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C-BOCHNER PSEUDOSYMMETRIC NULL HYPERSURFACES IN
INDEFINITE KENMOTSU SPACE FORMS

S. KAZAN

Abstract. In this paper, firstly we study pseudosymmetric null hypersurfaces
of an indefinite Kenmotsu space form, tangent to the structure vector field. We
obtain sufficient conditions for null hypersurface to be pseudosymmetric in an in-
definite Kenmotsu space form. Later, we investigate pseudosymmetric condition
of null hypersurfaces with C-Bochner curvature tensor of an indefinite Kenmotsu
space form and obtain sufficient condition for a null hypersurface to be C-Bochner
pseudosymmetric in an indefinite Kenmotsu space form, give an example for these
hypersurfaces. We give a result for the C-Bochner pseudosymmetric null hypersur-
faces to be C-Bochner semi-symmetric and show that there is a close relationship
of the C-Bochner semi-symmetry condition of a null hypersurface and its integrable
screen distribution. Furthermore, we introduce Ricci-generalized C-Bochner pseu-
dosymmetric null hypersurfaces.
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1. Introduction

Let (M, g) be a Riemannian manifold of dimension n and ∇ be the Levi-Civita
connection. A Riemannian manifold is called locally symmetric if ∇R = 0, where
R is the Riemannian curvature tensor of M [3]. Locally symmetric Riemannian
manifolds are a generalization of manifolds of constant curvature. As a generalization
of locally symmetric Riemannian manifolds, semi-symmetric Riemannian manifolds
have been defined by the condition R · R = 0. It is known that locally symmetric
manifolds are semi-symmetric manifolds but the converse is not true [21].

A semi-Riemannian manifold (M, g) is said to be a pseudosymmetric manifold
if at every point of M the following condition is satisfied:

the tensor R ·R and Q(g,R) are linearly dependent. (1)
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The condition (1) is equivalent to the fact that the equality R ·R = LQ(g,R) holds
on the set U = {x ∈M | Q(g,R) 6= 0 at x}, where L is some function on U .

Also, pseudosymmetric manifolds have been discovered during the study of to-
tally umbilical submanifolds of semi-symmetric manifolds [1]. It is clear that every
semi-symmetric Riemannian manifold is pseudosymmetric manifold but the converse
is not true. For pseudosymmetric manifolds, see also [4], [17], [18]. Besides, in [9], S.
Haesen and L. Verstraelen gave geometrical meaning of the metrical endomorphism,
pseudo-symmetry. According to this study, a geometrical symmetry of a Rieman-
nian space (Mn, g) concerns the invariance of some geometrical quantity of (Mn, g)
under the performance of some transformations defined on (Mn, g) . Various types
of symmetries in Riemannian geometry can thus be considered, essentially depend-
ing on the kind of quantities and of transformations in question. And in complete
analogy with such intrinsic symmetries, various types of extrinsic symmetries can be
considered on submanifolds (Mn, g) in Riemannian ambient spaces (M̃m+n, g̃). By
natural geometrical symmetries, the authors say that we mean symmetries in the
above sense for which the quantities and the transformations involved are the most
natural indeed, at least in our opinion. Then one has the proposition; (Schouten)
The curvature operators of Riemannian manifolds measure the changes of directions
at points under parallel transports fully around the infinitesimal parallelo-grams cor-
nered at these points and the theorem; (Schouten) The locally Euclidean (or locally
flat) Riemannian manifolds (the spaces (Mn, g) for which R ≡ 0), are precisely
the Riemannian manifolds for which all directions are invariant under their parallel
transports fully around all infinitesimal co-ordinate parallelograms. The natural met-
rical endomorphism X ∧g Y : TM → TM associated with two vector fields X and Y
on a Riemannian manifold (Mn, g) is defined by (X∧g Y )Z = g(Y, Z)X−g(X,Z)Y .
Let ~x and ~y be orthonormal vectors at p, and let ~z = ~zπ̄ + ~zπ̄⊥ be the canonical
orthogonal decomposition of any vector ~z at p in its components in π̄ = ~x ∧ ~y and
in the orthogonal complement π̄⊥ of π̄ in TpM

n = Rn. Now, we rotate ~zπ̄ around p
in the plane ~zπ̄ over an infinitesimal angle 4ϕ, thus obtaining a vector (~zπ̄)4ϕ, and
define the vector ~z∧π̄ = (~zπ̄)4ϕ + ~zπ̄⊥ . The procedure going from ~z to ~z∧π̄ is called the
rotation of ~z at p with respect to the plane π̄ over an angle 4ϕ, and one has the
following: ~zπ̄⊥ = ~z + [(~x∧g ~y)~z]4ϕ +O>1(4ϕ). Thus the vector (~x∧g ~y)~z measures
the first order change of the vector ~z after an infinitesimal rotation of ~z at p with
respect to the plane π̄ = ~x∧g ~y, or, formulated more loosely. Then it is said that the
natural metrical endomorphisms ∧g of Riemannian manifolds measure the changes
of directions at points under infinitesimal rotations with respect to 2D planes at
these points. Therefore, the Tachibana tensor ∧g · R measures the changes of the
sectional curvatures K(p, π) of a Riemannian manifold (Mn, g) for all planes π at
all points p under the infinitesimal rotations of these planes π at p with respect to
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all planes π̄ at p [9].
In addition, a Riemannian manifold (Mn, g), (n ≥ 3), is said to be pseudo-

symmetric in the sense of Deszcz or is called Deszcz symmetric if, for some function
LR : M → R,R · R = LR ∧ g · R. Then, a Riemannian manifold (Mn, g), (n ≥ 3),
is Deszcz symmetric if and only if its sectional curvature of Deszcz L(p, π, π̄) is
isotropic, i.e., if L(p, π, π̄) is independent of the planes π and π̄, or, still, if the double
sectional curvature function L(p, π, π̄) actually is a function L = LR : M → R. Here,
such theorem is given that (Sinyukov, Mikěs, Venzi, Defever and Deszcz) if a semi-
symmetric Riemannian space admits a geodesic transformation onto some other Rie-
mannian manifold, then this latter manifold must itself be pseudo-symmetric, and, if
a pseudo-symmetric Riemannian space admits a geodesic transformation onto some
other Riemannian manifold, then this latter manifold must itself also be pseudo-
symmetric [9].

