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CONTRACTIVITY-PRESERVING, 4-STEP EXPLICIT,
HERMITE–OBRECHKOFF SERIES ODE SOLVERS OF ORDER 3

TO 20

T. Nguyen-Ba, T. Giordanom, R. Vaillancourt

Abstract. New optimal, contractivity-preserving (CP), 4-step, explicit, d-
derivative Hermite–Obrechkoff series methods up to order p = 20, denoted by
HO(d, p), with nonnegative coefficients are constructed for solving nonstiff first-
order initial value problems y′ = f(t, y), y(t0) = y0. The upper bound pu of order p
of HO(d, p) is approximately 1.8 times the number of derivatives d. It can be shown
that HO(d, p)) are absolutely stable for d = 1 to infinity. Their stability regions
have generally a good shape and grow with decreasing p− d. Two selected CP HO
methods: 6-derivative HO of order 13, denoted by HO(6,13), which has maximum
order 13 based on the CP conditions, and 7-derivative HO of order 14, denoted
by HO(7,14), compare well with Adams–Bashforth–Moulton in Predict-Evaluate-
Correct-Evaluate (PECE) mode, denoted by ABM(13), in solving several problems
often used to test higher-order ODE solvers on the basis of the maximum global
error as a function of the CPU time. These two selected CP HO methods also com-
pare favorably with Adams–Cowell of order 13 in PECE mode, denoted by AC(13),
in solving standard N-body problems over an interval of 1000 periods on the basis
of the relative error of energy as a function of the CPU time.
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1. Introduction

In this paper, only d = 2, 3, . . . , 10, Taylor coefficients, with d < p, are required by a
new contractivity-preserving (CP), explicit, d-derivative, 4-step Hermite–Obrechkoff
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method of order p up to 20, denoted by HO(d, p), for solving nonstiff ordinary
differential equations (ODEs),

y′ = f(t, y), y(t0) = y0, where ′ =
d

dt
and y ∈ Rn. (1)

HO(d, p) use y′, y′′,. . . y(d), as in Obrechkoff methods [23] and, when d = p, HO(d, p)
reduce to Taylor series method of order p (T(p)).

The Taylor series methods have been an excellent choice in astronomical cal-
culations [3], numerical integration of ordinary differential equations (ODEs) and
differential algebraic equations (DAEs) [1], sensitivity analysis of ODEs/DAEs [2],
in solving general problems [7] and validating solutions of ODEs by means of interval
analysis [21, 14].

More recently, the Taylor series and constant step Störmer’s methods have been
good choices in achieving Brouwers law [4, 11].

The main cost in solving ODEs by the Taylor method of order p (T(p)) lies in
the repeated evaluation of the p Taylor coefficients of the functions involved.

Following Steffensen and Rabe [26, 24], recursive computation of Taylor coeffi-
cients is used to compute sums, differences, products and powers of power series,
etc. (see [3, 20], and [12, pp. 46–49]).

Deprit and Zahar [8] showed that such recursive computation is very effective in
achieving high accuracy, even with little computing time and large step sizes.

In our construction of HO(d, p), we replace the forward Euler (FE) method,

yn+1 = yn + ∆tf(tn, yn), (2)

used by Gottlieb et al. and Huang [9, 15] in establishing strong stability preserv-
ing (SSP) Runge–Kutta (RK) methods as convex combinations of FE methods, by
rewriting HO(d, p) as a convex combination of the special d-derivative extension of
FE, which we denote by S(d):

yn+1 = yn + ∆tf(tn, yn) +
d∑

m=2

ηm(∆t)mf (m−1)(tn, yn), (3)

where the coefficients ηm satisfy the inequality ηm ≤ 1
m! . If equality holds, then S(d)

reduces to the Taylor method of order d, T(d). The error in S(d) is of order ` ≥ 2 if
there exists a smallest ` ∈ {2, 3, . . . , d} such that η` <

1
`! . If S(d) is contractive in a

given norm, then HO(d, p) will be contractive as a convex combination of S(d) with
modified step sizes.

The region of absolute stability of HO(d, p) is derived under the assumption that
two solutions, y and ỹ, to problem (1) are contractive:

‖y(t+ ∆t)− ỹ(t+ ∆t)‖ ≤ ‖y(t)− ỹ(t)‖, ∀∆t ≥ 0. (4)
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We assume that there exists a maximum stepsize ∆tS(d) such that f satisfies a
discrete analog of (4) when S(d) is employed with ∆t ≤ ∆tS(d):

‖yn+1 − ỹn+1‖ ≡
∥∥∥∥yn + ∆tf(tn, yn) +

d∑
m=2

ηm(∆t)mf (m−1)(tn, yn)

−
(
ỹn + ∆tf(tn, ỹn) +

d∑
m=2

ηm(∆t)mf (m−1)(tn, ỹn)

)∥∥∥∥ ≤ ‖yn − ỹn‖. (5)

Here yn and ỹn are two numerical solutions generated by S(d) with different neigh-
bouring starting values y0 = y(t0) and ỹ0 = ỹ(t0).

