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TECHNIQUE

C. Rotar

Abstract. In recent decades we have witnessed an infusion of calculating mod-
els based on models offered by nature, models with more or less fidelity to the original
that have led to the development of various problem-solving computational proce-
dures. Technological progress today allows the accelerated reproduction of natural
phenomena in the laboratory, which is why a new niche has arisen in the landscape
of nature-inspired methods. This niche is devoted to the emulation of artificial bio-
logical processes in computational problem-solving methods. This paper proposes a
novel approach, which is to develop computational methods in the field of Natural
Computing based on semi-natural processes. In the first step we explain Directed
Evolution, defined as the artificial reproduction of the process of evolution in the
laboratory in order to obtain performing biological entities. For the computer sci-
entist, this provides a strong source of inspiration in the search for efficient methods
of optimization. The computational model we propose here largely overlaps with
the Directed Evolution protocol, and the results obtained in the numerical experi-
ments confirm the viability of such techniques inspired by processes which are more
artificial than natural.
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1. Introduction

Natural Computing is a significant branch of artificial intelligence research, and
comprises a series of paradigms and computational techniques broadly inspired by
nature. A detailed account of the field is given in [17], where Natural Computation
is defined as the combination of three major research directions: computing inspired
by nature, simulation and emulation of nature in computers, and computing with
natural materials. Among these directions, computing inspired by nature seems to
be the most popular, presenting different computational methods which have been
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successfully applied in solving various problems. Generally, the computing approach
inspired by nature mimics observable phenomena in nature and borrows concepts
and terminology from disciplines cognate to biology. Thanks to technological ad-
vances, phenomena are now produced in the laboratory. All these may be seen as
powerful sources of inspiration in the development of computational techniques. We
refer here to Directed Evolution, defined as an artificial process by which the process
of evolution is recreated in the laboratory. Obviously, emulation of evolution, seen
from the biological perspective, in the paradigm of artificial evolution, needs to be
adjusted: the time required is reduced by speeding up the “evolution” process, and
the process itself is guided and strictly controlled in order to obtain what is desired.
Directed Evolution, viewed as a tool inspired by nature, seems to be a source wor-
thy of consideration in the design of evolutionary algorithms, since, unlike natural
evolution, it has the advantages of control and time.

The development of algorithms inspired by Directed Evolution would not fit any
of the categories covered by Natural Computation. The strict plan of organization
proposed in [17], which lists the three subfields of Natural Computing, would per-
haps require the addition of a new branch, which might involve the infusion of one
of the artificial technologies (synthetic biology) into the computational technique.
The richness of the process, and the similarity with the evolutionary metaphor, thus
led us to the idea of designing a computational model based on Directed Evolution.
The proposal to formulate a new computational paradigm that is inspired by the
artificial process of Directed Evolution represents an isolated and challenging enter-
prise in the landscape of bio-inspired techniques. Nevertheless, the richness of such a
source of inspiration is detected in [4], which suggests the use of Directed Evolution
techniques for solving the Hamiltonian Path problem. In [5], the Directed Evolution
expresses evolutionary strategies that are accompanied with ingenious mechanisms
for controlled mutation, and does not refer to the simulation of evolution in the
laboratory. However, it does prefigure the need for directing the evolution in terms
of obtaining better performances of the computational methods. The emergent na-
ture of Directed Evolution is anticipated in [6], but the strong divergence between
evolutionary computational tools and the research of molecular biologists is also
highlighted.