Also, let Mn be a hypersurface in a Euclidean space En+1, n ≥ 3. Amongst the
simplest possible forms of the shape operator of Mn in En+1, one has those whereby
the principal curvatures at every point are (1) : (0, 0, ..., 0); (2) : (λ, λ, ..., λ), λ 6=
0; (3) : (λ, 0, ..., , 0), λ 6= 0; (4) : (λ, ..., λ, 0, ..., 0), λ 6= 0 and λ appearing more than
once; (5) : (λ, µ, 0, ..., 0), λ 6= 0 6= µ and λ 6= µ; (6) : (λ, µ, ..., µ), λ 6= 0 6= µ and
λ 6= µ; (7) : (λ, ..., λ, µ, ..., µ), λ 6= 0 6= µ and λ 6= µ and both λ and µ appearing
more than once. Then there are the following correspondences: Mn ⊂ En+1 is
totally geodesic in case (1); (non-totally geodesic) totally umbilical in case (2); (non-
totally geodesic) cylindrical in case (3); the cases (1), (2) and (3) together cover the
hypersurfaces of constant sectional curvature, i.e. the Mn in En+1 which are real
space forms (which for these hypersurfaces is equivalent to being Einstein) and cases
(1) and (3) deal with the locally flat hypersurfaces; semi-symmetric hypersurfaces
which are not real space forms concern the cases (4) and (5), so that the semi-
symmetric hypersurfaces Mn of En+1 correspond to (1)− (5), as shown by Nomizu;
conformally flat Mn, for n > 3, which are not of constant curvature correspond to
case (6); and the intrinsic pseudosymmetric Mn in En+1 correspond to (1)−(7). So,
a hypersurface Mn in En+1 is a non semi-symmetric, intrinsically pseudo-symmetric
Riemannian manifold if and only if it has exactly two non-zero principal curvatures
λ and µ, and then its double sectional curvature is given by L = λ [9].

In full analogy with the above mentioned studies concerning the parallel trans-
port around infinitesimal co-ordinate parallelograms of the Riemann curvatures lead-
ing to the notions of pseudo-symmetry of Riemannian manifolds and of the sectional
curvatures of Deszcz, the consideration of the Weyl conformal curvatures and of the
Ricci curvatures instead lead to the notions of Weyl and Ricci pseudo-symmetry and
of the Weyl and Ricci curvatures of Deszcz.

On the other than, in mathematical physics, lightlike hypersurfaces of semi-
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Riemannian manifolds are important due to their physical applications. Moreover,
in physics, lightlike hypersurfaces are interesting in general relativity since they pro-
duce models of different types of horizons. Lightlike hypersurfaces are also studied
in the theory of electromagnetism. On the other hand, lightlike hypersurfaces of a
semi-Riemannian manifold have been studied by Duggal-Bejancu and they obtain a
transversal bundle for such hypersurfaces to overcome anomaly occured due to de-
generate metric. After their book [7], many authors studied lightlike hypersurfaces
by using their approach. In [20], Şahin has introduced the notion of semi-symmetric
lightlike hypersurfaces of a semi-Riemannian manifold and obtained many new re-
sults. After Şahin’s paper, many authors have studied such surfaces in various semi-
Riemannian manifolds (see [11], [16], [19]). Moreover, in [12] Kazan and Şahin have
studied pseudosymmetric lightlike hypersurfaces of semi-Riemannian manifolds and,
in [13] have studied pseudosymmetric lightlike hypersurfaces in indefinite Sasakian
space forms.

In this paper, considering the above statements, we study pseudosymmetric null
hypersurfaces of an indefinite Kenmotsu space form such that its sectional curvature
c = −1. In Section 3, firstly, we obtain integrability conditions for screen distribution
of a null hypersurface and then we find sufficient condition for a null hypersurface to
be pseudosymmetric under integrable screen distribution. We also give a character-
ization of a pseudosymmetric null hypersurface of indefinite Kenmotsu space form.
In Section 4, we give sufficient condition for a null hypersurface to be C-Bochner
pseudosymmetric in an indefinite Kenmotsu space form such that there are many
papers deal with the C-Bochner tensor (see [10], [26]). And, we give an example for
C-Bochner pseudosymmetric null hypersurfaces. Moreover, we give a result for the
C-Bochner pseudosymmetric null hypersurfaces to be C-Bochner semi-symmetric
and show that there is a close relationship of the C-Bochner semi-symmetry condi-
tion of a null hypersurface and its integrable screen distribution. Furthermore, we
introduce Ricci-generalized C-Bochner pseudosymmetric null hypersurfaces.

2. Preliminaries

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian manifold of class
C∞. For a (0, k)-tensor field T on M , k ≥ 1, we define the (0, k + 2)-tensors R · T
and Q(g, T ) by

(R · T )(X1, ..., Xk;X,Y ) = −T (R̃(X,Y )X1, X2, ..., Xk)

− ...− T (X1, ..., Xk−1, R̃(X,Y )Xk), (2)
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and

Q(g, T )(X1, ..., Xk;X,Y ) = −T ((X ∧ Y )X1, X2, ..., Xk)

− ...− T (X1, ..., Xk−1, (X ∧ Y )Xk) (3)

respectively, for X1, ..., Xk, X, Y ∈ Γ(TM), where R̃ is the curvature tensor field of
M and R is the Riemannian Christoffel tensor field given by R(X1, X2, X3, X4) =
g(R̃(X1, X2)X3, X4), the endomorphisms are defined by R̃(X,Y )Z = [∇X ,∇Y ]Z −
∇[X,Y ]Z, (X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y . Curvature conditions, involving the
form R · T = 0, are called curvature conditions of semi-symmetric type [5]. Then,
a semi-Riemannian manifold (M, g) is said to be semi-symmetric if it satisfies the
condition R · R = 0. It is well known that the class of semisymmetric manifolds
includes the set of locally symmetric manifolds (∇R = 0) as a proper subset [2],
here, we suppose that (M, g) is a Riemmanian manifold. If M satisfies ∇R = 0,
then M is called locally symmetric manifold [17]. A semi-Riemannian manifold
(M, g) is said to be a pseudosymmetric manifold, if at every point of M the tensor
R · R and Q(g,R) are linearly dependet. This is equivalent to the fact that the
equality R · R = LRQ(g,R) holds on UR = {x ∈ M : Q(g,R) 6= 0}, for some
function LR on UR [6].

Also, if the tensor R · R and Q(S,R) are linearly dependent then M is called
Ricci − generalized pseudosymmetric. This is equivalent to R · R = LQ(S,R)
holding on the set U = {x ∈M : Q(S,R) 6= 0}, for some function L on U , where S
is the Ricci tensor [18].

Matsumoto and Chuman [25] have defined the C-Bochner curvature tensor in an
almost contact metric manifold as follows:

B̃(X,Y )Z = R(X,Y )Z +
1

2(n+ 2)
[S(X,Z)Y − S(Y,Z)X + g(X,Z)QY − g(Y,Z)QX

+S(φX,Z)φY − S(φY,Z)φX + g(φX,Z)QφY − g(φY,Z)QφX + 2S(φX, Y )φZ

+2g(φX, Y )QφZ − S(X,Z)η(Y )ξ + S(Y, Z)η(X)ξ − η(X)η(Z)QY + η(Y )η(Z)QX]

− τ + 2n

2(n+ 2)
[g(φX,Z)φY − g(φY,Z)φX + 2g(φX, Y )φZ]− τ − 4

2(n+ 2)
[g(X,Z)Y

−g(Y,Z)X] +
τ

2(n+ 2)
[g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ + η(X)η(Z)Y

−η(Y )η(Z)X], (4)

where τ = r+2n
2(n+2) , Q is the Ricci-operator, i.e., g(QX,Y ) = S(X,Y ) for all X and

Y and r is the scalar curvature of the manifold.
A Riemannian manifold M is said to be C-Bochner pseudosymmetric if R · B̃ =

LB̃Q(g, B̃) holds on the set UB̃ = {x ∈M : B̃ 6= 0 at x}, where LB̃ is some function

on UB̃ and B̃ is the C-Bochner curvature tensor. If LB̃ = 0 on UB̃, then a C-Bochner
pseudosymmetric manifold is C-Bochner semi-symmetric [10].
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Theorem 1. (Duggal-Bejancu) Let (M, g, S(TM)) be a lightlike hypersurface of
(M̄, ḡ). Then there exist a unique vector bundle tr(TM) of rank 1 over M such that
for any non-zero section ξ of T⊥M on a coordinate neighborhood U ⊂ M , there
exists a unique section N of tr(TM) on U

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0,∀X ∈ Γ(S(TM |U )). (5)

It follows from (5) that tr(TM) is a lightlike vector bundle such that tr(TM)x∩
TxM = {0} for any x ∈M . Thus, from Theorem(1), we have

TM̄ |M = S(TM)⊕ (TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM). (6)

Here, the complementary (non-orthogonal) vector bundle tr(TM) to the tangent
bundle TM in TM̄ |M is called the lightlike transversal bundle of M with respect
to screen distribution S(TM) [7].

