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A CHARACTERIZATION OF CONSTANT RATIO CURVES IN
EUCLIDEAN 3-SPACE E3
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Abstract. A twisted curve in Euclidean 3-space E3 can be considered as a curve
whose position vector can be written as linear combination of its Frenet vectors. In
the present study we study the twisted curves of constant ratio in E3 and characterize
such curves in terms of their curvature functions. Further, we obtain some results
of T -constant and N -constant type twisted curves in E3. Finally, we give some
examples of equiangular spirals which are constant ratio curves.
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1. Introduction

A curve x : I ⊂ R→ E3 in Euclidean 3-space is called a twisted curve if it has nonzero
Frenet curvatures κ1(s) and κ2(s). From the elementary differential geometry it is
well known that a curve x(s) in E3 lies on a sphere if its position vector (denoted
also by x) lies on its normal plane at each point. If the position vector x lies
on its rectifying plane then x(s) is called rectifying curve [3]. Rectifying curves
characterized by the simple equation

x(s) = λ(s)T (s) + µ(s)N2(s), (1)

where λ(s) and µ(s) are smooth functions and T (s) and N2(s) are tangent and
binormal vector fields of x respectively [3]. In the same paper B. Y. Chen gave
a simple characterization of rectifying curves. In particular it is shown in [6] that
there exists a simple relation between rectifying curves and centrodes, which play an
important roles in mechanics kinematics as well as in differential geometry in defining
the curves of constant procession. It is also provide that a twisted curve is congruent
to a non constant linear function of s [4]. Further, in the Minkowski 3-space E3

1, the
rectifying curves are investigated in ([7, 12, 13, 14]). In [14] a characterization of
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the spacelike, the timelike and the null rectifying curves in the Minkowski 3-space
in terms of centrodes is given. For the characterization of rectifying curves in three
dimensional compact Lie groups or in dual spaces see [19] or [1] respectively.

For a regular curve x(s), the position vector x can be decompose into its tan-
gential and normal components at each point:

x = xT + xN . (2)

A curve x(s) with κ1(s) > 0 is said to be of constant ratio if the ratio
∥∥xT∥∥ :∥∥xN∥∥ is constant on x(I) where

∥∥xT∥∥ and
∥∥xN∥∥ denote the length of xT and xN ,

respectively [2]. Clearly a curve x in E3 is of constant ratio if and only if xT = 0 or∥∥xT∥∥ : ‖x‖ is constant [3]. The distance function ρ = ‖x‖ satisfies ‖gradρ‖ = c for
some constant c if and only if we have

∥∥xT∥∥ = c ‖x‖. In particular, if ‖gradρ‖ = c
then c ∈ [0, 1].

A curve in En is called T -constant (resp. N -constant) if the tangential compo-
nent xT (resp. the normal component xN ) of its position vector x is of constant
length [2]. It is known that a twisted curve in E3 is congruent to a N -constant curve
if and only if the ratio κ2

κ1
is a non-constant linear function of an arc-length function

s, i.e., κ2
κ1

(s) = c1s+ c2 for some constants c1 and c2 with c1 6= 0 [2].
In the present study, we give a generalization of the rectifying curves in Euclidean

3-space E3. We consider a twisted curve in Euclidean 3-space E3 whose position
vector satisfies the parametric equation

x(s) = m0(s)T (s) +m1(s)N1(s) +m2(s)N2(s), (3)

for some differentiable functions, mi(s), 0 ≤ i ≤ 2. If m1(s) = 0 then x(s) becomes
a rectifying curve. We characterize the twisted curves in terms of their curvature
functionsmi(s) and give the necessary and sufficient conditions for the twisted curves
to become T -constant or N -constant. We give necessary and sufficient conditions
for twisted curves in E3 to become W -curves. We also show that every N -constant
twisted curve with nonzero constant

∥∥xN∥∥ is a rectifying curve of E3. Finally, we
give some examples of equiangular spirals which are constant ratio curves. We give
a characterization of a T-constant curve of second kind in E3 to become a concho-
spiral.