We are interested in a higher-order HO(d, p) that maintains the contractivity-
preserving property

‖yn+1 − ỹn+1‖ ≤ max
0≤`≤3

‖yn−` − ỹn−`‖, (6)

for 0 ≤ ∆t ≤ ∆tmax = c∆tS(d) whenever inequality (5) holds. Here c, called a
CP coefficient, depends only on the numerical integration method but not on f .
This definition of a CP coefficient of HO(d, p) follows closely the definition of a SSP
coefficient of RK (see [9]).

In [18], similar CP RK methods have been constructed and tested on DETEST
problems [17].

The aim of HO(d, p) is to maintain the CP property (6) while achieving higher-
order accuracy, perhaps with a modified time-step restriction, measured here with
a CP coefficient c(HO(d, p)):

∆t ≤ c(HO(d, p))∆tS(d). (7)

This coefficient describes the ratio of the maximal HO(d, p) time step to the time
step ∆tS(d), for which condition (5) holds.

The upper bound pu of order p of these methods is approximately 1.8 times the
number of derivatives d. It can be shown that HO(d, p)) are absolutely stable for
d = 1 to infinity. Their stability regions have generally a good shape and grow with
decreasing p−d. This result suggests that, for large d, HO(d, p) methods have order
p large enough to take into account many problems where a very high precision of
the solution is required, similar to Taylor methods.

The numerical performance of two selected CP HO methods: 6-derivative HO
of order 13, denoted by HO(6,13), which has maximum order 13 based on the CP
conditions, and 7-derivative HO of order 14, denoted by HO(7,14), and Adams–
Bashforth–Moulton in PECE mode, denoted by ABM(13), is compared on several
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problems frequently used to test higher-order ODE solvers. It is seen that, generally,
the two selected CP HO methods requires less CPU time than ABM(13).

Similar to Huang et al [16], we compare also the numerical performance of
HO(6,13), HO(7,14) and Adams–Cowell of order 13 in PECE mode, denoted by
AC(13), on Kepler orbit with eccentricity e = 0.3, e = 0.5 and e = 0.7 over an
interval of 1000 periods on the basis of log10 of the absolute value of relative error in
energy, denoted by log10(EE), as a function of CPU time. It is seen that HO(6,13)
and HO(7,14) win. These two HO methods also compare well with AC(13) in solv-
ing eccentric Kepler orbit with eccentricity e = 0.3, e = 0.5 and e = 0.7 over an
interval of 10000 periods on the basis of the growth of relative error of energy and
long intervals of integration.

Section 2 introduces d-derivative HO(d, p) series methods and lists the neces-
sary order conditions. In Section 3, the existence, stability properties and the
principal error term of HO(d, p) methods are considered. Section 4 describes the
region of absolute stability and the principal error term of two selected HO meth-
ods: HO(6,13) and HO(7,14). In Section 5, numerical results are used to compare
HO(6,13), HO(7,14) with ABM(13) and AC(13). New selected HO(d, p) methods
are listed in Appendix A.

2. d-derivative HO(d, p) series methods

To construct HO(d, p), we use a Hermite interpolation polynomial as a 4-step inte-
gration formula with d derivatives of y to obtain yn+1 to order p,

yn+1 =
3∑

`=0

[
γ`,0 yn−` +

d∑
m=1

(∆t)mγ`,m y
(m)
n−`

]
, (8)

with step size ∆t and consistency condition:

3∑
`=0

γ`,0 = 1. (9)

We also have to satisfy the following order conditions,

j∑
m=0

3∑
`=0

γ`,m
(−`)j−m

(j −m)!
=

1

j!
, j = 1, 2, . . . , d, (10)

d∑
m=0

3∑
`=0

γ`,m
(−`)j−m

(j −m)!
=

1

j!
, j = d+ 1, d+ 2, . . . , p. (11)
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Upon factoring γ`,0 in (8), the difference yn+1 − ỹn+1 becomes

yn+1 − ỹn+1

=
3∑

`=0

γ`,0

[(
yn−` +

d∑
m=1

(∆t)m
γ`,m
γ`,0

y
(m)
n−`

)
−
(
ỹn−` +

d∑
m=1

(∆t)m
γ`,m
γ`,0

ỹ
(m)
n−`

)]
. (12)

Provided all the coefficients γ`,m are nonnegative, the following straightforward ex-
tension of a result presented in [10, 15] holds.

Theorem. If f satisfies condition (5) of the S(d) method, then the HO(d, p) method
(8) satisfies the CP property

‖yn+1 − ỹn+1‖ ≤ max
0≤`≤3

‖yn−` − ỹn−`‖

provided
∆t ≤ cfeasible ∆tS(d),

where the feasible CP coefficient, r = cfeasible, satisfies the following conditions,

r ≤ r` =
γ`,0
γ`,1

, for ` = 0, 1, 2, 3. (13)

Here r` satisfy the conditions:

γ`,m
γ`,0

≤
[

1

r`

]m 1

m!
, for ` = 0, 1, 2, 3, m = 2, 3, . . . , d, (14)

with the convention that a/0 = +∞, under the assumption that all coefficients of
(8) are nonnegative:

γ`,m ≥ 0, ` = 0, 1, 2, 3, m = 0, 1, . . . , d. (15)

Proof. Taking the norm of (12), by the convexity of the norm and conditions (13)
and (14), we obtain

‖yn+1 − ỹn+1‖

≤
3∑

`=0

γ`,0

∥∥∥∥(yn−` +
d∑

m=1

(∆t)m
γ`,m
γ`,0

y
(m)
n−`

)
−
(
ỹn−` +

d∑
m=1

(∆t)m
γ`,m
γ`,0

ỹ
(m)
n−`

)∥∥∥∥
≤
[ 3∑
`=0

γ`,0

]
max

0≤`≤3
‖yn−` − ỹn−`‖, by (5),

≤ max
0≤`≤3

‖yn−` − ỹn−`‖, by consistency condition (9),
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since, for ` = 0, 1, 2, 3,
1

r`
∆t ≤ 1

r
∆t =

∆t

cfeasible
≤ ∆tS(d).