Suppose ∇ and ∇̄ are the Levi-Civita connections of M lightlike hypersurface
and M̄ semi-Riemannian manifold, respectively. According to the (6), we have

∇̄XY = ∇XY + h(X,Y ) and ∇̄XN = −ANX +∇tXN, (7)

for any X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)), where
∇XY,ANX ∈ Γ(TM) and h(X,Y ),∇tXN ∈ Γ(tr(TM)). If we set B(X,Y ) =
g(h(X,Y ), ξ) and τ(X) = ḡ(∇tXN, ξ), then, from (7), we have

∇̄XY = ∇XY +B(X,Y )N and ∇̄XN = −ANX + τ(X)N, (8)

for any X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)), AN and B are called the shape operator
and the second fundamental form of the lightlike hypersurface M , respectively.

Let P be the projection of Γ(TM) on Γ(S(TM)). Then, we have

∇XPY = ∇∗XPY + C(X,PY )ξ and ∇Xξ = −A∗ξX + τ(X)ξ, (9)

for any X,Y ∈ Γ(TM), where ∇∗XPY,A∗ξX ∈ Γ(S(TM)) and C is a 1-form on
U defined by C(X,PY ) = ḡ(∇XPY,N). C,A∗ξX and ∇∗ are called the local
second fundamental form, the local shape operator and the induced connection
on S(TM), respectively. Then, we have the following assertions,

g(ANY, PW ) = C(Y, PW ), g(ANY,N) = 0, B(X, ξ) = 0, (10)

g(A∗ξX,PY ) = B(X,PY ), g(A∗ξX,N) = 0, (11)

for X,Y,W ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).
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Let M be a lightlike hypersurface of a M̄ semi-Euclidean space. Denote by R̄ and
R the Riemann curvature tensors of M̄ and M , respectively. From Gauss-Codazzi
equations [7], we have the following, for any X,Y, Z ∈ Γ(TM|U ),

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y,Z)ANX

+ {(∇XB)(Y, Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)}N. (12)

Let M be a lightlike hypersurface of a semi-Euclidean space. We say that M
is a semi-symmetric if the condition (R(X,Y ) · R)(X1, X2, X3, X4) = 0 for any
X,Y,X1, X2, X3, X4 ∈ Γ(TM) [20] is satisfied, also a lightlike hypersurface M
is called Ricci semi-symmetric lightlike hypersurface if the condition (R(X,Y ) ·
Ric)(X1, X2) = 0 for any X,Y,X1, X2 ∈ Γ(TM) [20] is satisfied.

For the geometry of lightlike hypersurfaces, we refer to [7], [8], [20].
Also , let us recall some general notions about indefinite Kenmotsu space mani-

folds:
Let M̄ be a (2m+1)-dimensional manifold endowed with an almost contact struc-

ture (φ̄, ξ, η), i.e. φ̄ is a tensor field of type (1,1), ξ is a vector field and η is a 1-form
satisfying

φ̄2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (13)

Then (φ̄, ξ, η, ḡ) is called an indefinite almost contact metric structure on M̄ , if
(φ̄, ξ, η) is an almost contact structure on M̄ and ḡ is a semi-Riemannian metric on
M̄ such that, for any vector field X̄, Ȳ on M̄,

ḡ(φ̄X̄, φ̄Ȳ ) = ḡ(X̄, Ȳ )− η(X̄)η(Ȳ ). (14)

If follows that, for any vector field X̄ on M̄ , η(X̄) = ḡ(ξ, X̄). If, moreover, (∇̄X̄ φ̄)Ȳ =
ḡ(φ̄X̄, Ȳ )ξ−η(Ȳ )φ̄X̄, where ∇̄ is the Levi-Civita connection for the semi-Riemannian
metric ḡ, we call M̄ an indefinite Kenmotsu manifold [16].

Since Takahashi [22] shows that it suffices to consider indefinite almost contact
manifolds with space-like ξ [11]. In this paper, we will restrict ourselves to the case
of ξ a space-like unit vector (that is ḡ(ξ, ξ) = 1).

A plane section σ in TpM̄ is called a φ̄-section if it is spanned by X̄ and φ̄X̄,
where X̄ is a unit tangent vector field orthogonal to ξ. The sectional curvature of a
φ̄-section σ is called a φ̄-sectional curvature. If an indefinite Kenmotsu manifold M̄
has constant φ̄-sectional curvature c, then, by virtue of the Propositon 12 in [14],
the curvature tensor R̄ of M̄ is given by

R̄(X̄, Ȳ )Z̄ =
c− 3

4
{g(Ȳ ¯, Z)X̄ − g(X̄, Z̄)Ȳ }+

c+ 1

4
{η(X̄)η(Z̄)Ȳ

−η(Ȳ )η(Z̄)X̄ + g(X̄, Z̄)η(Y )ξ − g(Ȳ , Z̄)η(X̄)ξ + ḡ(φ̄Ȳ , Z̄)φ̄X̄

−ḡ(φ̄X̄, Z̄)φ̄Y − 2ḡ(φ̄X̄, Ȳ )φ̄Z̄}, (15)
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where X̄, Ȳ , Z̄ ∈ Γ(TM̄). A Kenmotsu manifold M̄ of constant φ̄-sectional curvature
c will be called Kenmotsu space form and denote by M̄(c). If an indefinite Kenmotsu
manifold M̄ has a constant φ̄-sectional curvature c, then, M̄ is an Einstein one and
c = −1. This means that, it is locally isometric to the pseudo hyperbolic space
H2n+1
s (−1), s being the index of its metric [16].

