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Abstract. We present a survey of recent results concerning generalized mea-
sures and integrals: possibly non-additive measures and possibly non-linear inte-
grals with respect to generalized measures. This theory is very recent, develops
very quickly and the amount of literature dedicated to it is already huge, due to its
multiple applications.
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1. Introduction

Classical measure theory is based upon the concept of additivity (or, which is
more, upon countable additivity).

Recently it was seen that more varied tools,other than additive measures, are
necessary in order to describe and study a multitude of phenomena. These tools
are the generalized measures which are monotone and possibly non additive. A
rough discussion pertaining to this type of measures can run as follows: superaddi-
tive measures indicate a cooperative action or synergy between the measured items
(sets), while subadditive measures indicate inhibitory effects, lack of cooperation or
incompatibility between the measured items (sets). Additive measures can express
non interaction or indifference.

It is generally accepted that the most important generalized measures are the λ−
measures, introduced by the Japanese scholar Michio Sugeno in his doctoral thesis
[9]. He called these measures ,,fuzzy measures“, but today most people call the
normalized λ−measure Sugeno measures. An important result due to Z. Wang [10]
states that any λ−measure can be obtained from a classical measure via a canonical
procedure – composition with a special increasing function (see also [11]). We called
the generalized measures which can be obtained in such a way representable measures
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in [4]. In the same paper it was pointed out that λ−measure appear naturally also
within the framework of functional equations.

Aside the mathematical interest of the λ−measures, it is worth noticing that
they have an important impact in many domains of activity. For instance, we refer
to the mathematical theory of evidence, created by G. Shafer under the influence of
A. P. Dempster. This theory is based upon belief and plausibility measures, which
are special cases of λ−measures (see [8]) and [11].

Other interesting facts concerning λ−measures can be found in [1] and [7].
Lebesgue’s philosophy says that, once we have a measure, it is possible to have

an integral (with respect to this measure). Following this line of thinking, integrals
with respect to generalized measures appeared. The most popular such integrals are
the Sugeno and the Choquet integral. The Sugeno integral is very far away from
all standard integrals, while the Choquet integral is a direct generalization of the
standard abstract Lebesgue integral. Because of the possible non additivity of the
measures involved,these integrals are possibly non linear.

Thinking about integrals as information fusion instruments (i.e. aggregation
instruments for compressing a multitude of numerical data into a single numerical
date) we see that the use of non additive measures in computing the integrals allows
us to take into consideration the interaction between the generators of data (see
the beginning of this introduction). The non linear integrals can be used in other
directions, e. g. multiregression, classification. To be synthetic, we can use nonlinear
integrals in a huge lot of data mining operations.

A short presentation of the contents follows. The first part deals with generalized
measures, whilst the second part deals with nonlinear integrals.

The first part (paragraph 2) begins with the presentation of general measures
and their basic properties and continues with λ−additive measures. Basic properties
of λ−additive measures are presented, among them the idea of representability. The
construction of λ−measures with preassigned values follows. Here the recent result
concerning the existence and uniqueness of λ−measures on P(N) with preassigned
values appears (see [6]). The first part ends with a recent result concerning the
structure of Sugeno measures on the code space (see [5]).

The second part (paragraph 3) begins with the presentation of the Sugeno and
Choquet integrals with their basic properties. Some results concerning sequences
of positive measurable functions and their Sugeno and Choquet integrals follow.
The second part (i.e. the paper) ends with the transformation theorem for the
Sugeno integral and with a recent result concerning the parametric continuity of the
numerical flow of Sugeno and Choquet integrals attached to the canonical flow of
the λ−measures generated by a probability (for the last topic, see [3] and [2], which
is an expanded version of [3]).
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2. Non Additive (Fuzzy) Measures

We shall work only with positive finite measures.
The set [0,∞) will be denoted by R+. The set{1, 2, . . . , n, . . .} will be denoted

by N. For any T we write P(T ) to denote the set of all subsets of T . We shall
consider classes of sets, i. e. sets T ⊂ P(T ) such that ∅ ∈ T .

