
i=0

ui(x),

u(x) =

∞∑
i=0

ui(x). (10)

The nonlinear operators G1(t, u(t)), G1(t, u(t)), G2(t, u(t)) and G2(t, u(t)) into
an infinite series of polynomials given by

G1(t, u(t)) =
∞∑
i=0

An, G1(t, u(t)) =
∞∑
i=0

An,

G2(t, u(t)) =
∞∑
i=0

Bn, G2(t, u(t)) =
∞∑
i=0

Bn. (11)

where the Ãn = [An, An], B̃n = [Bn, Bn], n ≥ 0, are the so-called Adomian polyno-
mial. Substituting Eqs.(10) and Eqs.(11) into Eq.(9), we get

u0 = f(x, r),

u1 = µ1

∫ x

a
K1(x, t)A0dt+ µ2

∫ b

a
K2(x, t)B0dt,

.

.

. (12)

un+1 = µ1

∫ x

a
K1(x, t)Andt+ µ2

∫ b

a
K2(x, t)Bndt.

and

u0 = f(x, r),

u1 = µ1

∫ x

a
K1(x, t)A0dt+ µ2

∫ b

a
K2(x, t)B0dt,

.

. (13)

un+1 = µ1

∫ x

a
K1(x, t)Andt+ µ2

∫ b

a
K2(x, t)Bndt.

We approximate ũ(x, r) = [u(x, r), u(x, r)] by
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ϕ
n

=

n−1∑
i=0

ui(x, r),

ϕn =

n−1∑
i=0

ui(x, r),

where,
lim
n→∞

ϕ
n

= u(x, r), lim
n→∞

ϕn = u(x, r).

Now, we explain modified Adomian decomposition method.

5.2. Modified Adomian Decomposition Method (MADM)

The modified Adomian decomposition method was introduced by Wazwaz [30]. This
method is based on the assumption that the function f(x) can be divided into two
parts, namely f1(x) and f2(x). Under this assumption we set

f(x) = f1(x) + f2(x). (14)

We apply this decomposition when the function f(x) consists of several parts
and can be decomposed into two different parts [6, 4]. In this case, f(x) is usu-
ally a summation of a polynomial and trigonometric or transcendental functions.
A proper choice for the part f1 is important. For the method to be more efficient,
we select f1 as one term of f(x) or at least a number of terms if possible and f2

consists of the remaining terms of f(x). In comparison with the standard decom-
position method, the MADM minimizes the size of calculations and the cost of com
putational operations in the algorithm. Both standard and modified decomposition
methods are reliable for solving nonlinear problems such as Volterra-Fredholm inte-
gro differential equations, but in order to decrease the complexity of the algorithm
and simplify the calculations we prefer to use the MDM. The MDM will accelerate
the rapid convergence of the series solution in comparison with the standard Ado-
mian decomposition method. The modified technique may give the exact solution
for nonlinear equations without the necessity to find the Adomian polynomials. We
refer the reader to [23, 24, 30] for more details about the MADM. Accordingly, a
slight variation was proposed only on the components u0 and u1. The suggestion
was that only the part f1 be assigned to the component u0, whereas the remaining
part f2 be combined with the other terms to define u1. Consequently, the following
modified recursive relation was developed:
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we get

u0 = f
1
(x, r),

u1 = f
2
(x, r) + µ1

∫ x

a
K1(x, t)A0dt+ µ2

∫ b

a
K2(x, t)B0dt,

.

.

. (15)

un+1 = µ1

∫ x

a
K1(x, t)Andt+ µ2

∫ b

a
K2(x, t)Bndt, n ≥ 1.

and

u0 = f1(x, r),

u1 = f2(x, r) + µ1

∫ x

a
K1(x, t)A0dt+ µ2

∫ b

a
K2(x, t)B0dt,

.

.

. (16)

un+1 = µ1

∫ x

a
K1(x, t)Andt+ µ2

∫ b

a
K2(x, t)Bndt, n ≥ 1.