2. Basic Notations

Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. Let us denote
T (s) = x′(s) and call T (s) as a unit tangent vector of x at s. We denote the
curvature of x by κ1(s) = ‖x′′(s)‖. If κ1(s) 6= 0, then the unit principal normal
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vector N1(s) of the curve x at s is given by x
′′
(s) = κ1(s)N1(s). The unit vector

N2(s) = T (s)×N1(s) is called the unit binormal vector of x at s. Then we have the
Serret-Frenet formulae:

T ′(s) = κ1(s)N1(s),

N ′1(s) = −κ1(s)T (s) + κ2(s)N2(s), (4)

N ′2(s) = −κ2(s)N1(s),

where κ2(s) is the torsion of the curve x at s (see, [9] and [17]).
If the Frenet curvature κ1(s) and torsion κ2(s) of x are constant functions then

x is called a screw line or a helix [8]. Since these curves are the traces of 1-parameter
family of the groups of Euclidean transformations then F. Klein and S. Lie called
them W-curves [15]. It is known that a twisted curve x in E3 is called a general helix
if the ratio κ2(s)/κ1(s) is a nonzero constant on the given curve [16].

For a space curve x : I ⊂ R→ E3, the planes at each point of x(s) the spanned
by {T,N1} , {T,N2} and {N1, N2} are known as the osculating plane, the rectifying
plane and normal plane respectively. If the position vector x lies on its rectifying
plane then x(s) is called rectifying curve. Similarly, the curve for which the position
vector x always lies in its osculating plane is called osculating curve. Finally, x is
called normal curve if its position vector x lies in its normal plane.

From elementary differential geometry it is well known that a curve in E3 lies
in a plane if its position vector lies in its osculating plane at each point, and lies on
a sphere if its position vector lies in its normal plane at each point [3].

3. Constant Ratio Curves in E3

In the present section we characterize the twisted curves in E3 in terms of their
curvatures. Let x : I ⊂ R → E3 be a unit speed twisted curve with curvatures
κ1(s) > 0 and κ2(s). By definition of the position vector of the curve (also defined by
x) satisfies the vectorial equation (3), for some differential functions mi(s), 0 ≤ i ≤ 2.
By taking the derivative of (3) with respect to arclength parameter s and using the
Serret-Frenet equations (4), we obtain

x′(s) = (m′0(s)− κ1(s)m1(s))T (s)

+(m′1(s) + κ1(s)m0(s)− κ2(s)m2(s))N1(s) (5)

+(m′2(s) + κ2(s)m1(s))N2(s).
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It follows that

m′0 − κ1m1 = 1,

m′1 + κ1m0 − κ2m2 = 0, (6)

m′2 + κ2m1 = 0.

The following result explicitly determines all twisted W -curves in E3.

Proposition 1. Let x : I ⊂ R→ E3 be a twisted curve with κ1 > 0 and let s be its
arclength function. If x is a W -curve of E3 then the position vector x is given by
the curvature functions

m0(s) = −κ1
(
c3 sin as− c2 cos as

a
− bs

)
+ s+ c0,

m1(s) = c2 sin as+ c3 cos as− b, (7)

m2(s) = κ2

(
c3 sin as− c2 cos as

a
− bs

)
+ c1,

where ci, (0 ≤ i ≤ 3) are integral constants and a =
√
κ21 + κ22, b = κ1

a2
are real

constants.

Proof. Let x be a twisted W -curve in E3, then by the use of the equations (6) we
get

m′0 = κ1m1 + 1,

m′′1 = −(κ21 + κ22)m1 − κ1, (8)

m′2 = −κ2m1.

Further, one can show that the system of equations (8) has a non-trivial solution
(7). Thus, the proposition is proved.

Definition 1. Let x : I ⊂ R → En be a unit speed regular curve in En. Then the
position vector x can be decompose into its tangential and normal components at
each point:

x = xT + xN .

if the ratio
∥∥xT∥∥ :

∥∥xN∥∥ is constant on x(I) then x is said to be of constant-ratio,
or equivalently

∥∥xT∥∥ : ‖x‖ = c =constant [2].

For a unit speed regular curve x in En, the gradient of the distance function
ρ = ‖x(s)‖ is given by

gradρ =
dρ

ds
x′(s) =

< x(s), x′(s) >

‖x(s)‖
T (9)
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where T is the tangent vector field of x.
The following results characterize constant-ratio curves.