Definition 1. We shall call measure (or generalized measure) a function µ : T →
R+ having the following properties:

(i) µ(∅) = 0.
(ii) For any A, B in T such that A ⊂ B,one has µ(A) ≤ µ(B) (we say that µ is

monotone or increasing).

Definition 2. We say that a measure µ : T → R+ is normalized if
a) T ∈ T ;
b) µ(T ) = 1.

Recall that a function µ : T → R+ is additive if

µ(A ∪B) = µ(A) + µ(B)

whenever A, B are in T , A∩B = ∅ and A∪B ∈ T . If T is a ring and µ is additive,
then µ is a (generalized) measure.

Definition 3. We say that a measure µ : T → R is representable if:
α) T ∈ T and µ(T ) = A > 0.
β) There exists an additive measure m : T → R+ such that m(T ) = a > 0 and

a strictly increasing bijection h : [0, a]→ [0, A] such that µ = h ◦m.
In this case, we say that the pair (m,h) represents µ and h is a transfer function

for µ.

Remarks
1. In the previous context, h and h−1 are mutually inverse homeomorphisms.
2. Clearly, any additive measure µ is representable (if µ(T ) = A, we have the

transfer function h : [0, A]→ [0, A], h(x) = x and the pair (µ, h) represents µ).
3. It is possible to have more than one pair (m,h) which represents the same

µ. For instance, take T = {1, 2}, T = P(T ) and µ : T → R+ given via µ(∅) = 0,
µ(T ) = 1, µ({1}) = α, µ({2}) = β, where 0 < α < β < 1. Let us consider
an additive measure m : T → R+ given via m(∅) = 0, m(T ) = 1, m({1}) = a,
m({2}) = b, where 0 < a < 1− a = b < 1. Then, any strictly increasing continuous
function h : [0, 1]→ [0, 1] such that h(0) = 0, h(1) = 1,h(a) = α, h(b) = β, generates
the pair (m,h) which represents µ.

�
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Example 1. (Popular transfer functions.) Take the strictly positive numbers a, A.

a) For θ > 0, define h : [0, a]→ [0, A], via h(x) = A
(x
a

)θ
.

b) For any 0 6= λ ∈
(
− 1

A
,∞
)

, define hλ : [0, a]→ [0, A), via

hλ(x) =
(1 + λA)

x
a − 1

λ
.

�
Not all measures are representable.

Example 2. Take T = {1, 2}, T = P(T ),µ : T → R+ defined via µ(∅) = 0,
µ(T ) = 1, µ({1}) = α, µ({2}) = 1, where 0 < α ≤ 1. Then µ is a measure which is
not representable.

�
Caution
From now on we shall work only with non null measures having the following

property:

a = supµ
def
== sup {µ(A) | A ∈ T } <∞.

Hence 0 < a <∞. In particular, this property is valid in case T ∈ T and in this
case a = µ(T ).

�

Definition 4. For a measure µ as above, we say that a number λ is µ−admissible

in case λ ∈
(
− 1

supµ
,∞
)

.

We can introduce now a most important class of (generalized) measures

Definition 5. Let µ : T → R+ be a measure and λ a µ−admissible number. We
say that µ satisfies the λ−rule (µ is λ−additive) if

µ(E ∪ F ) = µ(E) + µ(F ) + λµ(E)µ(F )

whenever E, F are in T and E ∪ F ∈ T , E ∩ F = ∅.
In case there exists a µ−admissible number δ such that µ satisfies the δ−rule,we

say that µ satisfies some λ−rule.

From now on, when asserting that µ satisfies the λ−rule, we tacitly assume that
λ is µ−admissible.