It is to be noted that each representation γ`,m, for ` = 0, 1, 2, 3 and m =
0, 1, . . . , d, of HO(d, p), given in (8), which satisfy (14), (15) and order conditions
(9), (10), (11), will produce a feasible CP coefficient, cfeasible, defined in the Theorem
and a feasible HO(d, p).

What we really want is not merely a feasible HO(d, p) but the HO(d, p) with the
largest cfeasible. This question will be considered in Subsection 2.1.

2.1. Obtaining c(HO(d, p))

To obtain c(HO(d, p)), we maximize r,

maximize r, (16)

subject to the inequalities (13)–(15) of the Theorem together with the order condi-
tions (9)–(11). Let

c(HO(d, p)) = (maximized) r. (17)

It is to be noted that, using the above formulation of the optimization problem,
when d = p, c(HO(d, p)) is equal to 1 and HO(d, p) is the Taylor series method of
order p, T(p), and that a linear least square fit of c(T(p)) as a function of d will give
a slope equal to 0.

Definition. A effective CP coefficient of a CP method, M , is denoted by

ceff(M) =
c(M)

l
, (18)

where l is the number of function evaluations of M per time step and c(M) is a CP
coefficient of M obtained in (17).

The effective coefficients ceff provide a fair comparison between methods of the
same order. Since HO(d, p) contains many free parameters, the MATLAB Optimiza-
tion Toolbox was used to search for the method with largest r under the tolerance
10−12 on the objective function r, provided all the constraints were satisfied to tol-
erance 8× 10−14.

The formulae of selected HO(d, p) considered in this paper are listed in Ap-
pendix A with their c(HO(d, p)) and lower bounds xmin of the unscaled intervals of
stability (xmin, 0).
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Table 1: Given d, each cell of the table contains (1) xmin(p`), (2) CP coefficient cp`
of HO(d, p`)) of order p`, (3) interval of order p, [p`, pu], of HO(d, p) which exist, (4)
xmin(pu), and (5) CP coefficient cpu of HO(d, pu)) of order pu.

The set of HO(d, p) which exist as a function of d
2 3 4 5 6

xmin(3) = −2.16 xmin(4) = −1.92 xmin(5) = −2.82 xmin(6) = −3.00 xmin(7) = −3.66
(c3 = 0.785) (c4 = 0.905) (c5 = 0.976) (c6 = 0.985) (c7 = 0.993)

3 ≤ p ≤ 5 4 ≤ p ≤ 7 5 ≤ p ≤ 10 6 ≤ p ≤ 11 7 ≤ p ≤ 13
xmin(5) = −1.11 xmin(7) = −1.06 xmin(10) = −0.92 xmin(11) = −1.78 xmin(13) = −0.85

(c5 = 0.425) (c7 = 0.485) (c10 = 0.423) (c11 = 0.533) (c13 = 0.330)

The set of HO(d, p) which exist as a function of d
7 8 9 10 11

xmin(8) = −3.84 xmin(9) = −4.26 xmin(10) = −4.56 xmin(11) = −5.10 xmin(12) = −5.46
(c8 = 0.997) (c9 = 0.998) (c10 = 0.999) (c11 = 0.999) (c12 = 0.999)
8 ≤ p ≤ 15 9 ≤ p ≤ 16 10 ≤ p ≤ 19 11 ≤ p ≤ 20 12 ≤ p

xmin(15) = −0.88 xmin(16) = −1.54 xmin(19) = −1.38 xmin(20) = −1.38
(c15 = 0.257) (c16 = 0.502) (c19 = 0.431) (c20 = 0.547)

3. Existence, stability properties and principal error term of
HO(d, p) series methods

3.1. Existence of HO(d, p) methods as a function of d derivatives

Given a number d of derivatives, each cell of Table 1 contains:

1. Lower bound xmin(p`) of the unscaled intervals of stability (xmin, 0) of HO(d, p`))
of order p` which is the lower bound of p,

2. CP coefficient cp` = c(HO(d, p`)),

3. Interval of order p, [p`, pu], of HO(d, p),

4. Lower bound xmin(pu) of the unscaled intervals of stability (xmin, 0) of HO(d, pu))
of order pu which is the upper bound of p (if HO(d, pu) exists),

5. CP coefficient cpu = c(HO(d, pu)) of order pu.

Each cell of Table 1 shows the set of HO(d, p) of order p, p` ≤ p ≤ pu, which exist
and associated xmin(p`), xmin(pu), CP coefficients cp` , cpu .