Analysing the two branches of the different fields Directed Evolution in biology
and evolutionary algorithms in computer science it may be noticed that the infusion
from biology toward computation is inferior to the influence flowing in the oppo-
site direction. Computational techniques represent more or less efficient methods
for sustaining or optimizing Directed Evolution processes [7]. Moreover, the evolu-
tionary computation techniques are applied for optimizing the process of Directed
Evolution or else they are exploited as helpful tools [8], [9].
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Figure 1: Synthetic description of the relations between paradigms

2. The Metaphor of Directed Evolution

The Directed Evolution [10] refers to a collection of procedures that are performed
in the laboratory and by which evolution is simulated, aiming to generate molecules
that cannot be found in nature. As a method, Directed Evolution involves several
rounds, comprising diversification, amplification and selection of a large library of
variants. Through these procedures, the beneficial mutations accumulate in the
genetic pool, and scientists can thereby guide the evolution of biological entities
towards the desired goal.

Directed Evolution mimics natural evolutionary process, but unlike it, it occurs
at the molecular level, and does not create new organisms but only accentuates or
produces new genetic traits. The process of Directed Evolution is possible due to
research that was initiated by the enunciation of the Central Dogma (Crick, 1951),
under which the transfer of biological information is mostly done in the following
direction: DNA can be copied to DNA (DNA replication), DNA information can be
copied into RNA (transcription), and proteins can be synthesized using the informa-
tion in RNA as a template (translation). In short, directed evolution at the protein
level can be defined as the evolving of proteins toward a user-defined goal, and it
is an iterative process that involves the generation of a set of biological entities of
interest (gene variants), and the screening/selection to identify those variants which
display better properties. The best mutants of each iteration will serve as templates
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Figure 2: Schematic overview of directed evolution cycle.

for subsequent iterations of diversification and selection. The process is repeated
until the desired improvement is achieved. This powerful engineering tool is an
iterative strategy which includes at each round three major steps: amplification,
diversification and selection [1], [2] [3].

Directed Evolution begins with a first phase whose outcome is a large library
of genes. Specific tools of the first stage are random mutagenesis and gene re-
combination. The most widely used method of random mutagenesis is error-prone
polymerase chain reaction (PCR) [11] which introduce mutations into the DNA
chain. Genetic recombination, considered as the sexual component of diversifica-
tion, involves the recombination of different genetic sequences in order to create new
structures. One of the most robust techniques developed in this direction is DNA
shuffling [12], which consists in the recombination of homologous genes. Directed
Evolution involves the coupling of the genetic information stored in DNA or RNA
with the functional information from proteins [15]. The proteins that are expressed
by the produced library of genes require linkage to the correspondent genetic code
[14], as long as the purpose of the screening or the selection process that takes place
at the level of phenotype (the expressed proteins pool) is to identify and isolate the
genetic signature (genotype) of those proteins with the desired features.

Subsequent to the diversification phase, the obtained molecules (proteins) are
made the subject of the selection/screening in order to isolate the improved enti-
ties. The major difference between the two mechanisms of selection and screening is
that selection is understood as a method of identifying the best variants by simul-
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Figure 3: Schematic overview of a computational directed evolution algorithm.

taneously analysing the entire library, while screening is understood as a method of
examination of each member of the library [2]. Next, the selected entities are subject
to the amplification process (e.g., PCR), the process by which multiple copies of a
gene or DNA sequence are created. During this process, the genetic information is
diversified by the rare introduction of errors, cross-overs, and reorganizations [13].
The entire procedure repeats until the goal is achieved for example, obtaining a
protein with specific functionality.

Next, a scheme of Directed Evolution for problem solving is described. The
system contains: structures of numerical information which codify the possible
solutions of the search space and by which the entities from biological model are
represented (DNA, Proteins) and computing procedures which describe the cor-
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responding processes from Directed Evolution (e.g. Diversification, Expression,
Screening/Selection). The main elements (structures and modules) of the model
described in Figure 3 are detailed next:

Modules:

• Diversification represents the process by which the gene library (analogous to
the population from the genetic algorithm paradigm) is created. The specific
procedures of diversification consist in the introduction of the genetic mutation
and in the shuffling of the genetic code.

• Expression represents the process through which the partial solutions that are
codified in genes are further evaluated conforming to the problems objectives.
The outcome of this procedure is the protein library, corresponding to the
objectives space.