We approximate ũ(x, r) = [u(x, r), u(x, r)] by

ϕ
n

=

n−1∑
i=0

ui(x, r),

ϕn =

n−1∑
i=0

ui(x, r),

where,
lim
n→∞

ϕ
n

= u(x, r), lim
n→∞

ϕn = u(x, r)

5.3. Variational Iteration Method (VIM)

The variational iteration method (VIM) is proposed by (He 1997) [20, 28] as a
modification of a general Lagrange multiplier method. This method has been shown
to solve effectively, easily and accurately a large class of nonlinear problems with
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approximations converging rapidly to a accurate solutions. To illustrate its basic
idea of the technique, we consider following general nonlinear system:

L[u(x)] +N [u(x)] = g(x), (17)

Where L is linear operator, N is a nonlinear operator, and g(x) is given continuous
function. The basic character of method is to a correction functional for system
Eq.(17) which

un+1(x) = un(x) +

∫ x

0
λ(τ){Lun(τ) +Nũn(τ)− g(τ)}dτ, (18)

Where λ(τ) is a general Lagrangian multiplier (Kaleva 1987) which can be identified
optimally via variational theory, the subscript n denotes the nth-order approximation
andũn is consider a restricted variation, i.e. δũn = 0 where L = d

dt . For the integral
equation (6), let w(x) be a function such that w′(x) = ũ(x), noting that ũ(x) is
continuous. Then we have

w′(x) = f̃(x) + µ1

∫ x

a
K1(x, t)G1(t, w′(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, w′(t))dt. (19)

Consider

µ1

∫ x

a
K1(x, t)G1(t, w′(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, w′(t))dt, (20)

as a restricted variation; we have the iteration sequence

wn+1 = wn +

∫ x

0
λ

[
w

′
n(s) − µ1

∫ s

a
K1(s, t)G1(t, w

′
(t))dt− µ2

∫ b

a
K2(s, t)G2(t, w

′
(t))dt− f̃(s)

]
ds.

Taking the variation with respect to the independent variable wn and noticing that
δwn(0) = 0, we get

δwn+1 = δwn + λ(s)δwn|s=x −
∫ x

0
λ′(s)δwnds = 0 (21)

Then we apply the following stationary conditions:

1 + λ(s)|s=x = 0, λ′(s)|s=x = 0,

The general Lagrange multiplier, therefore, can be readily identified:

λ = −1

and, as a result, we obtain the following iteration formula:
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wn+1 = wn−
∫ x

0

[
w′n(s)− f̃(s)− µ1

∫ s

a
K1(s, t)G1(t, w′(t))dt− µ2

∫ b

a
K2(s, t)G2(t, w′(t))dt

]
ds.

Therefore, we can write the following iteration formulas

un+1(x, r) = un(x, r) −
∫ x

0
(22)[

un(s, r) − f(s, r) − µ1

∫ s

a
K1(s, t)G1(t, u(t, r))dt− µ2

∫ b

a
K2(s, t)G2(t, u(t, r))dt

]
ds.

un+1(x, r) = un(x, r) −
∫ x

0
(23)[

un(s, r) − f(s, r) − µ1

∫ s

a
K1(s, t)G1(t, u(t, r))dt− µ2

∫ b

a
K2(s, t)G2(t, u(t, r))dt

]
ds.

5.4. Homotopy Analysis Method (HAM)

Consider,
N [ũ] = 0,

where N is a nonlinear operator, ũ = [u(x, r), u(x, r)] are unknown functions and
x is an independent variable. Let u0(x, r), u0(x, r) denote an initial guess of the
exact solution u(x, r), u(x, r), h 6= 0 an auxiliary parameter, H1(x) 6= 0 an auxiliary
function, and L an auxiliary linear operator with the property L[s(x)] = 0 when
s(x) = 0. Then using q ∈ [0, 1] as an embedding parameter [25], we can construct a
homotopy when consider, N [u] = 0, as follows:

(1−q)L[φ(x; q, r)−u0(x, r)]−qhH1(x)N [φ(x; q, r)] = Ĥ[φ(x; q, r);u0(x, r), H1(x), h, q].
(24)

