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Abstract. This distribution was proposed by Weibull,W. in 1930. Such a
distribution is a member of the family of extreme value distributions. The math-
ematical properties of this distribution have been studied in detail by Gupta and
Kundu in 2001 and by Gupta and Raqab in 2009. The aim of this paper is to
establish some probabilistic and informational properties for such a distribution.
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1. Introduction

Weibull distribution was originally proposed by Weibull (1939), a Swedish physicist,
and he used it to represent the distribution of the breaking strength of materials
[16]. This distribution is a member of the family of extreme value distributions
which are the limit distributions of the smallest or greatest value, respectively in a
sample with sample size n −→∞. The Weibull distributions includes the exponential
and the Rayleigh distribution as special cases. The usefulness and applications of
these distributions are seen in various areas including reliability, renewal theory and
branching processes. Also, in recent years the Weibull distribution becoming very
popular distribution widely used for analyzing lifetime data.

2. Some probabilistic properties of the Weibull distribution

Definition 2.1. ([3],[4]) A random variable X follows a two−parameter Weibull
distribution with the shape parameter α and scale parameter λ , respectively if
its probability density function, denoted by f(x;α, λ), is as follows :
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f(y;α, λ) =

{
αλ(λx)α−1e−(λx)α , α > 0, λ > 0, x > 0

0, x ≤ 0.
(2.1)

Remark 2.1. Using a change of variables as

t = (λx)α ⇒ λx = t
1
α =⇒ dx =

1

αλ
t

1−α
α dt and t ∈ (0,∞), (2.2)

we get that such a function satisfies the conditions
10 f(x;α, λ) > 0, α > 0, λ > 0, x > 0

20
∞∫
µ
f(x;α, λ)dx = 1

(2.3)

and the corresponding distribution function F (x;α, λ) has the following expres-
sion

F (x;α, λ) = P (X ≤ x) =

x∫
0

f(t;α, λ)dt =

{
1− e−(λx)α , α > 0, λ > 0, x > 0

0, x ≤ 0.

(2.4)
Lemma 2.1. The probability density function (1.1) is log − convex if 0 <

α ≤ 1 and log − concave if α ≥ 1.
P roof. Indeed, using (2.1), we can obtain the following relations

loge f(x;α, λ) = log(αλ) + (α− 1) log(1− e−λx)− λx (2.5)

d

dx
[loge f(x)] =

f ′(x)

f(x)
=
λ(α− 1)e−λx

1− e−λx
− λ (2.5a)

d2

dx2
[loge f(x)] = −(α− 1)

{
λ2e−λx

1− e−λx
+

[
λe−λx

1− e−λx

]2
}

︸ ︷︷ ︸
>0

(2.5b)

which, evidently, imply inequalities as

d2

dx2
[loge f(x)]

{
≥ 0 if 0 < α ≤ 1
≤ 0 if α ≥ 1,

(2.6)

and hence the above conclusions of the lemma follow.

Lemma 2.2. If X follows a two − parameter Weibull distribution with
probability density function (2.1), then a new random variabile Y , defined as

Y = X + b, (2.7)
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will follows a three−parameter Weibull distribution with the probability density
function as

g(y;α, λ, b) =

{
αλ[λ(y − b)]α−1e−[λ(y−b)]α , α > 0, λ > 0, y > b

0, y ≤ b, (2.8)

where : α is the shape parameter, λ is the scale parameter, and b is the location
parameter.