Theorem 1. [5] Let x : I ⊂ R→ En be a unit speed regular curve in En. Then x is
of constant-ratio with

∥∥xT∥∥ : ‖x‖ = c if and only if ‖gradρ‖ = c which is constant.
In particular, for a curve of constant-ratio we have ‖gradρ‖ = c ≤ 1.

Example 1. For any real numbers a,c with 0 ≤ a ≤ c < 1, the curve

x(s) =

(√
c2 − a2s sin

( √
1− c2√
c2 − a2

ln s

)
,
√
c2 − a2s cos

( √
1− c2√
c2 − a2

ln s

)
, as

)
in E3 is a unit speed curve satisfying ‖gradρ‖ = c (see, [5]).

Theorem 2. [5] Let x : I ⊂ R → En be a unit speed regular curve in En. Then
‖gradρ‖ = c holds for a constant c if and only if one of the following three cases
occurs:

(i) x(I) is contained in a hypersphere centered at the origin.
(ii) x(I) is an open portion of a line through the origin.
(iii) x(s) = csy(s), c ∈ (0, 1), where y = y(u) is a unit curve on the unit sphere

of En centered at the origin and u =
√
1−c2
c ln s.

As a consequence of Theorem 2, one can get the following result.

Corollary 3. [5] Let x : I ⊂ R→ En be a unit speed regular curve in En. Then up
to a translation of the arc length function s, we have

i) ‖gradρ‖ = 0 ⇐⇒ x(I) is contained in a hypersphere centered at the origin.
ii) ‖gradρ‖ = 1 ⇐⇒ x(I) is an open portion of a line through the origin.
iii) ‖gradρ‖ = c ⇐⇒ ρ = ‖x(s)‖ = cs, for c ∈ (0, 1).
iv) If n = 2 and ‖gradρ‖ = c for c ∈ (0, 1), then the curvature of x satisfies

κ2 =
1− c2

c2(s2 + b)
,

for some real constant b.

For twisted curves in E3 we obtain the following results.

Proposition 2. Let x : I ⊂ R → E3 be a unit speed twisted curve in E3. If x is of
constant-ratio then the position vector of the curve has the parametrization of the
form

x(s) =
(
c2s+ cb

)
T (s) +

(
c2 − 1

κ1

)
N1(s) +

(
κ1c

(
c2 + b

)
κ2

−
(
c2 − 1

)
κ′1

κ2κ21

)
N2(s),

for some differentiable functions, b ∈ R, c ∈ [0, 1).
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Proof. Let x be a regular curve of constant-ratio. Then, from the previous result
the distance function ρ of x satisfies the equality ρ = ‖x(s)‖ = cs + b for some
differentiable functions, b, c ∈ [0, 1). Further, using (9) we get

‖gradρ‖ =
< x(s), x′(s) >

‖x(s)‖
= c.

Since, x is a twisted curve of E3, then it satisfies the equality (3). So, we get
m0 = c2s+ cb. Hence, substituting this value into the equations in (6) one can get

m1(s) = c2−1
κ1

,

m2(s) =
κ1(c2s+cb)

κ2
− (c2−1)κ′1

κ2κ21
.

Substituting these values into (3), we obtain the desired result.

3.1. T-constant Twisted Curves in E3

Definition 2. Let x : I ⊂ R→ En be a unit speed curve in En. If
∥∥xT∥∥ is constant

then x is called a T -constant curve. For a T -constant curve x, either
∥∥xT∥∥ = 0 or∥∥xT∥∥ = λ for some non-zero smooth function λ [3]. Further, a T -constant curve x

is called first kind if
∥∥xT∥∥ = 0, otherwise second kind.

As a consequence of (6), we get the following result.

Theorem 4. Let x : I ⊂ R → E3 be a unit speed twisted curve in E3 with the
curvatures κ1 > 0 and κ2 6= 0.Then x is a T -constant curve of first kind, if and only
if

κ2
κ1
−
(

κ′1
κ21κ2

)′
= 0. (10)

Proof. Let x be a T -constant twisted curve of first kind. Then, from the first and

third equalities in (6) we get m2 =
m′

1
κ2

and m′2 + m1κ2 = 0. Further, substituting

the differentiation of the first equation and m1 = − 1
κ1

into the first equation we get
the result.