Table 1 lists the upper bounds pu of CP HO(d, p) methods as an increasing
function of d, number of derivatives and shows that the upper bound pu of order p
seems to be linear with the number of derivatives d and a linear least square fit is

pu = 1.8667d+ 1.6887, (19)
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where the slope η = 1.8667 is expected, since an increase of order p by one requires
one additional order condition while an increase of d by one yields 4 additional vari-
ables. Here, for any positive d, lower bounds xmin of the unscaled intervals of stability
(xmin, 0) of HO(d, pu)) satisfy generally the relation |xmin| ≥ 2× c(HO(d, pu)) from
condition (7) and, hence, CP HO(d, p)) are absolutely stable for d = 1 to infin-
ity. This analysis suggests that, for large d, HO(d, p) methods have order p large
enough to take into account many problems which require a very high precision of
the solution, similar to Taylor methods which have the slope η = 1.

Since pu follows the equation (19), when we slow down the growth of order p as
d increases as follows: p being the integer part of η d, denoted by p = bη dc where

1 ≤ η ≤ ηmax, (20)

HO(d, p) method has desirable stability properties considered in Subsection 3.2.
Here, ηmax > 1 should not be much larger than 1. From Table 3, ηmax seems to be
about 1.4 or less.

The existence of CP HO(d, p) would suggest the existence of series of contractivity-
preserving Hermite–Birkhoff-Obrechkoff methods, HBORK2(p+ 1), HBORK3(p+ 2),
HBORK4(p + 3), etc., based on combining HO(d, p) with RK2, RK3, RK4, etc.,
respectively.

3.2. Stability properties and principal error term of HO(d, p) meth-
ods with p = bη dc

In this section, we analyze some stability properties and list the principal error term
of CP HO(d, p) methods with p = bη dc and η satisfying (20). Similar to the case
of Taylor series methods, the use of high number d gives HO series methods of high
order.

We are now interested in the size of the stability regions of CP HO(d, p) methods.
As an example, Table 2 lists bounds |xmin| of unscaled intervals of stability

(xmin, 0) of CP HO(d, p) method with p = b1.3 dc, d = 4, 5, . . . , 13 as a generally
increasing function of d and c(HO(d, p = b1.3 dc)) as an almost constant function of
d.

Similar to Barrio et al. [3], we use a linear least square fit of |xmin| as a function
of d, the number of derivatives of the method. We also use a linear least square fit
of c(HO(d, p)) as a function of d. These linear least square fits give different positive
slopes ρ and σ of |xmin| = ρ d + σ and slopes µ and ν of c(HO(d, p)) = µd + ν
depending on the values of η. The values of ρ, σ, µ and ν are presented in Table 3.
It is seen that HO(d, p = bη dc) series methods have slopes ρ positive and non
negligible up to η = 1.4 and slopes µ near 0 and positive similar to Taylor series
methods.
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Table 2: Unscaled |xmin| and c(HO(d, p = b1.3 dc)) of HO(d, p = b1.3 dc) series
method as a function of p.

p d |xmin| c(HO(d, b1.3 dc))
5 4 2.82 0.9759
6 5 3.00 0.9847
7 6 3.66 0.9928
9 7 3.72 0.9866
10 8 4.80 0.9901
11 9 4.08 0.9951
13 10 4.20 0.9908
14 11 3.50 0.9876
15 12 5.80 0.9932
16 13 6.30 0.9981

Table 3: Slope ρ and σ of a linear least square fit of |xmin| = ρ d + σ and slope µ
and ν of a linear least square fit of c(HO(d, p)) = µd+ ν for the listed methods.

Order p as a function of d
method p = bη dc ρ σ µ ν

HO(d, pu) 0.0392 0.9741
HO(d, p) p = b1.6 dc 0.0352 2.4432 0.005298 0.8702

” p = b1.5 dc 0.0990 2.2836 0.006602 0.8894
” p = b1.4 dc 0.1575 2.2366 0.003544 0.9462
” p = b1.3 dc 0.2476 1.9720 0.001382 0.9775

T(p) p = d 0.3725 1.3614 0 1
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Table 4: Ordered pair (scaled bound x̂min(·), scaled norm SPLTC(·)) of HO(d, p)
series method and ABM(p) method as a function of p.

p HO(d, p = b1.3 dc) HO(d, p = b1.6 dc) HO(d, pu) ABM(p)
5 (0.70, 3.66e-02) (0.55, 1.75e-01) (0.70, 2.44e-01)
6 (0.60, 8.04e-03) (0.61, 2.28e-02) (0.52, 2.18e-01)
7 (0.61, 1.31e-03) (0.35, 1.36e-02) (0.39, 2.00e-01)
8 (0.40, 1.39e-03) (0.30, 1.86e-01)
9 (0.53, 1.18e-04) (0.36, 2.78e-04) (0.22, 1.75e-01)
10 (0.60, 1.39e-05) (0.23, 3.51e-04) (0.17, 1.65e-01)
11 (0.45, 1.53e-06) (0.59, 1.00e-05) (0.35, 5.64e-05) (0.13, 1.57e-01)
12 (0.39, 1.16e-06) (0.11, 1.51e-01)
13 (0.42, 5.65e-08) (0.14, 2.41e-06) (0.03, 1.45e-01)
14 (0.31, 5.80e-09) (0.32, 2.94e-08)
15 (0.48, 2.98e-10) (0.12, 7.40e-08)
16 (0.48, 3.94e-11) (0.22, 5.84e-10) (0.19, 4.03e-09)
17 (0.23, 5.69e-11)
18
19 (0.15, 1.50e-11)
20 (0.13, 8.34e-13)

The principal error term of HO(d, p) series methods is of the form

[δ {fp}]hp+1, (21)

where {fp} is an elementary differential defined in [6], [19] and [12] and δ is the
principal local truncation error coefficient (PLTC) of the principal error term.