Example 1. (Example 1-3 of [15] and [16]) Let M̄ = {x = (x1, x2, ..., x7) ∈
R7 : x7 > 0} be 7-dimensional indefinite Kenmotsu manifold. The vector fields,
ep = x7

∂
∂xp

, eq = −x7
∂
∂xq

, for any p = 1, 2, 3, 4, , q = 5, 6, 7 are linearly independent

at each point of M̄7. Also let M be a hypersurface of (M̄, φ̄, ξ, η, ḡ) given by x5 =√
2(x2 + x3). Thus, the tangent space TM is spanned by {Ui}1≤i≤6, where U1 =

e1, U2 = e2 − e3, U3 = 1√
2
(e2 + e3) − e5, U4 = e4, U5 = e6, U6 = ξ and the

1- dimensional distribution TM⊥ of rank 1 is spanned by E, where E = U3. It
follows that TM⊥ ⊂ TM . Then M is a 6- dimensional lightlike hypersurface of M̄ .
N(TM) is spanned by N = 1

2{
1√
2
(e2 + e3) + e5} and the distribution D0, < ξ >,

φ̄(TM⊥) and φ̄(N(TM)) are spanned, respectively, by {F = U2, φ̄F = U1 + U4},
ξ, φ̄E = 1√

2
(U1 − U4) + U5 and φ̄N = 1

2{
1√
2
(U1 − U4) − U5}. Denote by ∇̄ the

Levi-Civita connection on M̄ . Then, we obtain

∇̄U3N = −ξ and ∇̄XN, ∀X ∈ Γ(TM), X 6= U3.

Using these equations above, the differential 1-form τ vanishes i.e. τ(X) = 0, for
any X ∈ Γ(TM). So, from Gauss and Weingarten formulas we have

ANU2 = ξ, ANX = 0, ∀X ∈ Γ(TM), X 6= U2 (16)

A∗EX = 0, ∇XE = 0, ∀X ∈ Γ(TM). (17)

From (16) and (17), C(U2, ξ) = 1 and trA∗E = 0. Therefore, the hypersurface M of
M̄ is totally geodesic and its screen distribution is not parallel. Using Lemma 3.2
of [15], M̄ , endowed with the structure (φ̄, ξ, η, ḡ) defined in Example1 of [15], is of
constant curvature c = −1.

Theorem 2. Let M be a null hypersurface of an indefinite Kenmotsu space form
M̄(c), with ξ ∈ Γ(TM). If the second fundamental form h of M is parallel, then M
is totally geodesic [16].

3. Pseudosymmetric Null Hypersurfaces in Indefinite Kenmotsu Space
Forms

In this section, we investigate pseudosymmetric null hypersurfaces in an indefinite
Kenmotsu space form. Firstly, let us recall some general notions about null hyper-
surfaces of indefinite Kenmotsu manifolds:
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Let(M̄, φ̄, ξ, η, ḡ) be an indefinite Kenmotsu manifold and let (M, g) be a null
hypersurface of (M̄, ḡ), tangent to the structure vector field ξ ∈ Γ(TM). If E is
a local section of TM⊥, it is easy to check that φ̄E 6= 0 and ḡ(φ̄E,E) = 0, then
φ̄E is tangent to M . Thus φ̄(TM⊥) is a distribution on M of rank 1 such that
φ̄(TM⊥) ∩ TM⊥ = {0}. This enables us to choose a screen distribution S(TM)
such that it contains φ̄(TM⊥) as a vector subbundle. If we consider a local section
N of N(TM), we have φ̄N 6= 0. Since ḡ(φ̄N,E) = −ḡ(N, φ̄E) = 0 , we deduce that
φ̄E ∈ Γ(S(TM)) and φ̄N is also tangent to M . At the same time, ḡ(φ̄N,N) = 0 i.e.
φ̄N has no component with respect to E. Thus φ̄N ∈ Γ(S(TM)), that is, φ̄(N(TM))
is also a vector subbundle of S(TM) of rank 1. From (13), we have ḡ(φ̄N, φ̄E) = 1.
Therefore, φ̄(TM⊥) ⊕ φ̄(tr(TM)) is a non-degenerate vector subbundle of S(TM)
of rank 2. If ξ ∈ TM , we may choose S(TM) so that ξ belogns to S(TM). Using
this and since ḡ(φ̄E, ξ) = ḡ(φ̄N, ξ) = 0, there exists a non-degenerate distribution
D0 of rank 2n− 4 on M such that

S(TM) = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ > (18)

where < ξ > is the distribution spanned by ξ. The distribution D0 is invariant under
φ̄, i.e. φ̄(D0) = D0. Moreover, from (6) and (18) , we obtain the decompositions

TM = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ >⊥ TM⊥, (19)

TM̄ |M = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ tr(TM)). (20)

Now, we consider the distributions on M , D := TM⊥ ⊥ φ̄(TM⊥) ⊥ D0, D′ :=
φ̄(tr(TM)). Then D is invariant under φ̄ and

TM = (D ⊕D′) ⊥< ξ > . (21)

Let us consider the local null vector fields U := −φ̄N , V := −φ̄E. Then, from
(21), any X ∈ Γ(TM) is written as X = RX +QX + η(X)ξ, QX = u(X)U , where
R and Q are the projection morphisms of TM into D and D′, respectively, and
u is a differential 1-form locally defined on M by u(·) = g(V, ·). Applying φ̄ and
(13), one obtain φ̄X = φX + u(X)N , where φ̄ is a tensor field of type (1, 1) defined
on M by φX := φ̄RX. In addition, we obtain, φ2X = −X + η(X)ξ + u(X)U
and ∇Xξ = X − η(X)ξ. We have the following identities, for any X ∈ Γ(TM),
∇Xξ = X − η(X)ξ and

B(X, ξ) = 0, C(X, ξ) = θ(X) (22)

Define the induced Ricci type tensor R(0,2) of M as

R(0,2)(X,Y ) = trace(Z → R(Z,X)Y ), ∀X,Y ∈ Γ(TM). (23)
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Since the induced connection ∇ on M is not a Levi-Civita connection, in general,
R(0,2) is not symmetric. Therefore, in general, it is just a tensor quantity and has
no geometric or physical meaning similar to the symmetric Ricci tensor of M̄ . If M̄
is an indefinite Kenmotsu space form (M̄(c), ḡ), then, the relation (15) becomes, for
any X,Y, Z ∈ Γ(TM),

R̄(X,Y )Z = g(X,Z)Y − g(Y, Z)X. (24)

Using (12), a direct calculation gives

R(0,2)(X,Y ) = −(2n− 1)g(X,Y ) +B(X,Y )trAN −B(ANX,Y ), (25)

where tracetr is written with respect to g restricted to S(TM). Note that the Ricci
tensor does not depend on the choice of the vector field E of the distribution TM⊥.
The tensor field R(0,2) of a null hypersurface M of an indefinite Kenmotsu manifold
M̄ is called induced Ricci tensor if it is symmetric. Let (M, g) be a null hypersurface
of an indefinite Kenmotsu space form (M̄(c), ḡ) with ξ ∈ TM . Let us consider the
pair {E,N} on U ⊂M . From (12), comparing the tangential and transversal part,
we get, for any X,Y, Z ∈ Γ(TM)

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X +B(Y,Z)ANX −B(X,Z)ANY (26)

[16]. And, let (M, g, S(TM)) be a screen integrable null hypersurface of an indef-
inite Kenmotsu space form M̄(c) with ξ ∈ Γ(TM). Using Gauss and Weingarten
equations, we have

R(X,Y )Z = R∗(X,Y )Zg(X,Z)Y + C(X,Z)A∗EY − C(Y,Z)A∗EX

+{(∇XC)(Y,Z)− (∇Y C)(X,Z) + τ(Y )C(X,Z)− τ(X)C(Y,Z)}E (27)

whereX,Y, Z ∈ Γ(S(TM)) and (∇XC)(Y, Z) = X(C(Y, Z))−C(∇∗XY,Z)−C(Y,∇∗XZ)
[16].