Remark 1. Any twisted curve satisfying the equality (10) is a spherical curve lying
on a sphere S2(r) of E3. So every T -constant twisted curves of first kind are spherical
(see, [18]).

By the use of (6) with (10) one can construct the following examples.
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Example 2. The twisted curve given with the parametrization

x(s) = − cos

(∫
κ2ds

)
N1(s) + sin

(∫
κ2ds

)
N2(s), (11)

is a T -constant twisted curve of first kind .

Example 3. The twisted curve given with the curvatures κ1 = s and κ2 = 1
(ln s+a)s2

is a T -constant twisted curve of first kind.

As a consequence of (6), we get the following result.

Theorem 5. Let x : I ⊂ R→ E3 be a twisted curve in E3. Then x is a T -constant
curve of second kind if and only if(

κ
′
1 +m0κ

3
1

κ21κ2

)′

− κ2
κ1

= 0, (12)

holds, for some constant function m0.

Proof. Suppose that x is a T -constant curve of second kind. Then, by the use of (6)
we get

0 = m′2 +m1κ2, m2 =
m′1 + κ1m0

κ2
. (13)

Further, substituting the differentiation of second equation and using m1 = − 1
κ1

with first equation, we get the result.

Corollary 6. Let x ∈ E3 be a twisted curve in E3. If x is a T -constant of second
kind with non-zero constant first curvature κ1 then

κ2(s) = ∓
√
a√

2s+ c1a
, (14)

holds, for some constant functions c1 and a = κ21m0.

Proof. Suppose, first curvature κ1 is a constant function then by the use of (12), we
get, (

1

κ2

)′

m0κ1 −
κ2
κ1

= 0,

which has a non-trivial solution (14).
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For T -constant curves of second kind we give the following results;

Theorem 7. Let x ∈ E3 be a T -constant twisted curve of second kind. Then the
distance function ρ = ‖x‖ satisfies

ρ = ±
√
c1s+ c2. (15)

for some constants c1 = m0 and c2.

Proof. Let x ∈ E3 be a T -constant twisted curve of second kind then by definition
the curvature function m0(s) of x is constant. So differentiating the squared distance
function ρ2 = 〈x(s), x(s)〉 and using (12) we get ρρ′ = m0. It is an easy calculation
to show that, this differential equation has a nontrivial solution (15).

Theorem 8. Let x ∈ E3 be a T -constant twisted curve of second kind. Then x is a
general helix of E3 if and only if

κ1(s) = ∓ 1√
λs2 + 2c2s+ c1

, (16)

holds, where λ = κ2
κ1

is a non-zero constant and c2 = m0 − λc1, c1 ∈ R.

Proof. Assume that x is a T -constant twisted curve of second kind. Then by the
use of (12), we obtain

κ′1 + κ31
(
m0 − λ2s− λc1

)
= 0. (17)

Consequently, this differential equation has a non-trivial solution(16), where c1,
c2 = m0 − λc1 are integral constants and λ = κ2

κ1
a non-zero constant. This

completes proof of the corollary.

3.2. N-constant Twisted Curves in E3

Definition 3. Let x : I ⊂ R→ E3 be a unit speed curve in E3. If
∥∥xN∥∥ is constant

then x is called a N -constant curve.For a N -constant curve x, either
∥∥xN∥∥ = 0 or∥∥xN∥∥ = µ for some non-zero smooth function µ [3]. Further, a N -constant curve x

is called first kind if
∥∥xN∥∥ = 0, otherwise second kind.

So, for a N -constant twisted curve x∥∥xN (s)
∥∥2 = m2

1(s) +m2
2(s) (18)

becomes a constant function.
As a consequence of (3) and (6) with (18) we get the following result.
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Lemma 9. Let x : I ⊂ R→ E3 be a unit speed curve in E3. Then x is a N -constant
twisted curve if and only if

m′0 = 1 + κ1m1,

m′1 = κ2m2 − κ1m0, (19)

m′2 = −κ2m1,

0 = m1m
′
1 +m2m

′
2,

hold, where m0(s),m1(s) and m2(s) are differentiable functions.