It should be emphasized that we have great freedom to choose the initial guess
u0(x, r), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x). Enforcing the homotopy Eq.(24) to be zero, i.e.,

Ĥ1[φ(x; q, r);u0(x, r), H1(x), h, q] = 0, (25)

we have the so-called zero-order deformation equation

(1− q)L[φ(x; q, r)− u0(x, r)] = qhH1(x)N [φ(x; q, r)], (26)

when q = 0, the zero-order deformation Eq.(26) becomes

φ(x; 0, r) = u0(x, r), (27)
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and when q = 1, since h 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(26) is
equivalent to

φ(x; 1, r) = u(x, r). (28)

Thus, according to Eqs.(27) and (28), as the embedding parameter q increases
from 0 to 1, φ(x; q, r) varies continuously from the initial approximation u0(x, r) to
the exact solution u(x, r). Such a kind of continuous variation is called deformation
in homotopy. Due to Taylor’s theorem, φ(x; q, r) can be expanded in a power series
of q as follows

φ(x; q, r) = u0(x, r) +

∞∑
m=1

um(x, r)qm, (29)

where,

um(x, r) =
1

m!

∂mφ(x; q, r)

∂qm
|q=0. (30)

Let the initial guess u0(x, r), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H1(x) be properly chosen so that the
power series Eq.(29) of φ(x; q, r) converges at q = 1, then, we have under these
assumptions the solution series

u(x, r) = φ(x; 1, r) = u0(x, r) +

∞∑
m=1

um(x, r). (31)

From Eq.(29) , we can write Eq.(26) as follows:

(1− q)L[φ(x; q, r)− u0(x, r)] = (1− q)L[
∞∑
m=1

um(x, r)qm] (32)

= qhH1(x)N [φ(x; q, r)],

then,

L[

∞∑
m=1

um(x, r)qm]− qL[

∞∑
m=1

um(x, r)qm] = qhH1(x)N [φ(x; q, r)]. (33)

By differentiating Eq.(32) m times with respect to q, we obtain

{L[

∞∑
m=1

um(x, r)qm]− qL[

∞∑
m=1

um(x, r)qm]}(m) = qhH1(x)N [φ(x; q, r)](m)

= m!L[um(x)− um−1(x, r)]

= hH1(x)m
∂m−1N [φ(x; q, r)]

∂qm−1
|q=0.
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Therefore,

L[um(x, r)− χmum−1(x, r)] = hH1(x)<m(um−1(x, r)), (34)

where,

<m(um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (35)

and

χm =

{
0 m ≤ 1,

1 m > 1.

Note that the high-order deformation Eq.(34) is governing the linear operator L,
and the term <m(um−1(x, r)) can be expressed simply by Eq.(35) for any nonlinear
operator N.

To obtain the approximation solution of Eq.(7), according to HAM, let us do

N [u(x, r)] = u(x, r)−f(x, r)−µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt.

So,

<m(um−1(x, r)) = um−1(x, r)− f(x, r)− µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt

−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r),m ≥ 1. (36)

Substituting Eq.(36) into Eq. (34)

L[um(x, r)− χmum−1(x, r)] = hH1(x)[um−1(x, r)− µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt

−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r)].(37)

We take an initial guess u0(x, r) = f(x, r), an auxiliary linear operator Lu = u,
a nonzero auxiliary parameter h = −1, and auxiliary function H1(x) = 1. This is
substituted into Eq.(37) to give the recurrence relation

u0(x, r) = f(x, r) (38)

un+1(x, r) = µ1

∫ x

a
K1(x, t)G1(t, un(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, un(t, r))dt, n ≥ 0.
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Similarly, we can construct a homotopy when consider, N [u] = 0, as follows:

(1−q)L[φ(x; q, r)−u0(x, r)]−qhH1(x)N [φ(x; q, r)] = Ĥ[φ(x; q, r);u0(x, r), H1(x), h, q].
(39)

It should be emphasized that we have great freedom to choose the initial guess
u0(x, r), the auxiliary linear operator L, the non-zero auxiliary parameter h, and
the auxiliary function H1(x). Enforcing the homotopy Eq.(39) to be zero, i.e.,