For symmetry properties of null hypersurfaces of indefinite Kenmotsu manifolds,
we refer to [15], [16], [24].

Now, we can give main definition:

Definition 1. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). We say
that M is a pseudosymmetric null hypersurface, if the tensors of R ·R and Q(g,R)
are linearly dependent at ∀p ∈ M . This is equivalent to R · R = LRQ(g,R) on
UR = {p ∈M |Q(g,R) 6= 0}, where LR is some function on UR.

A condition for integrable of screen distribution of M to be a null hypersurface
in indefinite Kenmotsu space form is given by following theorem:

120



S. KAZAN – C-Bochner Pseudosymmetric Null Hypersurfaces . . .

Lemma 3. Let M̄(c) be an indefinite Kenmotsu space form and M be a null hy-
persurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). Then S(TM)
integrable if and only if

g(∇∗XφY −∇∗Y φX, φN) = g(u(Y )ANX − u(X)ANY, φN).

Proof. For X,Y ∈ ΓS(TM), using (13) and (14) , we have

ḡ([X,Y ], N) = ḡ(∇̄X φ̄Y, φ̄N) + η(Y )g(φ̄X, φ̄N)− ḡ(∇̄Y φ̄X, φ̄N)− η(X)g(φ̄Y, φ̄N).

On the other hand, using φ̄Y = φY + u(Y )N and Gauss formulas (8) and (9), we
get

ḡ([X,Y ], N) = g(∇∗XφY − u(Y )g(ANX,φN)− g(∇∗Y φX + u(X)g(ANY, φN).

Thus, proof is complete.

Now, we can give the following theorem for a condition to be pseudosymmetric
of a null hypersurface in indefinite Kenmotsu space form:

Theorem 4. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with integrable screen dis-
tribution and ξ ∈ Γ(TM). If B(X,Y )A2

NZ = −g(X,Y )ANZ, B(X,Y )A∗EANZ =
−g(X,Y )A∗EZ and C(X,Y )Z = C(X,Z)Y , then M is a pseudosymmetric null hy-
persurface such that LR = −2, where X,Y, Z ∈ Γ(TM), E ∈ Γ(RadTM).

Proof. From the hypothesis, for X,Y, Z,W,U ∈ Γ(TM), we get

B(X,Y )A2
NZ = −g(X,Y )ANZ ⇒ g(B(X,Y )A2

NZ,W ) = −g(g(X,Y )ANZ,W )

⇒ B(X,Y )g(A2
NZ,W ) = −g(X,Y )g(ANZ,W ) (28)

and

B(X,Y )A∗ξANZ = −g(X,Y )A∗ξZ ⇒ g(B(X,Y )A∗ξANZ,U) = −g(g(X,Y )A∗ξZ,U)

⇒ B(X,Y )B(ANZ,U) = −g(X,Y )B(Z,U). (29)

Since M is a Kenmotsu space form, c = −1. Using c = −1 and from (26), we have

(R ·R)(X1, X2, X3, X4;X,Y )

= −g(X,X1)g(Y,X3)g(X2, X4) + g(X,X1)g(X2, X3)g(Y,X4)

+ g(X,X1)B(Y,X3)g(ANX2, X4)− g(X,X1)B(X2, X3)g(ANY,X4)

+ g(Y,X1)g(X,X3)g(X2, X4)− g(Y,X1)g(X2, X3)g(X,X4)

− g(Y,X1)B(X,X3)g(ANX2, X4) + g(Y,X1)B(X2, X3)g(ANX,X4)

+B(X,X1)g(ANY,X3)g(X2, X4)−B(X,X1)g(X2, X3)g(ANY,X4)

−B(X,X1)B(ANY,X3)g(ANX2, X4) +B(X,X1)B(X2, X3)g(A2
NY,X4)
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−B(Y,X1)g(ANX,X3)g(X2, X4) +B(Y,X1)g(X2, X3)g(ANX,X4)

+B(Y,X1)B(ANX,X3)g(ANX2, X4)−B(Y,X1)B(X2, X3)g(A2
NX,X4)

− g(X,X2)g(X1, X3)g(Y,X4) + g(X,X2)g(Y,X3)g(X1, X4)

+ g(X,X2)B(X1, X3)g(ANY,X4)− g(X,X2)B(Y,X3)g(ANX1, X4)

+ g(Y,X2)g(X1, X3)g(X,X4)− g(Y,X2)g(X,X3)g(X1, X4)

− g(Y,X2)B(X1, X3)g(ANX,X4) + g(Y,X2)B(X,X3)g(ANX1, X4)

+B(X,X2)g(X1, X3)g(ANY,X4)−B(X,X2)g(ANY,X3)g(X1, X4)

−B(X,X2)B(X1, X3)g(A2
NY,X4) +B(X,X2)B(ANY,X3)g(ANX1, X4)

−B(Y,X2)g(X1, X3)g(ANX,X4) +B(Y,X2)g(ANX,X3)g(X1, X4)

+B(Y,X2)B(X1, X3)g(A2
NX,X4 −B(Y,X2)B(ANX,X3)g(ANX1, X4))

− g(X,X3)g(X1, Y )g(X2, X4) + g(X,X3)g(X2, Y )g(X1, X4)

+ g(X,X3)B(X1, Y )g(ANX2, X4)− g(X,X3)B(X2, Y )g(ANX1, X4)

+ g(Y,X3)g(X1, X)g(X2, X4 − g(Y,X3)g(X2, X)g(X1, X4))

− g(Y,X3)B(X1, X)g(ANX2, X4) + g(Y,X3)B(X2, X)g(ANX1, X4)

+B(X,X3)g(X1, ANY )g(X2, X4)−B(X,X3)g(X2, ANY )g(X1, X4)

−B(X,X3)B(X1, ANY )g(ANX2, X4) +B(X,X3)B(X2, ANY )g(ANX1, X4)

−B(Y,X3)g(X1, ANX)g(X2, X4) +B(Y,X3)g(X2, ANX)g(X1, X4)

+B(Y,X3)B(X1, ANX)g(ANX2, X4)−B(Y,X3)B(X2, ANX)g(ANX1, X4)

− g(X,X4)g(X1, X3)g(X2, Y ) + g(X,X4)g(X2, X3)g(X1, Y )

+ g(X,X4)B(X1, X3)g(ANX2, Y )− g(X,X4)B(X2, X3)g(ANX1, Y )

+ g(Y,X4)g(X1, X3)g(X2, X)− g(Y,X4)g(X2, X3)g(X1, X)

− g(Y,X4)B(X1, X3)g(ANX2, X) + g(Y,X4)B(X2, X3)g(ANX1, X)

+B(X,X4)g(X1, X3)g(X2, ANY )−B(X,X4)g(X2, X3)g(X1, ANY )

−B(X,X4)B(X1, X3)g(ANX2, ANY ) +B(X,X4)B(X2, X3)g(ANX1, ANY )

−B(Y,X4)g(X1, X3)g(X2, ANX) +B(Y,X4)g(X2, X3)g(X1, ANX)

+B(Y,X4)B(X1, X3)g(ANX2, ANX)−B(Y,X4)B(X2, X3)g(ANX1, ANX).