Remarks
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1. The “necessity” of working with numbers λ which are µ−admissible can be
explained as follows. Then, if λ is µ−admissible and A ∈ T , one has 1 +λµ(A) > 0.
Hence, if E, F are in T and E ∪ F ∈ T , E ∩ F = ∅, one has

µ(E ∪ F ) = µ(E) + µ(F )(1 + λµ(E)) ≥ µ(E)

(confirmation of the monotony) . �

2. If µ satisfies the λ−rule,then
– in case λ < 0, µ is subadditive

(µ(E ∪ F ) ≤ µ(E) + µ(F ), whenever E ∪ F ∈ T , E ∩ F = ∅) .

– in case λ > 0, µ is superadditive

(µ(E ∪ F ) ≥ µ(E) + µ(F ), whenever E ∪ F ∈ T , E ∩ F = ∅) .

– in case λ = 0, µ is additive

(µ(E ∪ F ) = µ(E) + µ(F ), whenever E ∪ F ∈ T , E ∩ F = ∅) .

3. We pointed out in [4] that the measures which satisfy the λ−rule appear as
the most natural non additive measure. �

Here are some computations.

Theorem 1. Assume T is a ring and µ satisfies the λ− rule. Then, for any E, F
in T , one has

(i) µ(E \ F ) =
µ(E)− µ(F )

1 + λµ(E ∩ F )

(ii) µ(E ∪ F ) =
µ(E) + µ(F ) + λµ(E)µ(F )− µ(E ∩ F )

1 + λµ(E ∩ F )

(iii) µ(E∆F ) =
µ(E) + µ(F ) + λµ(E)µ(F )− λµ(E ∩ F )2 − 2µ(E ∩ F )

(1 + λµ(E ∩ F ))2
.

(iv) Assuming, supplementarily, that T is an algebra, one has

µ
(
{E
)

=
µ(T )− µ(E)

1 + λµ(E)
.

Now, we introduce the dual of a normalized measure.

Definition 6. Assume that T has the following property: {A ∈ T whenever A ∈ T
(this is true, in particular, if T is an algebra). For any normalized measure µ : T →
R+, we define the dual of µ, which is the normalized measure ν : T → R+, acting
via

ν(A) = 1− µ({A)
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Remarks
1. The dual of the dual of µ is µ. Hence ν is the dual of µ if and only if µ is the

dual of ν
2. In case T is an algebra and µ is additive, it follows that the dual of µ is µ (µ

is autodual). �

Theorem 2. Assume that T is an algebra, µ : T → R+ is normalized and satisfies
the λ− rule (hence λ ∈ (−1,∞)). Then the dual measure ν of µ satisfies the λ′−
rule, where

λ′ = − λ

λ+ 1
.

The properties gathered in the following theorem are often useful

Theorem 3. Assume T is a ring and µ : T → R+ satisfies the λ− rule. Let A ∈ T .
1. For any E ∈ T such that µ(E) = 0, one has (µ is null-additive):

µ(A ∪ E) = µ(A \ E) = µ(A∆E) = µ(A).

2. Assume µ(A) = supµ. Then, for any E ∈ T such that A ∩ E = ∅, one has
µ(E) = 0. Consequently, for any F ∈ T one has

µ(F ) = µ(A ∩ F ).

3. Assume T is an algebra. Then, we have the implication

0 < µ(A) < µ(T )⇒ 0 < µ(T \A) < µ(T ).

A property which is more restrictive than the λ− rule follows

Definition 7. Let µ : T → R+ be a measure and λ a µ− admissible number.
We say that µ satisfies the finite λ− rule if

µ

(
n⋃
i=1

Ei

)
=


1

λ

(
n∏
i=1

(1 + λµ (Ei))− 1

)
, if λ 6= 0

n∑
i=1

µ(Ei), if λ = 0,

whenever Ei, E2, . . . , En are mutually disjoint sets in T with
n⋃
i=1

Ei ∈ T .