Proof. The distribution function of the random variable Y , denoted byG(y;α, λ, b),
can be obtained as follows

G(y;α, λ, b) = P (Y ≤ y) (2.9)

= P (X + b ≤ y) = P (X ≤ y − b) (2.9a)

= F (y − b) =

y−b∫
0

f(x;α, λ)dx (see (1.4)) (2.9b)

= 1− e−[λ(y−b)]α , α > 0, λ > 0, y > b,

that is,

G(y;α, λ, b) = P (Y < y) =

{
1− e−[λ(y−b)]α , α > 0, λ > 0, y > b

0, y ≤ b (2.10)

with the property

dG(y;α, λ, b)

dy
= g(y;α, λ, b). (2.10a)

Theorema 2.1. If X follows a two−Weibull distribution with the probability
density functions (2.1), then its the kth moment has the following form

E(Xk) =
k

αλk
Γ

(
k

α

)
, α > 0, λ > 0, for k ≥ 1. (2.11)

Proof. Using the definition of the kth moment of a distribution as well as
the probability density function (1.1), we obtain a first form as
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E(Xk) =

∞∫
0

xkf(x;α, λ)dx =

∞∫
0

xkαλ(λx)α−1e−(λx)αdx (2.12)

=
αλ

λk

∞∫
0

(λx)k+α−1e−(λx)αdx (2.12a)

or a second form as

E(Xk) =
αλ

λk

∞∫
0

y
k+α−1
α e−y

1

αλ
y

1
α
−1dy (2.13)

=
1

λk

∞∫
0

y
k
α e−ydy (2.13a)

=
k

αλk
Γ

(
k

α

)
, α > 0, λ > 0, k ≥ 1, (2.13b)

if we have used the change of variables (2.2) as well as the Gamma function, that is

Γ(a) =

∞∫
0

sa−1e−sds, a > 0. (2.14)

3. Fisher information and Weibull distribution

In the next, we will consider a family of probability density functions as {f(x; θ) : θ ∈
Dθ}, associated to a continuous random variable X, defined on the probability space
(Ω,K, P ), where Dθ ⊂ Rk, (k ≥ 1). The parameter space, Dθ, must to be either
an open interval of the real line R, if k = 1 or an open subset of k − dimensional
Euclidian space Rk, if k > 1.

Remark 3.1. We supposed that such a probability density function satisfies the
following regularity conditions (which are known as the Fisher information regularity
conditions FIRCs) [12], namely:

R1) The set {x : f(x, θ) > 0} is the same for all x ∈ Ω (Ω− an open interval
on the real line) and all θ ∈ Dθ;

R2) ∂
∂θi

[f(x, θ)] exists for all x ∈ Ω, all θ ∈ Dθ and all i = 1, k;
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R3) ∂
∂θi

[∫
A f(x, θ)dx

]
=
∫
A

∂
∂θi

[f(x, θ)]dx for any A,A ⊂ K, all θ ∈ Dθ and all

i = 1, k;

R4)
∫
A

∂
∂θi∂θj

[f(x, θ)] dx <∞ for any A,A ⊂ K, all θ ∈ Dθ and all i = 1, k.

Definition 3.1. ([3], [4]) If the function f : R→ R is a differentiable and
strictly positive density for the random variable X then , the Fisher f − score
in the direction x (or with respect to translation parameter)

Uf = UX : R→ R (3.1)

is defined by the relation

Uf (x; θ) = UX(x; θ) :=
∂ ln f(x; θ)

∂x
. (3.2)

Lemma 3.1. ([8], [9]) Under the above FIRCs, the score function has the
following properties :

E[Uf (X; θ)] = E
[
∂ ln f(X; θ)

∂x

]
= 0, (the first Bartlett identity) (3.3)

V ar [U(X;θ)] =V ar

[
∂ ln f(X;θ)

∂x

]
(3.4)

= E

{[
∂ ln f(X; θ)

∂x

]2
}

= −E
[
∂2 log f(X;θ)

∂x2

]
, (the second Bartlett identity). (3.5)

Using the above lemma, we obtain the next definitions.
Definition 3.2. ([3], [4], [8]) The Fisher information measure, in the direction

x (or with respect to translation parameter) , contained in the random variable
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X, denoted by If (X) or IX(x), is defined as

If (x) = IX(x) :=

+∞∫
−∞

[
∂ ln f(x; θ)

∂x

]2

f(x; θ)dx (3.6)

= E

{[
∂ ln f(X; θ)