The PLTC of ABM(p) are [βkCp∗, Cp+1] [19, p. 107].
The scaled bound x̂min(HO(d, p)) = |xmin/d|, scaled norm SPLTC(HO(d, p))

=d× ‖PLTC‖2 of HO(d, p) and the scaled bound x̂min(ABM(p)) = |xmin/2|, scaled
norm SPLTC(ABM(p)) = 2× ‖PLTC‖2 of ABM(p) for a given order p are listed in
Table 4. It is seen that, generally, x̂min(HO(d, p)) > x̂min(ABM(p)), SPLTC(HO(d, p))
< SPLTC(ABM(p)) for the same order p and SPLTC(HO(d, p)) decrease much more
rapidly than SPLTC(ABM(p)) with increasing p.
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4. Region of absolute stability and principal error term of two
selected methods: HO(6,13) and HO(7,14)

To obtain the region of absolute stability, R, of HO(d, p), we apply the integration
formula (8) with constant step h = ∆t to the linear test equation

y′ = λy, y0 = 1.

Thus, we obtain

yn+1 =
3∑

`=0

[
γ`,0yn−` +

d∑
m=1

(λh)mγ`,myn−`

]
. (22)

If we let ĥ = λh and replace yn+1, yn, yn−1, yn−2, yn−3 with yn+4, yn+3, yn+2,
yn+1, yn, respectively, then (22) can be written as a function of yn+4, yn+3, yn+2,
yn+1, yn only, then follow the following fourth-order difference equation and associ-
ated linear characteristic equation:

4∑
j=0

Cjyn+j = 0,
4∑

j=0

Cjr
j = 0. (23)

A complex number ĥ = λh is in R if the 4 roots of the characteristic equation
satisfy the root condition |rs| ≤ 1, s = 1, 2, 3, 4, provided the multiple roots satisfy
|rs| < 1. The scanning method used to find R is similar to the one used for Runge–
Kutta methods (see [19, pp. 70 and 204]).

The unscaled intervals of stability of HO(6,13) and HO(7,14) are (-0.85, 0) and
(-1.22, 0) respectively.

The principal error term of HO(6,13) and HO(7,14) is of the form [δ {fp}]hp+1

where {fp} is an elementary differential defined in [6], [19] and [12] and the princi-
pal local truncation error coefficients δ of HO(6,13) and HO(7,14) are respectively
1/2489338 and 1/29274190.

5. Numerical results

Since HO(d, p) is not a one-step method, we must provide not only an initial value,
i.e., y0 but also k − 1 additional starting value, i.e., y1, y2, . . . , yk−1. The starting
values for HO(d, p) are calculated by the one-step, 4-stage, Hermite–Birkhoff–Taylor
method of order d+ 3 using y′ to y(d) with appropriate small step sizes [22]. The d
derivatives, y′ to y(d), of the Taylor series are calculated at each integration step by
known recurrence formulae (see, for example, [12, pp. 46–49], [20]).
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The numerical performances of HO(6,13), HO(7,14), Adams–Bashforth–Moulton
in PECE mode, denoted by ABM(13) and Adams–Cowell of order 13 in PECE mode,
denoted by AC(13), were compared on the problems mentioned in Subsections 5.1,
5.2 and 5.3.

The maximum global error (MGE) is taken in the uniform norm,

MGE = max
n
{‖yn − zn‖∞} ,

where yn is the numerical value obtained by HO(d, p) and zn is the “exact solution”
obtained by DP(8,7)13M, with stringent tolerance 5 × 10−14. Computations were
performed in C++ on a PC with the following characteristics: Memory: 5.8 GB,
Processor 0,1,. . . ,7: Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz, Operating system:
Ubuntu Release 11.04, Kernel Linux 2.6.38-12-generic, GNOME 2.32.1.

5.1. CPU time of HO(6,13), HO(7,14) and ABM(13)

In Table 5, the performance of HO(6,13), HO(7,14) and ABM(13) is compared on
the seven problems on hand: the equatorial main problem in artificial satellite theory
[5, 3, 27], Hénon–Heiles’ problem [13], and the following nonstiff DETEST problems:
growth problem B1 of two conflicting populations, two-body problems D2, D3, D4
and Van der Pol’s equation E2 with ε = 1 [17], on the basis of Maximum Global
Errors (MGE) as a function of CPU time in seconds (CPU).

It is seen that HO(6,13) and HO(7,14) compare favorably with ABM(13) at
almost all tolerances.

The CPU percentage efficiency gain (CPU PEG) is defined by the formula (cf.
Sharp [25]),

(CPU PEG)i = 100

[∑
j CPU2,ij∑
j CPU1,ij

− 1

]
, (24)

where CPU1,ij and CPU2,ij are the estimates of CPU time of methods 1 and 2,
respectively, associated with problem i, and estimate of MGE = 10−j . To compute
CPU2,j and CPU1,j appearing in (24), we approximate the data
(log10 (MGE) , log10 (CPU)) in a least-squares sense by Matlab’s polyfit. Then,
for chosen integer values of the summation index j, we take− log10 (MGE estimate) =
j and obtain log10(CPU estimate) from the approximating curve, and finally the es-
timate of CPU time.