• Screening/Selection mimics the corresponding screening and selection process
from the natural paradigm, aiming to identify those elements which respond
to the problems objectives by establishing correspondence between the genes
and the expressed proteins.

• Amplification is the process by which the results obtained by selection or
screening are amplified in order to obtain a new diverse library of genes. The
procedures involved in this stage are the cloning of the genes and diversifica-
tion. Amplification and Diversification are complementary and they are not
distinct modules in the general algorithm.

3. Directed Evolution Algorithm as Optimization Tool

Let us consider a general optimization problem with m objectives and n variables.
For the purpose of current research, we consider only optimization problems with-
out constraints. The following paragraphs describe the structures and procedures
involved in the Directed Evolution Algorithm.

3.1. Codification - structures

In a natural model, each gene is a sequence of nucleotides which form the DNA. In
an artificial model, a gene corresponds to the possible solution from the search space
and is represented by an n-dimensional vector of values from the specific alphabet:
(x1, x2, . . . , xn) (Figure 4).
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Figure 4: Gene structure Figure 5: Protein structure

The natural protein represents a chain of aminoacids. The corresponding ob-
jectives values computed on the basis of the genes codification form the protein
structures (f1, f2, . . . , fm) , which correspond to the m-dimensional vector as in Fig-
ure 5.

3.2. Libraries and Expressing

The algorithms work with two libraries: the first corresponds to the genes; the
second corresponds to the expressed proteins. Both libraries vary in size, Scurrent ∈
[Smin, Smax], during the directed evolution process.

The real proteins are generated through the process of gene expression in two
stages: transcription and translation. Natural transcription is the process by which
the genes are copied into the RNA from where, in the next phase, namely translation,
the proteins are created. For the purpose of our study we simplified the expressing
procedure, considering that the output of the transcription and translation is given
by the proteome (the entire set of expressed proteins [29]). For those optimization
problems that have constraints, the distinct phase of transcription would be suitable
as it would allow the generation of a subset of the proteome, corresponding to the
feasible solutions.

The procedure of Artificial Expressing represents the process by which the pro-
teins are generated, respectively, the objectives values are computed.

The fitness (the quality of the gene giving the functionality of a protein) of
a gene G ∈ DNA is given by the quality of the corresponding expressed protein
P = Translate(G):

Fitness(G) = Quality(P ) = Quality(Translaet(G))

where the function to evaluate the quality of the protein is designed according to
the specification of the problem.

185



C. Rotar – Directed evolution - a bio-inspired optimization technique

Figure 6: Gene expression. Protein synthesis. (For optimization problems without
constrains).

Figure 7: Gene expression. Protein synthesis. (For optimization problems involving
constrains).

3.3. Selection/Screening

Selection and screening of the qualified sequences is conducted in order to spread the
performant DNA variants. The decision by which the genetic sequences (obtained
either by shuffling or by mutagenesis) survive is made on the basis of the qualities of
the proteins, which are given by the values of the objectives codified in the proteins
structures. The selection mechanism will favour the best candidates from the genetic
library. The selection procedure collects the elite among the genetic pool according
to the objective values. The elite acts for the next round of variation, increasing
the chance of an overall improvement of the genetic library, and thus implicitly
of the expressed proteins. In respect to the ratio between the initial size and the
maximum size of the genetic library, we choose the same proportion of elite size from
the current library (e.g., 20%). Simply speaking, the selection procedure chooses the
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set of the best solutions from the current library representing the gene pool for a
next round of diversification.

3.4. Diversification: Mutagenesis and DNA Shuffling

Considering the genes’ library DNA = {G1, . . . , GScurrent} and∏
= {Protein1, . . . , P roteinScurrent} proteins library, the following procedures de-

scribes the major variation phases of the Directed Evolution Optimization Algo-
rithm, namely DNA Shuffling and Mutagenesis. Diversification of the genetic code
is made according to the DE protocol: mutagenesis and DNA Shuffling.