For the N -constant twisted curves of first kind we give the following result.

Proposition 3. Let x : I ⊂ R → E3 be a unit speed curve in E3. Then x is a
N -constant twisted curve of first kind if and only if x(I) is an open portion of a
line through the origin.

Proof. Suppose that x is N -constant twisted curve of E3, then the equality (18)
holds. Further, if x is of first kind then from (18) m1 = m2 = 0 which implies that
κ1 = κ2 = 0. So x becomes a part of a straight line.

Definition 4. A space curve x : I ⊂ R→ E3 whose position vector always lies in its
rectifying plane is called a rectifying curve. So, for a rectifying curve x : I ⊂ R→ E3,
the position vector x(s) satisfies the simple equation

x(s) = λ(s)T (s) + µ(s)N2(s),

for some differentiable functions λ(s) and µ(s) [3].

The following result of B.Y. Chen provides some simple characterizations of
rectifying curves.

Theorem 10. [3] Let x : I ⊂ R → E3 be a rectifying curve in E3 with κ1 > 0 and
let s be its arclength function. Then:

i) The distance function ρ = ‖x‖ satisfies ρ2 = s2 + cls+ c2 for some constants
c1 and c2.

ii) The tangential component of the position vector of the curve is given by
〈x, T 〉 = s+ b for some constant b.

iii) The normal component xN of the position vector of the curve has constant
length and the distance function ρ is nonconstant.

iv) The torsion κ2 is nonzero, and the binormal component of the position vector
is constant, i.e., 〈x,N2〉 is constant.

Conversely, if x : I ⊂ R→ E3 is a curve with κ1 > 0 and if one of (i), (ii), (iii),
or (iv) holds, then x is a rectifying curve.
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The following result of B.Y. Chen provides some simple characterizations of
rectifying curves in terms of the ratio κ2

κ1
.

Theorem 11. [3] Let x∈ E3 be a curve in E3 with κ1 > 0. Then x is congruent to a
rectifying curve if and only if the ratio of the curvatures of the curve is a nonconstant
linear function in arclength functions, i.e., κ2

κ1
(s) = c1s + c2 for some constants c1

and c2, with c1 6= 0.

By the use of Lemma 9, we obtain the following result.

Theorem 12. Let x(s) ∈ E3 be a twisted curve in E3 with κ1 > 0 and s be its
arclength function. If x is a N -constant curve of second kind, then the position
vector x of the curve has the parametrization

x(s) = (s+ λ)T (s) + µN2(s), λ, µ ∈ R. (20)

Proof. Let x be a N -constant twisted curve of second kind then the equation (19)

holds. So we get m1

(
m

′
1 − κ2m2

)
= 0. Hence, there are two possible cases; m

′
1 −

κ2m2 = 0 or m1 = 0. For the first case one can get κ1 = 0, κ2 = 0 which implies
that x is N -constant curve of first kind. Hence, one can get m1 = 0 and m2 = 0,
which contradicts the fact that

∥∥xN (s)
∥∥ =

√
m2

1(s) +m2
2(s) is nonzero constant. So

this case does not occur. For the second case we get m0 = s+λ, m1 = 0 and m2 = µ
for some constant functions λ and µ. This completes the proof of the theorem.

Corollary 13. Let x ∈ E3 be a N -constant twisted curve of second kind in E3 with
κ1 > 0. Then the ratio of the curvatures of the curve is a nonconstant linear function
of arclength functions.

Proof. Let x be a N-constant twisted curve of then the equation m
′
1 − κ2m2 = 0

holds. So, substituting the values m0 = s+λ, m1 = 0 and m2 = µ into the previous
one, we get κ2

κ1
(s) = s+λ

µ for some real constants λ and µ.

4. The Equiangular Spirals

Definition 5. Let x : I ⊂ R → En be a regular curve in En. If the angle between
the position vector field and the tangent vector field of the curve x is constant (i.e.,
the angle between x and T is constant) then it is called equiangular ([11]).