Table 6 lists the CPU PEG of HO(6,13) and HO(7,14) over ABM(13) for the
seven problems on hand. It is seen that HO(6,13) and HO(7,14) win.
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Table 5: Maximum Global Errors (MGE) as a function of CPU time in seconds of
HO(6,13), HO(7,14) and ABM(13) for the problems on hand.

Problem: equatorial main problem Problem: Hénon–Heiles’ problem
CPU in CPU in CPU in CPU in

MGE HO(6,13) HO(7,14) ABM(13) MGE HO(6,13) HO(7,14) ABM(13)
6.89e-02 1.13e-03 1.45e-03 3.52e-03 1.11e-07 2.67e-04 2.93e-04 8.20e-04
2.46e-04 1.40e-03 1.96e-03 3.98e-03 1.37e-08 3.00e-04 3.33e-04 8.24e-04
1.44e-05 1.65e-03 2.28e-03 4.23e-03 2.60e-09 3.33e-04 3.69e-04 8.28e-04
2.14e-06 1.97e-03 2.52e-03 4.41e-03 1.60e-10 4.00e-04 4.37e-04 8.33e-04
1.14e-07 2.43e-03 2.94e-03 4.70e-03 1.44e-11 4.67e-04 5.06e-04 8.38e-04
2.45e-08 2.68e-03 3.20e-03 4.86e-03 2.22e-12 5.50e-04 5.67e-04 8.42e-04
1.93e-09 3.25e-03 3.66e-03 5.13e-03
1.99e-10 3.72e-03 4.13e-03 5.39e-03

Problem: DETEST B1 Problem: DETEST D2
CPU in CPU in CPU in CPU in

MGE HO(6,13) HO(7,14) ABM(13) MGE HO(6,13) HO(7,14) ABM(13)
2.76e-04 1.08e-04 1.14e-04 1.82e-04 6.68e-04 3.33e-04 3.85e-04 1.04e-03
1.10e-05 1.25e-04 1.35e-04 2.02e-04 7.32e-06 4.00e-04 5.15e-04 1.16e-03
1.23e-06 1.33e-04 1.51e-04 2.17e-04 5.66e-07 5.50e-04 6.07e-04 1.24e-03
1.73e-07 1.50e-04 1.67e-04 2.32e-04 1.37e-08 6.50e-04 7.71e-04 1.35e-03
2.87e-08 1.67e-04 1.83e-04 2.46e-04 5.19e-10 7.00e-04 9.51e-04 1.46e-03
1.39e-09 2.00e-04 2.14e-04 2.71e-04 1.43e-10 9.50e-04 1.03e-03 1.51e-03
3.39e-10 2.25e-04 2.31e-04 2.84e-04 3.20e-11 1.08e-03 1.14e-03 1.56e-03
9.27e-11 2.42e-04 2.47e-04 2.97e-04
2.81e-11 2.58e-04 2.62e-04 3.08e-04

Problem: DETEST D3 Problem: DETEST D4
CPU in CPU in CPU in CPU in

MGE HO(6,13) HO(7,14) ABM(13) MGE HO(6,13) HO(7,14) ABM(13)
5.63e-04 6.00e-04 6.83e-04 1.06e-03 1.62e-02 1.23e-03 1.31e-03 1.54e-03
2.09e-05 7.17e-04 8.97e-04 1.33e-03 2.26e-04 1.58e-03 1.86e-03 2.22e-03
1.89e-06 9.17e-04 1.09e-03 1.57e-03 1.36e-05 1.95e-03 2.34e-03 2.82e-03
1.30e-07 1.13e-03 1.36e-03 1.90e-03 4.46e-06 2.28e-03 2.56e-03 3.10e-03
2.84e-08 1.23e-03 1.55e-03 2.12e-03 1.15e-07 3.00e-03 3.44e-03 4.24e-03
4.58e-09 1.57e-03 1.80e-03 2.41e-03 1.12e-08 3.33e-03 4.16e-03 5.18e-03
2.67e-10 1.62e-03 2.28e-03 2.94e-03 1.62e-09 3.72e-03 4.87e-03 6.11e-03

4.68e-10 4.77e-03 5.39e-03 6.80e-03

Problem: DETEST E2
CPU in CPU in

MGE HO(6,13) HO(7,14) ABM(13)
1.60e-03 9.17e-05 9.39e-05 1.80e-04
6.04e-05 1.08e-04 1.13e-04 1.98e-04
4.12e-06 1.25e-04 1.32e-04 2.14e-04
4.12e-07 1.42e-04 1.50e-04 2.29e-04
9.63e-09 1.75e-04 1.85e-04 2.55e-04
2.07e-09 1.92e-04 2.02e-04 2.66e-04
1.09e-10 2.25e-04 2.39e-04 2.90e-04
1.24e-11 2.50e-04 2.70e-04 3.09e-04
4.07e-12 2.67e-04 2.88e-04 3.19e-04

203



T. Nguyen-Ba, T. Giordanom, R. Vaillancourt – Contractivity-preserving . . .

Table 6: CPU PEG of HO(6,13) and HO(7,14) over ABM(13) for the listed problems.