∂x

]2
}

(3.7)

= −
+∞∫
−∞

[
∂2 ln f(x; θ)

∂x2

]
f(x; θ)dx

= −E
{[

∂2 ln f(X; θ)

∂x2

]}
. (3.8)

Definition 3.3.[4], [8]) The quantity If (θ), defined as

If (θ) := Eθ

{[
∂ ln f(θ;X)

∂θ

]2
}

=

+∞∫
−∞

[
∂ ln f(θ;x)

∂θ

]2

f(θ;x)dx (3.9)

= −
+∞∫
−∞

[
∂2 ln f(θ;x)

∂θ2

]
f(θ;x)dx = −Eθ

{[
∂2 ln f(θ;X)

∂θ2

]}
, (3.10)

where θ ∈ Dθ ⊂ R, represents the Fisher information measure about θ (that
is, to respect with the univariate unknown parameter θ) that is contained in X.

Theorem 3.1. If Y is a random variables with the three −parametres
Weibull distribution then, their probability density functions, with shape parameter
α > 0, scale parameter λ > 0 and with the location parameter b > 0, has the
form (2.8), then the associated Fisher’s information, with respect to y, denoted
by Ig(y), has the form

Ig(y;α, λ, b) = −E
[
d

dy
Ug(Y ;α, λ, b)

]
(3.11)

= (α− 1)2λ2Γ(
α− 2

α
), for α > 2 (3.12)

where Ug(y;α, λ, b) is the score function, with respect to y, associated to this
random variable, according to
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Ug(y;α, λ, b) :=
d

dy
[loge g(y;α, λ, b)] . (3.13)

Proof . Using (2.8), we get

loge g(y;α, λ, b) = loge{αλ[λ(y − b)]α−1e−[λ(y−b)]α}
= loge(αλ) + (α− 1)[loge λ(y − b)]− [λ(y − b)]α (3.14)

and the score function, with respect to y, can be obtained as

Ug(y;α, λ, b) =
d

dy
[loge g(y;α, λ, b)] (3.15)

=
α− 1

y − b
− αλ[λ(y − b)]α−1 (3.15a)

and its first derivative, with respect to y, has the forms as

d

dy
[Ug(y;α, λ, b)] =

d2

dy2
[log g(y;α, λ, b)] (3.16)

= − α− 1

(y − b)2 − αλ
2(α− 1)[λ(y − b)]α−2. (3.16a)

Now, using (3.16a), as well as the definition of Fisher information, with respect
to y, we get

Ig(y;α, λ, b) = −E
{
d2

dy2
[loge g(Y ;α, λ, b)]

}
= E

[
α− 1

(Y − b)2

]
+ E

{
αλ2(α− 1)[λ(Y − b)]α−2

}
= I1 + I2,

where the integrals I1and I2 are represented by the expressions as

I1 = E

[
α− 1

(Y − b)2

]
(3.18)

= α(α− 1)λ3

∞∫
b

[λ(y − b)]α−3e−[λ(y−b)]αdy (3.18a)
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and

I2 = E
{
αλ2(α− 1)[λ(Y − b)]α−2

}
= (3.19)

= αλ2(α− 1)αλ

∞∫
b

[λ(y − b)]2α−3e−[λ(y−b)]αdy, (3.19a)

respectively.
Using the change of variables (2.2) then, for the above integrals I1 and I2, we

get

I1 = (α− 1)λ2

∞∫
0

t−
2
α e−tdt

= (α− 1)λ2

∞∫
0

t
α−2
α −1

︸ ︷︷ ︸
e−tdt

Γ
(
α−2
α

)
that is,

I1 = (α− 1)λ2Γ(
α− 2

α
), α > 2 (3.20)

and

I2 = αλ2(α− 1)

∞∫
0

t
α−2
α e−tdt

= αλ2(α− 1)

∞∫
0

t

(
α−2
α + 1

)
−1
e−tdt

︸ ︷︷ ︸
Γ
(
α−2
α +1

)
that is,

I2 = λ2(α− 1)(α− 2)Γ

(
α− 2

α

)
, (3.21)

respectively.
Now, using last relations (3.20) and (3.21), the Fisher information with

respect to y, Ig(y;α, λ), takes the final form, namely
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I. Mihoc, C.I. Fătu – On some probabilistic . . .