Figure 8: Mutagenesis. Mutated
DNA sequence may vary differently

Figure 9: Shuffling of homologous
genes

The frequency represents the average number of mutations per each gene and is
computed according to the following formula:

frequency = Smax/Scurrent

where Smax is the maximum size of the library and Scurrent represents the current
size of the library. This value measures to what extent each variant proliferates into
the genetic pool. The frequency is a constant value during the evolutionary process.
Each new variant is generated within the boundaries of the gene library, as in the
natural model where mutants are similar to the originals. Therefore, the range of
the search space updates accordingly to the current library. The selected genetic
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sequence is mutated by randomly replacing a value (nucleotide) with a new one that
is generated into the current range.

The DNA Shuffling algorithm to some extent mimics the genetic shuffling pro-
cedure in Directed Evolution. Mating is made on the basis of the similarities of
two genetic sequences. The similarity of two genes is computed through a distance
measure. In our experiments we used either the Euclidian distance when genes are
real values, or the Hamming distance when the binary alphabet is used. The ho-
mologous partner of one gene is the closest gene from the same library according
to the distance measure. Put simply, the genetic shuffling procedure blends two
homologous genes.

The general Directed Evolution Algorithm for Optimization is an iterative tech-
nique with the following modules: diversification (DNAShuffling,Mutagenesis),
Expression and Selection.

4. Results and discussion

In order to assess the performance of the DE algorithm, we investigated four pop-
ular test functions (see for detailed description [19]) which are scalable as regards
the number of variables. The algorithm runs 30 times and the Accuracy metric is
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computed. Accuracy measures the Euclidian distance between the best found so-
lution and the global optimum. The number of function evaluations (NFE) is also
recorded. We considered three test scenarios to observe the algorithms performance
when the library size, the number of cycles and the number of variables varies:

1. First scenario: the maximum library size varies as 50, 100, 150, 200, 250,
and 300 when the initial library size represents 20% of the maximum size. At
each run a number of 100 cycles are produced and the number of variables is
set to 30.

2. Second scenario: the cycles number varies as 50, 100, 200, 300, 400, 500.
The maximum size of the library is 50 (initial size is 20

3. Third scenario: The number of variables varies (5, 10, 15, 20, 25, 30) . The
maximum library size is 100 and 100 cycles are produced for each run.

As we expected, the accuracy of the solutions found by the DE algorithm becomes
better with increasing size of the library. Exept for the Griewank test function,
which is paricularly difficult as it is highly multimodal, for the other test functions
the performance of the algorithm increases as the library size becomes larger.
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For the second scenario, when the number of cycles/iterations increases, the
accuracy of the solutions improves accordingly. For a number of cycles greater than
100 the accuracy significantly decreases, which confirms the convergence of the DE
algorithm and its ability to deal with multimodality.

For the third test scenario, the dimension of the search space varies. Thus it is
hard to give conclusive assessment from the table above, as the average accuracy
of the solutions does not improve monotonically with the search spaces dimension,
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as is expected (higher dimension would correspond to larger error). Nevertheless,
for the 5-variables test scenario, Ackley test function, the DE algorithm converges
to the global minimum 19 times out of 30 runs. In this situation the mean of the
accuracy doesnt reflect the good performance of the algorithm, therefore, the modal
value (the most frequent data value) and the number of occurences of the modal
value are presented too.

When we affirm that the algorithm finds the global optimum we refer to the
situation where the accuracy of the final solution is computed as 0 as the variable
values are of an order of magnitude smaller than -10 and the cosinus function returns
1. For those cases where the global minimum value is obtained we have given in the
table the average order of magnitude for the variables values.