In case there exists a µ−admissible number δ such that µ satisfies the finite δ−
rule, we say that µ satisfies some finite λ−rule.
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Remarks
1. Clearly, to say that µ satisfies the finite 0− rule means to say that µ is finitely

additive.
2. Clearly, if µ satisfies the finite λ− rule it follows that µ satisfies the λ− rule

(and not conversely). In case T is a semiring, the converse assertion is true. �
The analogue of the σ− additivity property for measures satisfying the λ− rule

is given in

Definition 8. Let µ : T → R+ be a measure and λ be µ admissible. We say that µ
satisfies the σ − λ−rule if

µ

( ∞⋃
i=1

Ei

)
=


1

λ

( ∞∏
i=1

(1 + λµ (Ei))− 1

)
, if λ 6= 0

∞∑
i=1

µ(Ei), if λ = 0,

whenever the mutually disjoint Ei ∈ T are such that
∞⋃
i=1

Ei ∈ T .

In case there exists a µ− admissible δ such that µ satisfies the σ− δ rule, we say
that µ satisfies some σ − λ− rule.

Remarks
1. Clearly, the case λ = 0 means that µ is σ−additive (is a classical measure).
2. Because, for a number λ which is µ− admissible one has 1 + λµ(A) > 0 for

any A ∈ T , it follows that the infinite product in the definition must be convergent.
�

Definition 9. Let µ : T → R+ be a measure.
1. If λ is µ− admissible and µ satisfies the σ − λ− rule, we say that µ is a

λ−measure. If T ∈ T , µ(T ) = 1 and µ is a λ− measure we say that µ is a λ−
Sugeno measure. Clearly, the 0− Sugeno measures are the probabilities (on T ).

2. In case there exists a µ− admissible δsuch that µ is a δ− measure, we say
that µ is a some λ− measure.

A some λ− measure with T ∈ T and µ(T ) = 1 is called a Sugeno measure.

Example 3. Take T = N, T = {φ} ∪ {{n} | n ∈ N} and (an)n a bounded se-
quence of numbers an > 0. Define µ : T → R+ via µ(φ) = 0 and µ({n}) =

= an. Then µ is a λ− measure for any λ ∈
(
− 1

A
,∞
)

where A = sup
n
an

�
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This example leads us in a natural way to the following question: when is it
possible for a measure µ to satisfy the λ− rule and the λ′− rule for two different µ
admissible numbers λ and λ′?

A partial answer is given in

Theorem 4. Assume T is an algebra and µ : T → R+ is a measure. The following
assertions are equivalent:

1. There exist two different µ− admissible numbers λ and λ′ such that µ is both
a λ− measure and a λ′ measure.

2. µ is a λ− measure for any µ− admissible λ
3. µ is σ− additive and T is an atom of µ (i.e. for any A ∈ T one has either

µ(A) = 0 or µ(A) = µ(T )).

The next fundamental result is essentially due to Z.Wang (see [10]). It asserts
that any measure which satisfies some λ−rule is representable.

Theorem 5. Assume T ∈ T and let µ : T → R+ be a measure which satisfies some
λ− rule. Then µ is representable.

Remarks concerning the preceding enunciation
1. We exhibit, for a measure µ : T → R+ with µ(T ) = A > 0 and for λ ∈(
− 1

A
,∞
)
\ {0}, a transfer function. Namely, for µ as above and for an arbitrary

0 < a < ∞, there exists an additive measure m : T → R+ with m(T ) = a and the
transfer function hλ : [0, a]→ [0, A] given via

hλ(x) =
(1 + λA)

x
a − 1

λ

such that µ = hλ ◦m.
Namely, the measure m is obtained from µ via the formula m = h−1λ ◦ µ. We

have h−1λ = [0, A]→ [0, a], given via

h−1λ (y) =
a ln(1 + λy)

ln(1 + λA)
.