Hence, we have

(R ·R)(X1, X2, X3, X4;X,Y )

= −Q(g,R)(X1, X2, X3, X4;X,Y )

+B(X,X1)g(ANY,X3)g(X2, X4)−B(X,X1)g(X2, X3)g(ANY,X4)

−B(X,X1)B(ANY,X3)g(ANX2, X4) +B(X,X1)B(X2, X3)g(A2
NY,X4)

122



S. KAZAN – C-Bochner Pseudosymmetric Null Hypersurfaces . . .

−B(Y,X1)g(ANX,X3)g(X2, X4) +B(Y,X1)g(X2, X3)g(ANX,X4)

+B(Y,X1)B(ANX,X3)g(ANX2, X4)−B(Y,X1)B(X2, X3)g(A2
NX,X4)

+B(X,X2)g(X1, X3)g(ANY,X4)−B(X,X2)g(ANY,X3)g(X1, X4)

−B(X,X2)B(X1, X3)g(A2
NY,X4) +B(X,X2)B(ANY,X3)g(ANX1, X4)

−B(Y,X2)g(X1, X3)g(ANX,X4) +B(Y,X2)g(ANX,X3)g(X1, X4)

+B(Y,X2)B(X1, X3)g(A2
NX,X4)−B(Y,X2)B(ANX,X3)g(ANX1, X4)

+B(X,X3)g(X1, ANY )g(X2, X4)−B(X,X3)g(X2, ANY )g(X1, X4)

−B(X,X3)B(X1, ANY )g(ANX2, X4) +B(X,X3)B(X2, ANY )g(ANX1, X4)

−B(Y,X3)g(X1, ANX)g(X2, X4) +B(Y,X3)g(X2, ANX)g(X1, X4)

+B(Y,X3)B(X1, ANX)g(ANX2, X4)−B(Y,X3)B(X2, ANX)g(ANX1, X4)

+B(X,X4)g(X1, X3)g(X2, ANY )−B(X,X4)g(X2, X3)g(X1, ANY )

−B(X,X4)B(X1, X3)g(ANX2, ANY ) +B(X,X4)B(X2, X3)g(ANX1, ANY )

−B(Y,X4)g(X1, X3)g(X2, ANX) +B(Y,X4)g(X2, X3)g(X1, ANX)

+B(Y,X4)B(X1, X3)g(ANX2, ANX)−B(Y,X4)B(X2, X3)g(ANX1, ANX), (30)

where X,Y,X1, X2, X3, X4 ∈ Γ(TM). Here, from the hypothesis and using (28),
(29) and C(X,Y )Z = C(X,Z)Y , we obtain

(R ·R)(X1, X2, X3, X4;X,Y ) = −2Q(g,R)(X1, X2, X3, X4;X,Y ).

Thus, the proof is complete.

Lemma 5. Let M be a null hypersurface of an indefinite Kenmotsu manifold M̄ .
For an orthonormal basis {z1, ..., zm−2, ..., z2m−4, ξ, E, φE, φN} of Γ(TM) such that
φzi = zm−2+i, φzm−2+i = −zi and φ = 0 for every i = 1, ...,m− 2 and j = 1, ..., n,

ANE =

2m−4∑
i=1

C(E, zi)

εi
zi + C(E, ξ)ξ + C(E,U)V (31)

where {εi} is the signature of the basis {zi} [23].

Here, we give sufficient conditions for a null hypersurface to be totally geodesic
in indefinite Kenmotsu space form:

Theorem 6. Let M̄(c) be an indefinite Kenmotsu space form and M be a pseu-
dosymmetric (LR = −1) null hypersurface of M̄(c) indefinite Kenmotsu space form
with ξ ∈ Γ(TM) such that B(X,V ) 6= 0, ∀X ∈ Γ(TM). Then either M is totally
geodesic or

g(g(A∗EX,V )ANY − g(A∗EY, V )ANX,ANE) = 0,
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where X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)), E ∈ Γ(Rad(TM)).

Proof. Suppose that M is a pseudosymmetric null hypersurface of an indefinite
Kenmotsu space form. Then, we have c = −1. So, for X1 ∈ Γ(Rad(TM)) and
X4 = V = −φ̄E, we have

(R ·R)(E,X2, X3,−φ̄E;X,Y ) = LRQ(g,R)(E,X2, X3,−φ̄E;X,Y ).

Thus, we get

−Q(g,R)(E,X2, X3,−φ̄E;X,Y )−B(X,X2)B(ANY,X3)g(ANE, φ̄E)

+B(Y,X2)B(ANX,X3)g(ANE, φ̄E)−B(X,X3)B(X2, ANY )g(ANE, φ̄E)

+B(Y,X3)B(X2, ANX)g(ANE, φ̄E)−B(X, φ̄E)B(X2, X3)g(ANE,ANY )

+B(Y, φ̄E)B(X2, X3)g(ANE,ANX)− LRQ(g,R)(E,X2, X3,−φ̄E;X,Y ) = 0.

Since (LR = −1) and by using (31) in the above equation, from the hypothesis, we
obtain

B(X2, X3)g(B(X,V )ANY −B(Y, V )ANX,ANE) = 0,

where X,Y,X1, X2, X3, X4 ∈ Γ(TM). This completes the proof.

For totally geodesic pseudosimetric null hypersurface, we can give the following
result:

Corollary 7. Let M̄(c) be an indefinite Kenmotsu space form and M be a pseu-
dosymmetric null hypersurface of M̄(c) indefinite Kenmotsu space form. If M is
totally geodesic, then M is semi-symmetric.

Proof. The proof is obvious from (30).

4. C-Bochner Pseudosymmetric Null Hypersurfaces in
Indefinite Kenmotsu Space Forms

In this section, we investigate C-Bochner pseudosymmetric null hypersurfaces in an
indefinite Kenmotsu space form.

Definition 2. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). We say that
M is a C-Bochner pseudosymmetric null hypersurface, if the tensors of R · B̃ and
Q(g, B̃) are linearly dependent at ∀p ∈M . This is equivalent to R · B̃ = LB̃Q(g, B̃)

on UB̃ = {p ∈M |Q(g, B̃) 6= 0}, where LB̃ is some function on UB̃.
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Now we give main result in the following:

Theorem 8. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). If M is
totally geodesic, then M is a C-Bochner pseudosymmetric null hypersurface such
that LB̃ = −1.