Ig(y;α, λ) = −E
{
d2

dy2
[log f(Y ;α, λ, b)]

}
= (α− 1)2λ2Γ(

α− 2

α
), for α > 2, (3.22)

that is, an expression that not depends of the location parameter b.

Corollary 3.1. If Y is a random variables with the three − parametres
Weibull distribution that has the probability density functions (2.8) then the
random variable

X = Y − b (3.23)

follows a two − parameters Weibull distribution with the probability density
function (2.1) and its Fisher information,with respect to x, denoted by If (x;α, λ),
satisfies the relation

If (x;α, λ) = Ig(y;α, λ) = (α− 1)2λ2Γ(
α− 2

α
), for α > 2, (3.24)

that is, the Fisher information is translation invariant.
Proof. This very important property of the Fisher information follows if we

have in view the forms of the score functions associated with the probability density
functions g(y;α, λ, b) and f(x;α, λ), that is

Ug(y;α, λ, b) =
d

dy
[loge g(y;α, λ, b)]

=
α− 1

y − b
− αλ[λ(y − b)]α−1, (3.24a)

and

Uf (x;α, λ) =
d

dx
[loge f(x;α, λ)]

=
α− 1

x
− αλ(λx)α−1, (3.24b)

respectively.

4. Fisher′s information measure in terms of the hazard and survival
functions
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In the survival analysis literatures the cumulative distribution function is
known as the failure function but, in this case, the random variable T must to
be a non-negative random variable representing the waiting time until the
occurrence of an event and the function F (t) ≡ P (T ≤ t) represents just the
probability that such a event has occurred by duration t. Also, in the survival
analysis, an another important role is played by the survival function, denoted
as

S(t) = P (T > t) =

∞∫
t

f(x)dx = 1− F (t), t > 0. (4.1)

Such a function gives the probability that the event of interest has not oc-
curred by duration t. We can observe that

f(t) = lim
Mt−→0+

P (t < T ≤ t+ M t)

M t
= lim

Mt−→0+

P {T ∈ (t, t+ M t]}
M t

(4.2)

=
∂F (t)

∂t
= −∂S(t)

∂t
, (4.3)

where M t is a very small ”infinitesimal” interval of time.
The fact that the survival function (or the right-side cumulative distri-

bution function) S(t) and the failure function F (t), corresponding to a proba-
bility density function f(t), imply that they are each probabilities and we have the
following properties:

0 ≤ S(t) ≤ 1 (4.4a)
S(0) = 1 (4.4b)

lim
t−→∞

S(t) = 0 (4.4c)

∂S(t)
∂t = −f(t) < 0 (4.4d)

, (4.4)

where (4.4d) and (4.4c) can be interpreted as boundary conditions for S(t). Thus,
for instance, S(∞) = 0 signifies that: given enough time the proportion surviving
of a element goes down to zero.

Remark 4.1.An alternative characterization of the distribution of T is given
by the hazard function (or instantaneous rate of occurrence of the event
or the hazard rate ), denoted by h(t), which can be defined using the following
succession of relations
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h(t) = lim
dt−→0

P (t < T ≤ t+ dt | T > t)

dt
= (4.5)

= lim
dt−→0

P [(t < T ≤ t+ dt) ∩ (T > t)]

P (T > t)

dt
(4.5a)

{but because (t < T ≤ t+ dt) ∩ (T > t) = (t < T ≤ t+ dt)}

= lim
dt−→0

P (t < T ≤ t+ dt)

S(t)

dt
(4.5b)

= lim
dt−→0

P (t < T ≤ t+ dt)

dtS(t)
(4.5c)