In case a = A = 1 (the most popular situations) the formulae from above
(0 6= λ > −1) become, for hλ, h

−1
λ : [0, 1]→ [0, 1]:

hλ(x) =
(1 + λ)x − 1

λ
and h−1λ (y) =

ln(1 + λy)

ln(1 + λ)
,

2. The connection between µ and m defined at Remark 1 is very straight: µ
satisfies the finite λ−rule if and only if m is finitely additive; µ satisfies the σ−λ−rule
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I. Chiţescu – Non additive (fuzzy) measures . . .

if and only if m is σ− additive. Working for a = A = 1, we can see that µ is a
λ− Sugeno measure if and only if m is a classical probability. We say that Sugeno
measures are represented by probabilities. �

The reciprocal of Theorem 5 is false. Namely, there exist representable measures
which do not satisfy any λ−rule, as the following example shows.

Example 4. Take T = [0, 1], T = the Lebesgue measurable subsets of T and m :
T → R+ the Lebesgue measure on T . Define µ : T → R+ given via µ(A) = (m(A))2.
Hence µ = h ◦m where h : [0, 1]→ [0, 1] is the transfer function given via h(t) = t2.
So µ is representable.

One can check that µ does not satisfy the λ− rule for any λ ∈ (−1,∞). �

The final part of this paragraph will be dedicated to the structure of λ−measures
on some special spaces.

Finite λ− measures with preassigned values

The preliminary fact used here is

Lemma 6. Let a1, a2, . . . , an strictly positive numbers (n ≥ 2) and write

Sn = a1 + a2 + . . .+ an.

Let A be a number such that A >
n

max
i=1

ai. Then the equation

1 +Ax =
n∏
i=1

(1 + aix) (En)

has an unique admissible solution x = λ. Here “admissible” means:

– if A < Sn, then λ ∈
(
− 1

A
, 0

)
;

– if A = Sn, then λ = 0;
– if A > Sn, then λ ∈ (0,∞).

Using this result, we have

Theorem 7. Again let us consider the strictly positive numbers a1, . . . , an (n ≥ 2),

the number A >
n

max
i=1

ai and equation (En). Write T ∈ {1, 2, . . . , n}.
Let λ be the admissible solution of (En). Under these conditions, there exists

an unique λ− measure µ : P(T )→ R+ having preassigned values, i.e.

µ({i}) = ai for any i ∈ T
µ(T ) = A.
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Countable λ−measures with preassigned values

We succeeded (see [6]) to extend the preceding result in the countable case.
First, we have the following auxiliary result:

Lemma 8. Let (an)n∈N be a sequence of strictly positive numbers such that

S =
∞∑
n=1

an <∞.

Let A be a number such that

A > sup
n
an = max

n
an.

1. Assume A < S. Then there exists n0 ∈ N such that A <

n0∑
i=1

ai. Then, for

any n ≥ n0 the equation
n∏
i=1

(1 + aix) = 1 +Ax

has exactly one solution xn ∈
(
− 1

A
, 0

)
.

The sequence (xn)n≥n0
is strictly decreasing and let

x∞ = lim
n
xn = inf

n
xn ∈

[
− 1

A
, 0

)
.

2. Assume A ≥ S. Then, for any n ∈ N, n ≥ 2, the equation

n∏
i=1

(1 + aix) = 1 +Ax

has exactly one solution xn ∈ (0,∞).
The sequence (xn)n≥2 is strictly decreasing and let

x∞ = lim
n
xn = inf

n
xn ∈ [0,∞) .

The analogue of Lemma 6 follows:

Lemma 9. Let (an)n∈N be a sequence of strictly positive numbers such that

S =
∞∑
n=1

an <∞.
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Let A be a number such that

A > sup
n
an = max

n
an.

Consider the equation
∞∏
i=1

(1 + aix) = 1 +Ax. (E)

I. In case A < S equation (E) has an unique solution x∞ ∈
(
− 1

A
, 0

)
.

II. In case A = S equation (E) has an unique solution x∞ ∈ [0,∞), namely
x∞ = 0.

III. In case A > S equation (E) has an unique solution x∞ ∈ (0,∞).
In all cases, x∞ is obtained as follows

x∞ = lim
n
xn,

where (xn)n is the sequence furnished by Lemma 8.