CPU PEG of
Problem HO(6,13) over ABM(13) HO(7,14) over ABM(13)

Equat. main prob. 104 % 67 %
Hénon–Heiles 183 % 160 %
B1 46 % 37 %
D2 121 % 90 %
D3 67 % 40 %
D4 43 % 23 %
E2 49 % 41 %

5.2. CPU time of HO(6,13), HO(7,14) and AC(13) after a 1000
periods integration of Kepler’s two-body problem

The relative energy error (EE(t)) at time t is defined as

EE(t) =

∣∣∣∣E(t)− E(0)

E(0)

∣∣∣∣ ,
where E(t) is the energy at time t.

Our second result is a comparison of the relative energy error (EE(t)) as a func-
tion of CPU time of HO(6,13), HO(7,14) and AC(13) after a 1000 periods integration
of a Hamiltonian system as in [16]. For this comparison, we used Kepler’s two-body
problem with eccentricities of 0.3, 0.5 and 0.7 and an interval of integration of
[0, 2000π].

Table 7 lists the relative energy error (EE) as a function of CPU time in seconds
of HO(6,13), HO(7,14) and AC(13) after a 1000 periods integration of Kepler’s
two-body problem. It is seen, from Table 7, that HO(6,13) and HO(7,14) compare
favorably with AC(13) at stringent tolerances.

Table 8 lists the CPU PEGs of HO(6,13) and HO(7,14) over AC(13) after a 1000
periods integration of Kepler’s two-body problem with e = 0.3, e = 0.5 and e = 0.7
respectively. It is seen that HO(6,13) and HO(7,14) win on the basis of log10(EE)
as a function of CPU time.

5.3. Error growth of HO(6,13), HO(7,14) and AC(13) on a 10000
periods integration of Kepler’s two-body problem

In our last test, we compared the growth of relative energy error (EE(t)) on a 10000
periods integration of Kepler’s two-body problem for different eccentricities.
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Table 7: Relative energy error (EE) as a function of CPU time in seconds of
HO(6,13), HO(7,14) and AC(13) after a 1000 periods integration of Kepler’s two-
body problems.

Kepler’s two-body problem with e = 0.3 Kepler’s two-body problem with e = 0.5

CPU in CPU in CPU in CPU in
EE HO(6,13) HO(7,14) AC(13) EE HO(6,13) HO(7,14) AC(13)

1.29e-04 3.62e-02 3.76e-02 3.82e-02 8.55e-03 5.30e-02 4.27e-02 4.80e-02
2.96e-06 4.40e-02 4.84e-02 5.30e-02 3.58e-04 6.64e-02 5.55e-02 6.36e-02
1.39e-08 5.14e-02 6.91e-02 8.44e-02 2.38e-05 7.96e-02 6.94e-02 8.09e-02
1.46e-09 6.66e-02 8.03e-02 1.03e-01 9.23e-07 9.26e-02 9.07e-02 1.08e-01
1.35e-10 7.46e-02 9.41e-02 1.26e-01 1.27e-08 1.06e-01 1.29e-01 1.58e-01
1.82e-11 8.24e-02 1.07e-01 1.50e-01 4.22e-09 1.19e-01 1.41e-01 1.74e-01
5.79e-12 1.06e-01 1.16e-01 1.66e-01 4.72e-10 1.34e-01 1.69e-01 2.12e-01

6.65e-11 1.61e-01 1.99e-01 2.52e-01
2.05e-12 2.05e-01 2.65e-01 3.44e-01

Problem: Kepler’s two-body problem with e = 0.7

CPU in CPU in
EE HO(6,13) HO(7,14) AC(13)

2.97e-03 1.40e-01 1.20e-01 1.23e-01
1.60e-04 1.74e-01 1.49e-01 1.62e-01
1.28e-05 2.06e-01 1.80e-01 2.05e-01
4.03e-07 2.39e-01 2.32e-01 2.83e-01
4.87e-09 2.72e-01 3.23e-01 4.28e-01
1.09e-10 4.05e-01 3.85e-01 6.10e-01
2.78e-11 4.38e-01 4.74e-01 6.93e-01
1.89e-12 4.71e-01 5.79e-01 8.92e-01

Table 8: CPU PEG of HO(6,13) and HO(7,14) over AC(13) after a 1000 periods
integration of Kepler’s two-body problem with e = 0.3, e = 0.5 and e = 0.7 respec-
tively.

CPU PEG for
two-body problem with:

HO method e = 0.3 e = 0.5 e = 0.7

HO(6,13) 44 % 37 % 37 %
HO(7,14) 24 % 23 % 32 %
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Table 9: Values of C1 and C2 of power law C1t
C2 fitted to the graphs of log(EE(t))

as a function of log(t) for a 10000 periods integration of Kepler’s two-body problem
with e = 0.3, e = 0.5 and e = 0.7 respectively.