Ĥ1[φ(x; q, r);u0(x, r), H1(x), h, q] = 0, (40)

we have the so-called zero-order deformation equation

(1− q)L[φ(x; q, r)− u0(x, r)] = qhH1(x)N [φ(x; q, r)], (41)

when q = 0, the zero-order deformation Eq.(41) becomes

φ(x; 0, r) = u0(x, r), (42)

and when q = 1, since h 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(41) is
equivalent to

φ(x; 1, r) = u(x, r). (43)

Thus, according to Eqs.(42) and (43), as the embedding parameter q increases
from 0 to 1, φ(x; q, r) varies continuously from the initial approximation u0(x, r) to
the exact solution u(x, r). Such a kind of continuous variation is called deformation
in homotopy. Due to Taylor’s theorem, φ(x; q, r) can be expanded in a power series
of q as follows

φ(x; q, r) = u0(x, r) +
∞∑
m=1

um(x, r)qm, (44)

where,

um(x, r) =
1

m!

∂mφ(x; q, r)

∂qm
|q=0. (45)

Let the initial guess u0(x, r), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H1(x) be properly chosen so that the
power series Eq.(44) of φ(x; q, r) converges at q = 1, then, we have under these
assumptions the solution series

u(x, r) = φ(x; 1, r) = u0(x, r) +

∞∑
m=1

um(x, r). (46)
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From Eq.(44), we can write Eq.(41) as follows:

(1− q)L[φ(x; q, r)− u0(x, r)] = (1− q)L[
∞∑
m=1

um(x, r)qm] (47)

= qhH1(x)N [φ(x; q, r)],

then,

L[

∞∑
m=1

um(x, r)qm]− qL[

∞∑
m=1

um(x, r)qm] = qhH1(x)N [φ(x; q, r)]. (48)

By differentiating Eq.(47) m-times with respect to q, we obtain

{L[
∞∑
m=1

um(x, r)qm]− qL[
∞∑
m=1

um(x, r)qm]}(m) = qhH1(x)N [φ(x; q, r)]
(m)

= m!L[um(x)− um−1(x, r)]

= hH1(x)m
∂m−1N [φ(x; q, r)]

∂qm−1
|q=0.

Therefore,

L[um(x, r)− χmum−1(x, r)] = hH1(x)<m(um−1(x, r)), (49)

where,

<m(um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (50)

and

χm =

{
0 m ≤ 1,

1 m > 1.

Note that the high-order deformation Eq.(49) is governing the linear operator L,
and the term <m(um−1(x, r)) can be expressed simply by Eq.(50) for any nonlinear
operator N.

To obtain the approximation solution of Eq.(8), according to HAM, let us do

N [u(x, r)] = u(x, r)−f(x, r)−µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt,
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so,

<m(um−1(x, r)) = um−1(x, r)− f(x, r)− µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt

−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r),m ≥ 1. (51)

Substituting Eq.(51) into Eq. (49)

L[um(x, r)− χmum−1(x, r)] = hH1(x)[um−1(x, r)− µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt

−µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt− (1− χm)f(x, r)].(52)

We take an initial guess u0(x, r) = f(x, r), an auxiliary linear operator Lu = u,
a nonzero auxiliary parameter h = −1, and auxiliary function H1(x) = 1. This is
substituted into Eq.(52) to give the recurrence relation

u0(x, r) = f(x, r) (53)

un+1(x, r) = µ1

∫ x

a
K1(x, t)G1(t, un(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, un(t, r))dt, n ≥ 0.

From Eqs.(38), and Eqs.(53) we approximate ũ(x, r) = [u(x, r), u(x, r)] by

u(x, r) = lim
n→∞

un, u(x, r) = lim
n→∞

un.

6. Main Results

In what follows we will prove the uniqueness of the solution and convergence of the
methods by using the following assumptions.

(A1) There exist two constants M1,M2 > 0 such that,

|µ1K1(x, t)| ≤M1, |µ2K2(x, t)| ≤M2, ∀a ≤ x, t ≤ b.