=
1

S(t)
lim
dt−→0

P (t < T ≤ t+ dt)

dt
=

1

S(t)
lim
dt−→0

F (t+ dt)− F (t)

dt︸ ︷︷ ︸
= f(t)

(4.5d)

=
f(t)

S(t)
, (4.5e)

that is, we obtain that

h(t) =
f(t)

S(t)
, for all t such that S(t) > 0, (4.6)

where in the relation (4.5), the numerator, P (t < T < t + dt | T > t) is the
conditional probability that the event of interest will occur in the interval (t, t+dt),
given that it has not occurred before and the denominator dt represents the width
of the interval (t, t+ dt). In others words, the hazard function can be defined as
the risk of immediate failure or the rate of event occurrence per unit of time.

Remark 4.2. The above definitions imply very important relations, namely

dS(t)

dt
= −dF (t)

dt
= −f(t), (4.7)

h(t) =
f(t)

S(t)
= −d [loge S(t)]

dt
. (4.8)

Remark 4.3. Using the definition relation of the hazard function (4.6) as well
as the probability density function of the form f(t; θ) where t > 0, θ ∈ Dθ, we obtain

f(t; θ) = h(t; θ).S(t; θ), t > 0, θ ∈ Dθ. (4.9)
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Theorem 4.1.If the probability density function of the random variable
T has the form f(t; θ), where t > 0, θ ∈ Dθ then, the score functions
corresponding to the survival and hazard functions, denoted by US(t; θ) and
Uh(t; θ) satisfy the following relation

US(t; θ) =
∂ loge S(t; θ)

∂t
= −∂ loge h(t; θ)

∂t
= −Uh(t; θ); t > 0, θ = (α, λ) ∈ Dθ

(4.10)
Proof. From (4.9) , we get

loge f(t; θ) = loge h(t; θ) + loge S(t; θ), t > 0, θ ∈ Dθ (4.11)

as well as

∂ loge f(t;α, λ)

∂t︸ ︷︷ ︸
Uf (t;θ)

=
∂ loge h(t;α, λ)

∂t︸ ︷︷ ︸
Uh(t;θ)

+
∂ loge S(t;α, λ)

∂t︸ ︷︷ ︸
US(t;θ)

, (4.12)

that is, we have

Uf (t; θ) = Uh(t; θ) + US(t; θ), t > 0, θ ∈ Dθ. (4.13)

Now, using the property that was mentioned in the relation (3.3), that is

E[Uf (T ; θ)] = E
[
∂ ln f(T ; θ)

∂t

]
= 0, (The first Bartlett identity), (4.14)

from (4.13), we get the relation

0 = E[Uf (T ; θ)] = E[Uh(T ; θ)] + E[US(T ; θ)] (4.15)

which proofs even the relation (4.10).
Theorem 4.2. If T is a random variables with the two−parametres Weibull

distribution that has the probability density functions (2.1) then its Fisher
information with respect to t, denoted by If (t;α, λ), has the form

If (t;α, λ) = Ih(t;α, λ) + IS(t;α, λ), (4.16)

where the F isher informations, with respect to t, corresponding to hazard and
survival functions have forms as
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Ih(t;α, λ) = Ih(t) = −E
[
∂2 loge h(T ;α, λ)

∂t2

]
= (α− 1)λ2Γ

(
α− 2

α

)
, for λ > 0, α > 2, (4.17)

and

IS(t;α, λ) = IS(t) = −E
[
∂2 loge S(T ;α, λ)

∂t2

]
= (α− 1)(α− 2)λ2Γ

(
α− 2

α

)
, for λ > 0, α > 2, (4.18)

respectively.
Proof. Using the relations (2.1), (2.4), (4.1) and (4.6), namely

f(t;α, λ) = αλ(λt)α−1e−(λt)α , α > 0, λ > 0, t > 0 , (4.19)

F (t;α, λ) = 1− e−(λt)α , t > 0, α > 0, λ > 0, (4.20)

