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ABSTRACT. In this paper we will prove, using Pescar’s criterion, the univalence
of an integral operator, considered for analitic functions in the open unit disk .
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1. INTRODUCTION AND PRELIMINARIES

Let the unit disk Y = {z € C | |z| < 1} and A the class of functions of the form
f(z) = z+Zanz" (1)
n=2

which are analytic in ¢ and satisfy the condition f(0) = f/(0) — 1 = 0.
We denote by S the subclass of A containing univalent and regular functions. In
1996, V. Pescar has proved univalent condition:

Theorem 1. [4] Let o € C with Rea > 0 and ¢ € C with |c| < 1. We consider also
a function f(z) of the form (1) which is analytic in U. If:

2c 200 Zf;{(Z)
1-— <1
e+ (1 - ) 22 <
for every z € U, then the function F,(z) defined by:
1

Fux) = [ a / 11 () dt )

0

1s univalent in U.

In [3] Ozaki and Nunokawa gave the following result:

135



D. Wainberg, M. Aldea, L. Cabulea — Some properties of an integral operator

Theorem 2. If f € A satisfyes the following inequality:

2f(2)
f2(z)

for every z € U, then f is univalent in U.

—1' <1, (3)

Also, an important result that we will use in our paper is General Schwarz
Lemma. We remind it here:

Lemma 3. [1] Let the regular function f in the disk Ur = {z € C | |z| < R}, with
|f(2)] < M, M fized. If f has in z =0 one zero with multiply > m, then

FE S mlel™ = €Un. )

It is obviously that for R = m = 1 the relation (4) becomes:

f(z)

z

<M, zel. (5)

The goal of our paper is to introduce an integral operator, to prove the univalence
for it and present some properties obtained from here.

2. MAIN RESULTS

Theorem 4. Let f; € A, i = 1,n, the functions that satisfy the inequality (3) a;,,c
be complex numbers with Rey > 0 and M;, N; € R, M; > 1.
1If:

i) 1fi(2)] < My, i =1,n;

i) ];ri/((zz)) <N, i=1,n;
n

@ii) |e| <1— g3 3 Jag| (2M; + N; + 1),
=1

then the function:

2=

o= (+ [ 1 () o

1s univalent in U.
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Proof. Let the function g¢,, regular in & and ¢,,(0) = g/,(0) — 1 = 0, defined as:

- / T ()

For this function we have:

and:
s = 53 (Germ) T 1 (i)
J#i
) ill(fi(z;f;(z))ai';ai e 1)
So we have: o) (1_zf{(z) zfé’(Z))
()~ filz)  flz) )
hence:
] < S (10 A2 o[£
< w1+ | FE - 22+ [

Because |f;(z)| < M; and using Schwarz Lemma, we obtain:

FG| < S (s 2f2(>) )
SSNE )

Applying inequality (3) and ii), we have:

2g, (%)

< o (2M; + N;+1).
o) | < 21l )

i=1
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From this relation, we obtain:

"
C‘Z|2’Y + (1 . |Z|)2’y Zgn(z)

Y95,(2)

1 n
< |c\+m21a,~y(2M,~+Ni+1).
i=1
So, because of iii), it results:
zg" (2
2 + (1 - |2 29n(2)

Y95,(2)

and according with Theorem 1, we obtain that the function G,, is in the class S.

<1

Corollary 5. Let f € A a function that satisfy the inequality (3) «,~y,c be complex
numbers with Rey > 0 and M, N e R* /M > 1.

If:
i) |f(z )l < M;
zz) fN

n
i) |e] < 1— ﬁ > (2M + N + 1), then the function:
i=1

1
z

0

18 univalent in U.

Proof. We consider n = 1 in Theorem 4.

Corollary 6. Let f; € A, i = 1,n, the functions that satisfy the inequality (3) v, v, ¢
be complex numbers with Rey > 0 and M;, N; € R, M; > 1.

If:
1) < M i =T
i1) J;(ZZ) N 1,n;

n
iii) ] <1 — |a‘ Z 2M; + N; + 1), then the function:

2=

Guz) = [ 0/ “Hilj <W>du

1s univalent in U.
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Proof. We consider a1 = as = ... = a, = « in Theorem 4.

Corollary 7. Let f; € A, i = 1,n, the functions that satisfy the inequality (3) a;,c
be complex numbers and M;, N; € R , M; > 1.

If:

i) fi(z)| < My, i =1,n;
ii) | 5 '
i) |c] <1 -3 oy (2M; + N; + 1),

=1
Gol2) = O/ﬁ (f(u)“f(u)>a du

3

then the function:

1s univalent in U.

Proof. In Theorem 4, we consider v = 1.
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