For 5 and 10 variables, Rastrigin test function, the DE algorithm finds the global
minimum for more than 70% of the runs. An intriguing situation occurs for 10
variables, where the success ratio (29/30) is higher than for the 5 variables (2530).
Also, as the local optima are less and more spaced apart for fewer variables, the
premature convergence is more probable, and that could be an explanation of the
situation previously described. The difference between the results for 5 and 10
variables cases also resides in the average number of cycles in which the global
optimum is attained. So, the average number of cycles in which the optimum is
attained is less than 40 cycles for 5 variables and less than 80 cycles for 10 variables.
As the table shows, the average accuracy in the same number of evaluations (NFE)
corresponding to 100 cycles and the better results obtained in 10 dimensions could
be explained by the fact that the slower convergence for higher dimensions offers to
the DE algorithm adequate time to overcome the local optima.

For a higher dimension of search space (e.g., 20 or 30 variables), the algorithm
cannot provide the same accuracy in 100 cycles as it can for fewer variables. There-
fore no occurrence of the global minimum value is recorded and in these situations
the mean accuracy is conclusive. Excluding those situations when the zero values for
the accuracy provoke a non-representative mean for the measurement of the central
tendency, and therefore the evaluation of the algorithms performance could be mis-
judged, generally the expected behaviour is verified: the algorithm provides better
results when the size of the search space is lesser.

The next experiments were conducted in order to compare the DE performance
with the Particle swarm optimization algorithm (PSO) [16]. As in our previous
experiments we chose the Rastrigin and Griewank test function, since DE provides
interesting results for these functions. For each test the dimension of the search
space varies as 5, 10, 20, and 30. PSO settings are 100 particles and 200 iterations,
inertia weight linearly decreases from 0.9 to 0.4, learning coefficients = 2.0. For the
space bounded by the range [min,max] the maximum velocity is 10% from max-min.
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DE runs in 100 cycles with a maximum library of 100 genes and the elite is given
by the best 20% from the current library. Each algorithm runs for 10 times and
the accuracy is recorded. Independent-samples t-tests were conducted to compare
PSO results and DE results There were significant differences in the accuracy metric
for PSO and DE, considering 99% confidence intervals. The results summarized in
Table 4 show that DE performs better for all the considered scenarios.

5. Conclusions

Among the many bio-inspired techniques which make up the fascinating landscape
of Natural Computation, it is hard to find or to frame new paradigms that do
not correspond closely to natural phenomena. Due to technological progress it is
now possible to simulate, control and accelerate several natural processes in the
laboratory. Among these semi-artificial protocols, we see Directed Evolution as a
serious area of inspiration for computational techniques, due to its inner mechanisms
and the structures it involves. The promise of developing a new branch in bio-
inspired computing is substantiated by the richness of the techniques that such
routines offer. Evolution and genetics represent the major sources of inspiration
both in molecular engineering through Directed Evolution and in computer science
through Evolutionary Algorithms. Comparing Directed Evolution and evolutionary
algorithms, we observed that in terms of two common desiderata speed and the
possibility of control the two instruments are similar. Our study emphasizes the
novelty of the evolutionary paradigm inspired by Directed Evolution.

The DE algorithm is developed on the basis of the semi-artificial process of
Directed Evolution of proteins. The strengths of the proposed technique are its
ability to handle various optimization problems and the avenues it opens up towards
a new research area. The proposed algorithm is not intended to compete with or
surpass the other well-known evolutionary algorithms for optimization. Yet, even
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so, the preliminary results show that the DE technique is able to offer results that
are at least as good as those given by a similar technique for the test problems
we considered. For single-objective optimization, we analyzed the behavior of the
DE algorithm for various test scenarios which involved different settings for library
size, the number of cycles, and the dimension of the search space. The results
suggest that the DE algorithm is consistent and viable as an optimization procedure.
Compared to a similar bio-inspired technique, DE performs better than PSO for the
test scenarios considered which involved popular test functions, each with a scalable
dimension of the search space.

We note two major directions for further research: analysis of the DE algorithm’s
behaviour for multi-objective optimization, and in approaching real world problems.
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