(A2) Suppose the nonlinear operators G1(t, ũ(t)), G2(t, ũ(t)) are satisfied in Lips-
chitz conditions with

|G1(t, ũ(t))−G1(t, ũ∗(t))| ≤ L1|ũ− ũ∗|
|G2(t, ũ(t))−G2(t, ũ∗(t))| ≤ L2|ũ− ũ∗|.
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(A3) Consider f̃(x) is bounded ∀x ∈ [a, b].

Theorem 2. Assume that (A1), (A2) and (A3) hold. Then Eq.(6) has a unique
solution, if 0 < α < 1, where

α = (M1L1 +M2L2)(b− a).

Proof. Let ũ and ũ∗ be two different solutions of Eq.(6) then

|ũ− ũ∗| = |f̃(x) + µ1

∫ x

a
K1(x, t)G1(t, ũ(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, ũ(t))dt

−(f̃(x) + µ1

∫ x

a
K1(x, t)G1(t, ũ∗(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, ũ∗(t))dt)|,

= |µ1

∫ x

a
K1(x, t)G1(t, ũ(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, ũ(t))dt

−(µ1

∫ x

a
K1(x, t)G1(t, ũ∗(t))dt+ µ2

∫ b

a
K2(x, t)G2(t, ũ∗(t))dt)|,

= |
∫ x

a
µ1K1(x, t)G1(t, ũ(t))dt−

∫ x

a
µ1K1(x, t)G1(t, ũ∗(t))dt

+

∫ b

a
µ2K2(x, t)G2(t, ũ(t))dt−

∫ b

a
µ2K2(x, t)G2(t, ũ∗(t))dt|

= |
∫ x

a
µ1K1(x, t)[G1(t, ũ(t))−G1(t, ũ∗(t))]dt

+

∫ b

a
µ2K2(x, t)[G2(t, ũ(t))−G2(t, ũ∗(t))]dt|

≤
∫ x

a
|µ1K1(x, t)||G1(t, ũ(t))−G1(t, ũ∗(t))|dt

+

∫ b

a
|µ2K2(x, t)||G2(t, ũ(t))−G2(t, ũ∗(t))|dt

≤ M1L1(b− a)|ũ− ũ∗|+M2L2(b− a)|ũ− ũ∗|
= (M1L1 +M2L2)(b− a)|ũ− ũ∗|
= α|ũ− ũ∗|,

from which we get (1 − α)|ũ − ũ∗| ≤ 0. Since 0 < α < 1, then |ũ − ũ∗| = 0 implies
ũ = ũ∗ and this completes the proof.

Similarly, we can prove the uniqueness of the solution of Eq.(5).
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Theorem 3. If the series solution ũ(x, r) =
∑∞

i=0 ũi(x, r) obtained by the using
MADM is convergent, then it converges to the exact solution of the Eq.(6) when
0 < α < 1 and ‖ũ1(x, r)‖ <∞.

Proof. Denote as (C[a, b], ‖.‖) the Banach space of all continuous functions on J =
[a, b] with |ũ1(x, r)| ≤ ∞ for all x in J .

Firstly, we define the sequence of partial sums sn, let sn and sm be arbitrary
partial sums with n ≥ m. We are going to prove that sn =

∑n
i=0 ui(x, r) is a Cauchy

sequence in this Banach space:

‖sn − sm‖ = max
∀x∈J

|sn − sm| (54)

= max
∀x∈J

|
n∑
i=0

ui(x, r)−
m∑
i=0

ui(x, r)|

= max
∀x∈J

|
n∑

i=m+1

ui(x, r)|

= max
∀x∈J

|
n∑

i=m+1

[µ1

∫ x

a
K1(x, t)Ai(t)dt+ µ2

∫ b

a
K2(x, t)Bi(t)dt]|

= max
∀x∈J

|
∫ x

a
µ1K1(x, t)

n−1∑
i=m

Ai(t)dt+

∫ b

a
µ2K2(x, t)

n−1∑
i=m

Bi(t)dt)|.