Using this result, we have the following extension of Theorem 7:

Theorem 10. Let (an)n be a sequence of strictly positive numbers such that

S =

∞∑
n=1

an <∞

and a number A satisfying the condition

A > sup
n
an = max

n
an.

Consider the σ− algebra T = P(N).
I. Existence

There exists a real number λ > − 1

A
and a λ− measure µ : T → R+ with

preassigned values, i.e.

µ({n}) = an for any n ∈ N
µ(N) = A.

II. Uniqueness
The number λ from the existence part must be a solution of equation (E) (see

Lemma 9) and is uniquely determined if it satisfies the admissibility condition i.e.

– if A < S, then λ ∈
(
− 1

A
, 0

)
;

– if A = S, then λ ∈ [0,∞) and in this case λ = 0;
– if A > S, then λ ∈ (0,∞).
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Sugeno measures on the code space
This section is based upon [5].
We begin with some basic facts about the code space.
Let 2 ≤ p ∈ N. We shall consider p distinct elements (called letters) and

write X = {x1, x2, . . . , xp} (call X the alphabet). In most cases, one takes X =
{0, 1, . . . , p− 1}.

Next, we introduce X∗ = the free monoid generated by X. Namely X∗ is
formed with all words of the form x = u1u2 . . . un (where ui ∈ X) with length
l(x) = n and we consider also the empty word e with length l(e) = 0. For x, y in
X∗ we write x < y to denote the fact that x is a prefix of y and this means : either
x = e or x = u1u2 . . . un 6= e and y = v1v2 . . . vm with m ≥ n, such that v1 = u1,
v2 = u2, . . . , vn = un. We accept that X ⊂ X∗ i.e. x ∈ X may be viewed in X∗.

Now we introduce
X∞ = XN = {f : N→ X}.

Namely, an element f ∈ X∞ will be considered as follows:

f ≡ x ≡ u1u2 . . . un . . . ,

where un = f(n) for any n ∈ N. So, the elements in X∞ are sequences of elements
in X. We call the elements in X∞codes and X∞ is called the code space.

For any x ∈ X∗ we can form the set xX∞. Namely, if x = e, define eX∞ = X∞

and for e 6= x = u1u2 . . . un, xX∞ is formed with all sequences v = v1v2 . . . vm . . .
such that v1 = u1, v2 = u2, . . . , vn = un. Clearly, one has xX∞ ⊂ yX∞ ⇔ y < x.

Considering the metrizable and compact topological space (X,D), where D is

the discrete topology, write (Xn,Dn) = (X,D) for any n ∈ N. Then X∞ =
∞∏
n=1

Xn

and we can consider on X∞ the topology U which is the product topology of the
topologies Dn. Then (X∞,U) is a metrizable and compact topological space. This
space is second countable, namely it has the countable base P = {xX∞ | x ∈ X∗}
formed with sets which are both compact and open. The Borel sets of (X∞,U) will
be denoted by B.

Because P is a generalized semiring which generates B if follows that σ− additive
or Sugeno measures on B that coincide on P are identical. In other words, such a
measure is known if we know its values on P.

In the sequel, we shall give a concrete (matricial) representation of all Sugeno
measures on B (see [5]).

Notation
For any λ ∈ (−1,∞) write

Sλ = {µ : B → R+ | µ is a λ− Sugeno measure}.
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One can prove

Theorem 11. One has the equality⋂
λ∈(−1,∞)

Sλ = DIR

where DIR is the set of all Dirac measures δx : B → R+, x ∈ X∞.

We pass to the matricial description of all Sλ for λ ∈ (−1,∞) \ {0}. Write
Up = {1, 2, . . . , p}.