Proof. Using the curvature tensor of M , we get

(R(X,Y ) · B̃)(U, V,W )

= −B̃(R(X,Y )U, V )W − B̃(U,R(X,Y )V )W − B̃(U, V )R(X,Y )W

= −g(X,U)B̃(Y, V )W + g(Y,U)B̃(X,V )W +B(X,U)B̃(ANY, V )W −B(Y, U)B̃(ANX,V )W

− g(X,V )B̃(U, Y )W + g(Y, V )B̃(U,X)W +B(X,V )B̃(U,ANY )W −B(Y, V )B̃(U,ANX)W

− g(X,W )B̃(U, V )Y + g(Y,W )B̃(U, V )X +B(X,W )B̃(U, V )ANY −B(Y,W )B̃(U, V )ANX,

where B is the second fundamental form of null hypersurface M . Since M is totally
geodesic, then M is a Einstein null hypersurface of the Kenmotsu space form. Thus,
using (4), we obtain

(R(X,Y ) · B̃)(U, V,W ) = (1− τ − 4

2(n+ 2)
){g(X,U)g(V,W )Y − g(Y,U)g(V,W )X

− g(X,V )g(U,W )Y + g(Y, V )g(U,W )X}

+
1

2(n+ 2)
{αg(X,U)g(V,W )Y + g(X,U)g(V,W )QY

− αg(X,U)g(φY,W )φV + αg(X,U)g(φV,W )φY − g(X,U)g(φY,W )QφV

+ g(X,U)g(φV,W )QφY − 2αg(X,U)g(φY, V )φW − 2g(X,U)g(φY, V )QφW

− αg(X,U)g(V,W )η(Y )ξ + g(X,U)η(Y )η(W )QV − g(X,U)η(V )η(W )QY

− αg(Y,U)g(V,W )X − g(Y, U)g(V,W )QX + αg(Y,U)g(φX,W )φV

− αg(Y,U)g(φV,W )φX + g(Y, U)g(φX,W )QφV − g(Y,U)g(φV,W )QφX

+ 2αg(Y, U)g(φX, V )φW + 2g(Y, U)g(φX, V )QφW + αg(Y,U)g(V,W )η(X)ξ

− g(Y,U)η(X)η(W )QV + g(Y, U)η(V )η(W )QX − αg(X,V )g(U,W )Y

− g(X,V )g(U,W )QY − αg(X,V )g(φU,W )φY + αg(X,V )g(φY,W )φU

− g(X,V )g(φU,W )QφY + g(X,V )g(φY,W )QφU − 2αg(X,V )g(φU, Y )φW

− 2g(X,V )g(φU, Y )QφW + αg(X,V )g(U,W )η(Y )ξ + g(X,V )η(U)η(W )QY

− g(X,V )η(Y )η(W )QU + αg(Y, V )g(U,W )X + g(Y, V )g(U,W )QX

+ αg(Y, V )g(φU,W )φX − αg(Y, V )g(φX,W )φU + g(Y, V )g(φU,W )QφX
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− g(Y, V )g(φX,W )QφU + 2αg(Y, V )g(φU,X)φW + 2g(Y, V )g(φU,X)QφW

− αg(Y, V )g(U,W )η(X)ξ + αg(Y, V )g(X,W )η(U)ξ − g(Y, V )η(U)η(W )QX

+ g(Y, V )η(X)η(W )QU − αg(X,W )g(φU, Y )φV + αg(X,W )g(φV, Y )φU

− g(X,W )g(φU, Y )QφV + g(X,W )g(φV, Y )QφU − 2αg(X,W )g(φU, V )φY

− 2g(X,W )g(φU, V )QφY − αg(X,W )g(V, Y )η(U)ξ + g(X,W )η(U)η(Y )QV

− g(X,W )η(V )η(Y )QU + αg(Y,W )g(φU,X)φV − αg(Y,W )g(φV,X)φU

+ g(Y,W )g(φU,X)QφV − g(Y,W )g(φV,X)QφU + 2αg(Y,W )g(φU, V )φX

+ 2g(Y,W )g(φU, V )QφX − g(Y,W )η(U)η(X)QV + g(Y,W )η(V )η(X)QU}

− τ + 2n

2(n+ 2)
{−g(X,U)g(φY,W )φV + g(X,U)g(φV,W )φY

− 2g(X,U)g(φY, V )φW + g(Y,U)g(φX,W )φV − g(Y,U)g(φV,W )φX

+ 2g(Y,U)g(φX, V )φW − g(X,V )g(φU,W )φY + g(X,V )g(φY,W )φU

− 2g(X,V )g(φU, Y )φW + g(Y, V )g(φU,W )φX − g(Y, V )g(φX,W )φU

+ 2g(Y, V )g(φU,X)φW − g(X,W )g(φU, Y )φV + g(X,W )g(φV,W )φU

− 2g(X,W )g(φU, V )φY + g(Y,W )g(φU,X)φV − g(Y,W )g(φV,X)φU

+ 2g(Y,W )g(φU, V )φX}+
τ

2(n+ 2)
{g(X,U)g(V,W )η(Y )ξ

− g(X,U)η(Y )η(W )V + g(X,U)η(V )η(W )Y − g(Y,U)g(V,W )η(X)ξ

+ g(Y,U)η(X)η(W )V − g(Y,U)η(V )η(W )X − g(X,V )g(U,W )η(Y )ξ

− g(X,V )η(U)η(W )Y + g(X,V )η(Y )η(W )U + g(Y, V )g(U,W )η(X)ξ

+ g(Y, V )η(U)η(W )X − g(Y, V )η(X)η(W )U − g(X,W )η(U)η(Y )V

+ g(X,W )η(V )η(Y )U + g(Y,W )η(U)η(X)V − g(Y,W )η(V )η(X)U}
= −Q(g, B̃)(U, V,W ;X,Y ),

where any U, V,W,X, Y ∈ Γ(TM), α = −(2n− 1) and Q(g, B̃)(U, V,W ;X,Y ) 6= 0.
This completes proof.

Not that when the null hypersurface M is totally geodesic, by relation (25), M
is Einstein. This also occur when M is parallel or totally umbilical [16]

Now, we give an example:

Example 2. Let M be a null hypersurface of M̄7, of Example 1 (i.e. Example 1-3
of [15]) such that totally geodesic, by x5 =

√
2(x2 + x3), where (x1, ..., x7) is a local

coordinate system for M̄7. As explaned in Example 1, M is a null hypersurface of
M̄7 having a local quasi-orthogonal field of frames U1 = e1, U2 = e2−e3, U3 = E =

1√
2
(e2 + e3) − e5, U4 = e4, U5 = e6, U6 = ξ,N = 1

2{
1√
2
(U1 − U4) − U5} along M .
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The non-zero components of the curvature tensor are given by R(ei, ej)ei, ∀i, j, i 6= j,
R(ei, em)em = ei, ∀i,m = 5, 6, R(ei, el)el = −ei, ∀i 6= l, l = 1, 2, 3, 4, 7 and the Ricci
tensor are Ric(el, el) = −5, ∀l = 1, 2, 3, 4, 7, Ric(em, em) = 5, ∀m = 5, 6. Using
these relations, it is easy to see that M is Einstein with α = −5 [16]. Then, for
∀p = 1, 2, 3, 4 and ∀q = 5, 6, we obtain

(R · B̃)(ep, eq, ep; ep, eq) = −λep +Qep
2(n+ 2)

= −Q(g, B̃)(ep, eq, ep; ep, eq),

where λ = 2n+ 3− τ and τ = r+2n
2(n+2) . Also, for ∀p = 1, 2, 3, 4 and q = 7, we obtain

(R · B̃)(ep, eq, ep; ep, eq) = −µep −Qep
2(n+ 2)

= −Q(g, B̃)(ep, eq, ep; ep, eq),

where µ = 2n+ 5. Thus, for ∀p, q, we say that

(R · B̃)(ep, eq, ep; ep, eq) = −Q(g, B̃)(ep, eq, ep; ep, eq)

Therefore, we show that the null hypersurface M of M̄7 is a C-Bochner pseudosym-
metric null hypersurface.