From [12], we have
n−1∑
i=m

Ai = G1(t, sn−1)−G1(t, sm−1),

n−1∑
i=m

Bi = G2(t, sn−1)−G2(t, sm−1).
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So,

‖sn − sm‖ = max
∀x∈J

|
∫ x

a
µ1K1(x, t)(G1(t, sn−1)−G1(t, sm−1))dt

+

∫ b

a
µ2K2(x, t)(G2(t, sn−1)−G2(t, sm−1))dt|

≤ max
∀x∈J

(

∫ x

a
|µ1K1(x, t)||(G1(t, sn−1)−G1(t, sm−1))|dt

+

∫ b

a
|µ2K2(x, t)||(G2(t, sn−1)−G2(t, sm−1))|dt)

≤ M1L1‖sn−1 − sm−1‖(b− a) +M2L2‖sn−1 − sm−1‖(b− a)

= (L1M1 +M2L2)(b− a)‖sn−1 − sm−1‖
= α‖sn−1 − sm−1‖.

Let n = m+ 1, then

‖sn − sm‖ ≤ α‖sm − sm−1‖ ≤ α2‖sm−1 − sm−2‖ ≤ · · · ≤ αm‖s1 − s0‖

. So,

‖sn − sm‖ ≤ ‖sn − sm‖ ≤ ‖sm+1 − sm‖+ ‖sm+2 − sm+1‖+ · · ·+ ‖sn − sn−1‖
≤ [αm + αm+1 + · · ·+ αn−1]‖s1 − s0‖
≤ αm[1 + α+ α2 + · · ·+ αn−m−1]‖s1 − s0‖

≤ αm(
1− αn−m

1− α
)‖u1(x, r)‖.

Since 0 < α < 1, we have (1− αn−m) < 1, then

‖sn − sm‖ ≤
αm

1− α
‖u1(x, r)‖.

But |u1(x, r)| <∞, so, as m −→ ∞, then ‖sn − sm‖ −→ 0. We conclude that sn is
a Cauchy sequence in C[J ], therefore

u(x, r) = lim
n→∞

un(x, r).

Similarly, we have sn is cauchy sequence, then, we can write

u(x, r) = lim
n→∞

un(x, r).
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Therefore,

ũ(x, r) = lim
n→∞

ũn(x, r),

the series is convergence and the proof is complete.

Theorem 4. If the solution ũ(x) = limn→∞ ũn(x) obtained by using VIM is con-
vergent, then it converges to the exact solution of the Eq.(6) with 0 < α < 1.

Proof. The iteration formula as follows:

un+1(x, r) = un(x, r)−
∫ x

0
[un(s, r)− f(s, r)− µ1

∫ s

a
K1(s, t)G1(t, un(t, r))dt

−µ2

∫ b

a
K2(s, t)G2(t, un(t, r))dt]ds, (55)

we can write

u(x, r) = u(x, r)−
∫ x

0
[u(s, r)− f(s, r)− µ1

∫ s

a
K1(s, t)G1(t, u(t, r))dt

−µ2

∫ b

a
K2(s, t)G2(t, u(t, r))dt]ds. (56)

By subtracting Eq.(55) from Eq.(56),

un+1(x, r)− u(x, r) = un(x, r)− u(x, r)−
∫ x

0
[un(s, r)− u(s, r)

−µ1

∫ s

a
K1(s, t)[G1(t, un(t, r))−G1(t, u(t, r))]dt

−µ2

∫ b

a
K2(s, t)[G2(t, un(t, r))−G2(t, u(t, r))]dt]ds.

If we set, en+1(x, r) = un+1(x, r)− u(x, r), and en(x, r) = un(x, r)− u(x, r) then

en+1(x, r) = en(x, r)−
∫ x

0
[en(s, r)− µ1

∫ s

a
K1(s, t)[G1(t, un(t, r))−G1(t, u(t, r))]dt

−µ2

∫ b

a
K2(s, t)[G2(t, un(t, r))−G2(t, u(t, r))]dt]ds (57)

+en(x, r)− en(x, 0)

≤ en(x, r)(1− (b− a)(M1L1 +M2L2))

= (1− α)en(x, r),
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therefore,

‖en+1‖ = max
∀x∈J

|en+1| (58)

≤ (1− α) max
∀x∈J

|en|

= ‖en‖,

since 0 < α < 1, then ‖en‖ −→ 0. Similarly, we can proof the procedure of u(x, t).
So, the series converges and the proof is complete.