S(t;α, λ) = e−(λt)α , t > 0, α > 0.λ > 0 (4.21)

and

h(t;α, λ) =
f(t;α, λ)

S(t;α, λ)
= αλ(λt)α−1, α > 0.λ > 0, t > 0, (4.22)

respectively, we obtain:

loge h(t;α, λ) = loge α+ loge λ+ (α− 1) loge(λt) (4.22a)

Uh(t) =
∂ loge h(t;α, λ)

∂t
= (α− 1)

1

t
, α > 0, t > 0, (4.22b)

loge S(t;α, λ) = − (λt)α (4.21a)

US(t) =
∂ loge S(t;α, λ)

∂t
= −αλ(λt)α−1, α > 0, λ > 0, t > 0. (4.21b)

Then, using the change of variables
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z = (λt)α =⇒ λt = z

1

α =⇒ dt =
1

αλ
z

1
α
−1dz, z ∈ (0,∞), (4.23)

we obtain

E [Uh(T ) + US(T )] = E[
α− 1

T
]− E[αλ(λT )α−1] (4.24)

= α(α− 1)λ2

∞∫
0

(λt)α−2e−(λt)αdt

−α2λ2

∞∫
0

(λt)2α−2e−(λt)αdt

= (α− 1)λ

∞∫
0

z
−1
α e−zdz − αλ

∞∫
0

z
α−1
α e−zdz

= (α− 1)λΓ

(
α− 1

α

)
− αλΓ

(
2α− 1

α

)
= (α− 1)λΓ

(
α− 1

α

)
︸ ︷︷ ︸

E[Uh(T )]

− λ (α− 1) Γ

(
α− 1

α

)
︸ ︷︷ ︸

E[US(T )]

= 0,

that is, the equality

E [Uh(T ) + US(T )] = E[Uh(T )] + E[US(T )] = 0 (4.24a)

put in evidence the property (4.15) from the Theorem 4.1, that is, we have

E[Uh(T )] = −E[US(T )] = (α− 1)λΓ

(
α− 1

α

)
, α > 0, λ > 0, t > 0. (4.24b)

Also, using the relation (4.22b), we get

∂Uh(t)

∂t
=

∂2 loge h(t;α, λ)

∂t2
=

∂

∂t

[
(α− 1)

1

t

]
= −α− 1

t2
(4.25)
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and, again, using the change of variables (4.23), we obtain

Ih(t) = −E
[
∂2 loge h(T ;α, λ)

∂t2

]
= E

(
α− 1

T 2

)

= α (α− 1)λ3

∞∫
0

(λt)α−3e−(λt)αdt

= (α− 1)λ2

∞∫
0

z
α−2
α
−1e−zdz

︸ ︷︷ ︸
Γ(α−2

α )

,

that is, for the Fisher information with respect to t of the hazard function
h(t;α, λ), we obtain an expression as

Ih(t) = (α− 1)λ2Γ

(
α− 2

α

)
, α > 0, λ > 0, t > 0. (4.26)

Analogous, using the relation(4.22b), we obtain

IS(t) = −E
[
∂2 loge S(T ;α, λ)

∂t2

]
(4.27)

= −E
[
∂US(t;α, λ)

∂t

]
(4.27a)

= E
[
α(α− 1)λ2(λT )α−2

]
= α2(α− 1)λ3

∞∫
0

(λt)2α−3e−(λt)αdt

= α(α− 1)λ2

∞∫
0

z(
α−2
α

+1)−1e−zdz

︸ ︷︷ ︸
Γ(α−2

α
+1)

that is, the Fisher information with respect to t of the survival function S(t;α, λ)
has the form

IS(t) = (α− 1)(α− 2)λ2Γ

(
α− 2

α

)
. (4.28)
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Finally, the Fisher information with respect to t of the probability density func-
tion f(t;α, λ),we obtain

If (t) = Ih(t) + IS(t) = (α− 1)2 λ2Γ

(
α− 2

α

)
, (see (3.12) (4.29)
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