The equiangular curves in En are characterized by the following result.

Proposition 4. Let x : I ⊂ R → En be an equiangular regular curve in En, given
with arclength parameter. Then x is of constant-angle curve in En.
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Proof. Let x(I) ⊂ En be an equiangular curve in En. Then, by definition

cosα =
< x(s), T (s) >

ρ
= ‖gradρ‖ ,

is a constant function. So, x becomes a constant-angle curve of En.

Remark 2. In the plane E2 the equiangular spirals have constant angle α ∈
[
0, π2

]
between x and T. It is a well-known result that the equiangular spirals of E2 are
characterized by the property that their radius of curvature R = 1/κ is a first degree
function of their arclength s : R = as+ b for some real constants a and b, (including
the straight lines and the circles as the particular cases of 0-spirals and (π/2)-spirals,
respectively) (see, [11]).

For the twisted equiangular spirals we get the following result.

Proposition 5. Let x : I ⊂ R → E2 be a unit speed curve in E2. If x is an
equiangular spiral then the position vector of x has the parametrization

m0(s) = c1 cosϕ(s) + c2 sinϕ(s) + a(as+b)
a2+1

,

m1(s) = c1 sinϕ(s)− c2 cosϕ(s) + as+b
a2+1

.
(21)

where ϕ(s) = 1
a ln

(
s+ b

a

)
is a differentiable function.

Proof. Let x : I ⊂ R→ E2 be a unit speed curve in E2. Then from (6), m′0−κm1 = 1
and m′1+κm0 = 0, hold. Further, assume that x is an equiangular spiral in E2. Then,
substituting κ = 1

as+b into the equations above we obtain a system of differential
equations which has a non-trivial solution (21).

Definition 6. A concho-spiral in E3 is characterized by the property that its first
and second radii of curvature, R1 = 1/κ1, R2 = 1/κ2 (i.e., the inverse of its first and
second Serret-Frenet curvatures κ1 and κ2) are both first degree functions of their
arclenghts (see, [10]):

R1 = 1/κ1 = a1s+ b1,

R2 = 1/κ2 = a1s+ b1.
(22)

For the twisted equiangular spirals we get the following results.

Proposition 6. Let x : I ⊂ R → E3 be a unit speed T-constant curve of second
kind in E3. If x is a concho-spiral in E3, then the position vector (3) of x has the
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paramerization

m1(s) = −(as+ b),

m2(s) =
(
as+b ln(as+b)

c − ad ln(as+b)
c2

)
+ c1,

m0(s) = as+b
cs+d

{(
as+b ln(as+b)

c − ad ln(as+b)
c2

)
+ c1

}
+ a(as+ b),

(23)

where a, b, c and d are real constants.

Proof. Suppose that x is a concho-spiral in E3 given with the curvatures κ1 =

1
as+b , κ2 = 1

cs+d . If x is T -constant curve of second kind. Then, by the use of (6) we
get

m1(s) = −as+ b,

m2(s) =

∫ (
as+ b

cs+ d

)
ds,

m0(s) =
κ2m2 − a

κ1
.

Further, integrating the second equation and using the third one we get the result.
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[7] R. Ezentaş and S. Türkay, Helical versus of rectifying curves in Lorentzian
spaces, Dumlıpınar Univ. Fen Bilim. Esti Dergisi 6 (2004), 239-244.

[8] A. Gray, Modern differential geometry of curves and surface, CRS Press, Inc.,
1993.

50



S. Gürpınar, K. Arslan, G. Öztürk – A characterization of constant ratio . . .

[9] H. Gluck, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly
73 (1966), 699-704.

[10] G. Harary and A. Tal, The natural 3D spiral, Computer Graphics Forum (Pro-
ceedings of Eurographics) 30(2) (2011), 237-246.

[11] S. Hasesen, A. I. Nistor and L. Verstraelen, On growth and form and geometry
I, Kragujevac J. of Math. 36 (2012), 5-25.
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[19] A. Yücesan, N. Ayyıldız and A.C. Çöken, On rectifying dual space curves, Rev.
Math. Comp. 20 (2007), 497-506.

Selin Gürpınar, Kadri Arslan
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