Theorem 5. If the series solution u(x, t) =
∑∞

m=0 um(x, t) obtained by the m-
order deformation is convergent, then it converges to the exact solution of the fuzzy
Volterra-Fredholm integral equation (7).

Proof. We assume
∑∞

m=0 um(x, t) converge uniformly to u(x, t)

u(x, r) =
∞∑
m=0

um(x, r),

where,
lim
m→∞

um(x, r) = 0.

We can write,

n∑
m=1

[um(x, r)− χmum−1(x, r)] = u1(x, r) + (u2(x, r)− u1(x, r)) + (u3(x, r)

−ũ2(x, r)) + · · ·+ (un(x, r)− un−1(x, r))

= un(x, r). (59)

Hence, from Eq.(59)
lim
n→∞

un(x, r) = 0. (60)

So, using Eq.(60) and the definition of the linear operator L, we have

∞∑
m=1

L[um(x, r)− χmum−1(x, r)] = L
∞∑
m=1

[um(x, r)− χmum−1(x, r)] = 0.

Therefore from Eq.(60), we can obtain that

∞∑
m=1

L[um(x, r)− χmum−1(x, r)] = hH(x)

∞∑
m=1

<m−1(um−1(x, r)) = 0.
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Since h 6= 0 and H(x) 6= 0, we have

∞∑
m=1

<m−1(um−1(x, r)) = 0. (61)

By substituting <m−1(um−1(x, r)) into the relation (61) and simplifying it, we have

<m−1(um−1(x, r)) =
∞∑
m=1

[um−1(x, r)− µ1

∫ x

a
K1(x, t)G1(t, um−1(t, r))dt

− µ2

∫ b

a
K2(x, t)G2(t, um−1(t, r))dt− (1− χm)f(x, r)]

= u(x, r)(x)− f̃(x, r)− µ1

∫ x

a
K1(x, t)[

∞∑
m=1

G1(t, um−1(t, r))]dt

− µ2

∫ b

a
K2(x, t)[

∞∑
m=1

G2(t, um−1(t, r))]dt. (62)

From Eq.(61) and Eq.(62), we have

u(x, r) = f(x, r) + µ1

∫ x

a
K1(x, t)G1(t, u(t, r))dt+ µ2

∫ b

a
K2(x, t)G2(t, u(t, r))dt,

therefore, u(x, r) must be the exact solution of Eq.(7).
Similarly, we can proof the procedure of u(x, t). Then, ũ(x) must be the exact

solution of Eq.(6), and the proof is complete.

7. Numerical Examples

In this section, we solve the fuzzy Volterra-Fredholm integral equation of the first
and second kind by using the ADM, MADM, VIM and HAM. The program has been
provided with Mathematica 6.

Algorithm :
Step 1. Set n←− 0,
Step 2. Solve the systems (5) or (6),
Step 3. If |ũn+1 − ũn| < ε then go to step 4, else n←− n+ 1 and go to step 2.
Step 4. Print ũn as the approximate solution.
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Example 7.1

Consider the fuzzy Volterra-Fredholm integral equation of the first kind as follows:

f̃(x) =

∫ x

0
(x2 + 2t)ũ(t)dt+

∫ 0.8

0

√
x+ tũ(t)dt, (63)

whear,

f(x, r) = rx+
1

8
− 1

8
r − 4

17
x2 +

4

17
x2r,

f(x, r) = 2r − rx+
1

8
r − 1

8
+

4

17
x2r − 4

17
x2, (64)

and,
r = 0.25, ε = 10−4.