As a result the following corollary:

Corollary 9. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). If the second
fundamental form h of M is parallel, then M is a C-Bochner pseudosymmetric null
hypersurface such that LB̃ = −1.

Proof. The proof is obvious from Theorem 2.

Theorem 10. Let M̄(c) be an indefinite Kenmotsu space form and M be a C-
Bochner pseudosymmetric (LB̃ = −1) null hypersurface of M̄(c) indefinite Ken-

motsu space form with ξ ∈ Γ(TM). Then eitherM is totally geodesic or B̃(ξ, ANE)V =
−B̃(ξ, V )ANE, where V ∈ Γ(TM), N ∈ Γ(tr(TM)).

Proof. Suppose that M is a C-Bochner pseudosymmetric null hypersurface of an
indefinite Kenmotsu space form. Then, for X ∈ (Rad(TM)) and U = ξ, we have

(R · B̃)(ξ, V,W ;E, Y ) = LB̃Q(g, B̃)(ξ, V,W ;E, Y ).
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Therefore, we get

(1 + LB̃)Q(g, B̃)(ξ, V,W ;E, Y )−B(E, ξ)B̃(ANY, V )W +B(Y, ξ)B̃(ANE, V )W

−B(E, V )B̃(ξ, ANY )W +B(Y, V )B̃(ξ, ANE)W −B(E,W )B̃(ξ, V )ANY

+B(Y,W )B̃(ξ, V )ANE = 0

and we obtain

(1 + LB̃)Q(g, B̃)(ξ, V,W ;E, Y ) +B(Y, V )B̃(ξ, ANE)W +B(Y,W )B̃(ξ, V )ANE = 0.

Thus, from the hypothesis, we get

B(Y, V )B̃(ξ, ANE)W +B(Y,W )B̃(ξ, V )ANE = 0. (32)

Here, if we get V = W , then (32) is equivalent to

B(Y, V )[B̃(ξ, ANE)V + B̃(ξ, V )ANE] = 0.

Thus, the proof is complete.

Corollary 11. Let M̄(c) be an indefinite Kenmotsu space form and M be a C-
Bochner pseudosymmetric null hypersurface of M̄(c) indefinite Kenmotsu space
form. If M is C-Bochner flat, then M is C-Bochner semi-symmetric.

Proof. The proof is obvious.

Theorem 12. Let M̄(c) be an indefinite Kenmotsu space form and M be a screen
integrable of C-Bochner pseudosymmetric null hypersurface of M̄(c) indefinite Ken-
motsu space form with ξ ∈ Γ(TM). If C = 0, thenM is C-Bochner semi-symmetric if
and only if the integral manifold of screen distribution is C-Bochner semi-symmetric,
where C is the second fundamental form of screen distribution of M .

Proof. For U, V,W,X, Y ∈ Γ(TM), we have

(R(X,Y ) · B̃)(U, V,W ) = −B̃(R(X,Y )U, V )W − B̃(U,R(X,Y )V )W − B̃(U, V )R(X,Y )W.

Here, using (27), we get

(R(X,Y ) · B̃)(U, V,W )

= −B̃(R∗(X,Y )U, V )W − C(X,U)B̃(A∗EY, V )W + C(Y,U)B̃(A∗EX,V )W

− {(∇XC)(Y, U)− (∇Y C)(X,U) + τ(Y )C(X,U)− τ(X)C(Y, U)}B̃(E, V )W

− B̃(U,R∗(X,Y )V )W − C(X,V )B̃(U,A∗EY )W + C(Y, V )B̃(U,A∗EX)W

− {(∇XC)(Y, V )− (∇Y C)(X,V ) + τ(Y )C(X,V )− τ(X)C(Y, V )}B̃(U,E)W
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− B̃(U, V )R∗(X,Y )W − C(X,W )B̃(U, V )A∗EY + C(Y,W )B̃(U, V )A∗EX

− {(∇XC)(Y,W )− (∇Y C)(X,W ) + τ(Y )C(X,W )− τ(X)C(Y,W )}B̃(U, V )E

= (R∗(X,Y ) · B̃)(U, V,W )− C(X,U)B̃(A∗EY, V )W + C(Y, U)B̃(A∗EX,V )W

− {(∇XC)(Y,U)− (∇Y C)(X,U) + τ(Y )C(X,U)− τ(X)C(Y,U)}B̃(E, V )W

− C(X,V )B̃(U,A∗EY )W + C(Y, V )B̃(U,A∗EX)W

− {(∇XC)(Y, V )− (∇Y C)(X,V ) + τ(Y )C(X,V )− τ(X)C(Y, V )}B̃(U,E)W

− C(X,W )B̃(U, V )A∗EY + C(Y,W )B̃(U, V )A∗EX

− {(∇XC)(Y,W )− (∇Y C)(X,W ) + τ(Y )C(X,W )− τ(X)C(Y,W )}B̃(U, V )E,

where (∇XC)(Y,U) = X(C(Y, U)) − C(∇∗XY, U) − C(Y,∇∗XU). Thus, from the
hypothesis, the proof is complete.

Theorem 13. Let M̄(c) be an indefinite Kenmotsu space form and M be a null
hypersurface of M̄(c) indefinite Kenmotsu space form with ξ ∈ Γ(TM). If M is
totally geodesic, then M is also Ricci-generalized C-Bochner pseudosymmetric null
hypersurface such that LB̃ = −α, where S is the Ricci tensor of M .

Proof. For U, V,W,X, Y ∈ Γ(TM), we obtain

Q(S, B̃)(U, V,W ;X,Y )

= −B̃((X ∧S Y )U, V )W − B̃(U, (X∧S)V )W − B̃(U, V )(X ∧S Y )W

= −B̃(S(Y,U)X − S(X,U)Y, V )W − B̃(U, S(Y, V )X − S(X,V )Y )W

− B̃(U, V )(S(Y,W )X − S(X,W )Y ).

Here, from the hypothesis, we have S(X,Y ) = αg(X,Y ). Then, from the equa-
tion in above, we have

Q(S, B̃)(U, V,W ;X,Y ) = −S(Y,U)B̃(X,V )W + S(X,U)B̃(Y, V )W − S(Y, V )B̃(U,X)W

+ S(X,V )B̃(U, Y )W − S(Y,W )B̃(U, V )X + S(X,W )B̃(U, V )Y.

Thus, if M is totally geodesic, we obtain

(R · B̃)(U, V,W ;X,Y ) = −αQ(S, B̃)(U, V,W ;X,Y ),

where α = −(2n− 1). Then, the proof is complete.

Example 3. Let M be a null hypersurface of M̄7, of Example 1 and Example 3 such
that totally geodesic, by x5 =

√
2(x2+x3), where (x1, ..., x7) is a local coordinate sys-

tem for M̄7. Then we obtain (R(ep, eq) · B̃)(ep, eq, ep) = −5Q(S, B̃)(ep, eq, ep; ep, eq),
∀p, q. Hence, we show that the null hypersurface M of M̄7 is also a Ricci-generalized
C-Bochner pseudosymmetric null hypersurface.
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Turkey, 2001 (in Turkish).
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