(C1, C2) of C1t
C2 for

two-body problem with:
Method e = 0.3 e = 0.5 e = 0.7

HO(6,13) (4.48e-15, 1.047) (3.48e-15, 1.043) (1.53e-14, 0.990)
HO(7,14) (1.25e-13, 0.926) (1.25e-13, 0.887) (4.89e-13, 0.862)
AC(13) (4.25e-13, 0.980) (2.81e-13, 0.982) (4.22e-13, 1.011)

We compute the smoothed graphs of EE(t) for e = 0.3, e = 0.5 and e = 0.7
over an interval of 10000 periods. The smoothing removed the small amplitude high
frequency oscillations in the original data and was done by using the MATLAB’s
filter command with the window size of 20. The initial stepsize was chosen so
that HO(6,13), HO(7,14) and AC(13) used the same CPU time.

For e = 0.3, e = 0.5 and e = 0.7, the relative energy errors of HO(6,13) and
HO(7,14) are less than the relative energy error of AC(13) across the interval of
integration. These results are consistent with the CPU PEGs listed in Table 8 for
two-body problem with e = 0.3, e = 0.5 and e = 0.7.

We use linear least-squares to fit the power law C1t
C2 to the graphs of log(EE(t))

as a function of log(t):

log(EE(t)) = log(C1) + C2 log(t), (25)

to obtain C1 and C2 shown in Table 9. It is seen, from Table 9, that HO(6,13)
and HO(7,14) compare favorably with AC(13) on the basis of the growth of relative
error of energy as a function of 10000 periods of integration. The values of C2 of
HO(7,14) and AC(13), listed in Table 9, are in good agreement with the expected
asymptotic value of one for non-symplectic methods.

6. Conclusion

A family of optimal, contractivity-preserving (CP), explicit, d-derivative, 4-step
Hermite–Obrechkoff series methods up to order p = 20, denoted by CP HO(d, p),
with nonnegative coefficients were constructed for solving nonstiff first-order initial
value problems y′ = f(t, y), y(t0) = y0. Given a number of derivatives d, HO(d, p)
of highest order p uses less than 56% of the number of Taylor coefficients of Taylor
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methods of the same order. This result suggests that, for large d, these methods
have order p large enough to take into account many problems where a very high
precision of the solution is required, similar to Taylor series methods. The stability
regions of HO(d, p) have generally a good shape and grow with decreasing p − d.
The scaled stability intervals are often larger than those of multistep methods of the
same order. Two selected CP HO methods: 6-derivative HO of order 13, denoted by
HO(6,13), and 7-derivative HO of order 14, denoted by HO(7,14), use less CPU time
than Adams–Bashforth–Moulton in PECE mode, denoted by ABM(13), in solving
several problems often used to test higher-order ODE solvers. These two selected
CP HO methods use less CPU time than Adams–Cowell of order 13 in PECE mode,
denoted by AC(13), in solving Kepler orbit over an interval of 1000 periods. They
also compare well with AC(13) in solving standard N-body problems over an inter-
val of 10000 periods on the basis of the growth of relative error of energy and long
intervals of integration.
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supplying the authors with his programs and sharing his experience.

A. Coefficients of two selected methods: HO(6,13) and HO(7,14)

Table 10 of the appendix lists the two selected CP HO(d, p) methods: HO(6,13)
and HO(7,14) with their c(HO(d, p)) and xmin (of the unscaled stability intervals
(xmin, 0)).
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Table 10: c(HO(d, p)), xmin and coefficients of the integration formulae of HO(6,13),
HO(7,14).

d 6 7

coeffs\p 13 14

c(HO(d, p)) 3.3025394065636432e-01 4.7268433700409124e-01

xmin -0.855 -1.22

γ00 1.6052468542707576e-01 4.9432740404963976e-01

γ10 4.1759122711146152e-02 1.0527345602885479e-01

γ20 4.0693474508191280e-01 1.9089411194696357e-01

γ30 3.9078144677986532e-01 2.0950502797454187e-01

γ01 4.8606440579646210e-01 1.0457875697399324e+00

γ11 1.2644549411931874e-01 2.2271407742445171e-01

γ21 1.2321874018312966e+00 4.0385114759009105e-01

γ31 1.1832756514674903e+00 4.4322396909193235e-01

γ02 4.1638457012384050e-01 5.7741196630557468e-01

γ12 5.4986045182230367e-02 2.3558436359032986e-01

γ22 1.7845477404290651e+00 4.2718905194715134e-01

γ32 1.7914633344204538e+00 2.4270532024358202e-01

γ03 3.7865294247369558e-01 1.2139104439649467e-02

γ13 1.9322178537733983e-01 0.0

γ23 1.2408140024282908e+00 0.0

γ33 1.8081675077669057e+00 2.7388248012249139e-01

γ04 0.0 1.0827718623571250e-01

γ14 0.0 8.7866391747489392e-02

γ24 1.4253499250222528e+00 1.5932959223855614e-01

γ34 4.5430958685346723e-01 1.7486317591809836e-01

γ05 0.0 0.0

γ15 0.0 3.4868906851863285e-03

γ25 0.0 6.7414796626602450e-02

γ35 3.7029795031462455e-02 3.8734303403132678e-02

γ06 4.8539162580120768e-03 0.0

γ16 0.0 0.0

γ26 9.1603142928411638e-02 0.0

γ36 0.0 3.0033072855333107e-03

γ07 6.7870368979688195e-04

γ17 0.0

γ27 5.4332960764999893e-03

γ37 0.0
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