We reduce Eq.(63) of the first kind to the second kind by differentiating one time
with respect to x we get:

f̃ ′(x) = (x2 + 2x)ũ(x) +

∫ x

0
(2x+ 2t)ũ(t)dt+

∫ 0.8

0

1

2
√
x+ t

ũ(t)dt,

ũ(x) =
f̃ ′(x)

(x2 + 2x)
− 2

∫ x

0

(x+ t)

(x2 + 2x)
ũ(t)dt− 1

2

∫ 0.8

0

ũ(t)

(x2 + 2x)
√
x+ t

dt.

x ADM(n=9) MADM(n=6) V IM(n=4) HAM(n=4)

0.1 0.4039474 0.4724382 0.4959472 0.4978465
0.2 0.4138278 0.4827677 0.4967593 0.4989678
0.3 0.4329266 0.5035533 0.5089546 0.5099838
0.4 0.4536241 0.5258682 0.5309465 0.5327889
0.5 0.4662346 0.5367692 0.5339489 0.5476479
0.6 0.4845248 0.5547509 0.5564829 0.5754394

Table 1: The Obtained Solutions for Example 7.1

Example 7.2

Consider the fuzzy Volterra-Fredholm integral equation of the second kind as follows:

ũ(x) = f̃(x) +

∫ x

0
sin(x)sin(

t

2
)ũ3(t)dt+

∫ 0.6

0
sin(

x

2
)sin(t)(1 + ũ2(t))dt, (65)
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whear,

f(x, r) = sin(
x

2
)(

13

15
(r2 + r) +

2

15
(4− r3 − r),

f(x, r) = sin(
x

2
)(

2

15
(r2 + r) +

13

15
(4− r3 − r),

and,
r = 0.3, ε = 10−2, 0 ≤ x, t ≤ 0.6.

x ADM(n=11) MADM(n=7) V IM(n=4) HAM(n=4)

0.1 0.2203548375 0.220364689 0.220466127 0.2204663982
0.2 0.3062332542 0.306447853 0.306329751 0.3063488741
0.3 0.4035946723 0.403687924 0.403659665 0.4037996457
0.4 0.5233741235 0.523298269 0.523379658 0.5234862764
0.5 0.5964831157 0.596683295 0.614656263 0.6259432736
0.6 0.6523678927 0.652287496 0.652356871 0.6524855123

Table 2: The Obtained Solutions for Example 7.2

The above tables show comparison between the approximate solutions by using
ADM, MDM, VIM, and HAM for results of the examples 7.1 and 7.2.

8. Discussion the Results and Comparison Among the Four Methods

The comparison among of the methods, it can be seen from the results of the above
examples:

• The four methods are powerful, efficient and give approximations of higher
accuracy. Also, they can produce closed-form solutions if they exist.

• Although the results obtained by these methods when applied to fuzzy Volterra-
Fredholm integral equations are the same approximately. HAM is seen to be
much easier and more convenient than the others.

• The VIM or HAM have many merits and more advantages over other meth-
ods. They can be introduced to overcome the difficulties arising in calculat-
ing Adomian polynomials. VIM and HAM reduce the volume of calculations
by requiring Adomian polynomials. The iterations methods are direct and
straightforward.
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• HAM handles fuzzy Volterra-Fredholm integral equations in a simple manner
by deforming a difficult problem into a simple one.

• One advantage of VIM is that the initial solution can be freely chosen with
some unknown parameters. An interesting point about this method is that
with few number of iterations, or even in some cases with only one iteration,
it can produce a very accurate approximate solution.

• The VIM has a more rapid convergence than the MDM. Also, the number of
computations in VIM is less than the ones in MDM.

9. Conclusion

We discussed four different methods for solving fuzzy Volterra-Fredholm integral
equations, namely, Adomian decomposition method, Modified decomposition method,
variational iteration method and Homotopy analysis method. To assess the accu-
racy of each method, the test examples with the known exact solution is used. The
study outlines important features of these methods as well as sheds some light on
advantages of one method over the other. The results show that these methods are
very efficient, convenient and can be adapted to fit a larger class of problems. The
comparison reveals that although the numerical results of these methods are similar
approximately, HAM is the easiest, the most efficient and convenient.
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