Definition 10. Let λ ∈ (−1,∞) \ {0}. A λ− distribution is a sequence (Dλ(n))n
where

Dλ(1) = (aλ(1), aλ(2), . . . , aλ(p)) = (aλ(i))1≤i≤p
Dλ(2) = (aλ(i, j))1≤i≤p,1≤j≤p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dλ(n) = (aλ (i1, i2, . . . , in))1≤ik≤p , for k = 1, 2, . . . .n

with the following properties:
a) For any n ∈ N and any (i1, i2, . . . , in) ∈ Unp , one has
– if −1 < λ < 0 then 0 < aλ (i1, i2, . . . , in) ≤ 1;
– if λ > 0 then aλ (i1, i2, . . . , in) ≥ 1.

b)

p∏
i=1

aλ(i) = λ+ 1.

c) For any n ∈ N and any (i1, i2, . . . , in) ∈ Unp , one has

aλ (i1, i2, . . . , in) =
n∏
i=1

aλ (i1, i2, . . . , in, i) .

Notation
For any λ ∈ (−1,∞) \ {0} write Dλ = the set of all λ− distributions.
The announced “matricial” description of Sugeno measures is given in

Theorem 12. . Let λ ∈ (−1,∞) \ {0}. We have the bijection Tλ : Dλ → Sλ
described as follows:

a) Let (Dλ(n))n ∈ Dλ where Dλ(n) = (aλ (i1, i2, . . . , in)) as previously. Then

Tλ ((Dλ(n))n) = µ

where

µ (xi1 , xi2 , . . . , xinX
∞) =

aλ (i1, i2, . . . , in)− 1

λ
.
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b) The inverse Zλ = T−1λ : Sλ → Dλ acts via

Zλ(µ) = (Dλ(n))n

where
Dλ(n) = (aλ (i1, i2, . . . , in))1≤ik≤p

is such that
aλ (i1, i2, . . . , in) = 1 + λµ (xi1 , xi2 , . . . , xinX

∞) .

3. Non Linear (Fuzzy) Integrals

We shall present the Choquet and the Sugeno integrals (with respect to some gen-
eralized measure)

Let (T, T ) be a measurable space i.e. T is a non empty set and T ⊂ P(T )is a
σ− algebra. We shall work with positive measurable functions, i.e. with functions
f : T → R+ having the property that f−1(A) ∈ T for any Borel set A ⊂ [0,∞). For
such a function f and for any α ∈ [0,∞), let us define the level set

Fα(f)
def
== Fα = {t ∈ T | f(t) ≥ α}

(i.e. Fα = f−1([α,∞)); we write Fα instead of Fα(f), because in most cases f is
understood).

Clearly Fα ∈ T for any α ∈ [0,∞).
For any A ∈ T , ϕA is the characteristic (indicator) function of A.
Let us consider a generalized measure µ : T → R+. Recall that µ is called

continuous if one has
µ
(

lim
n
An

)
= lim

n
µ (An) ,

for any monotone sequence of sets An ∈ T . To be more precise, (An)n can be either

increasing (in this case lim
n
An =

∞⋃
n=1

An ∈ T and we must have

µ

( ∞⋃
n=1

An

)
= lim

n
µ (An) = sup

n
µ (An))

or decreasing (in this case lim
n
An =

∞⋂
n=1

An ∈ T and we must have

µ

( ∞⋂
n=1

An

)
= lim

n
µ (An) = inf

n
µ (An)).
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Notice that one has Fα ⊃ Fβ if 0 ≤ α < β < ∞. Consequently, for any A ∈ T ,
the function ϕ : [0,∞)→ R+ given via

ϕ(α) = µ (Fα(f) ∩A)

is decreasing (here f : T → R+ is measurable).

A. The Sugeno integral (basics)
Let (T, T ) be a measurable space, µ : T → R+ a generalized measure, f : T →

R+ a measurable function and A ∈ T . Write Fα instead of Fα(f) for any α ∈ R+.

Definition 11. The Sugeno integral of f with respect to µ on A is

(S)

∫
A

fdµ
def
== sup

α∈R+

(α ∧ µ (Fα ∩A)) ≤ µ(T ) <∞.

In case A = T we write only

(S)

∫
fdµ = sup

α∈R+

(α ∧ µ (Fα)) ≤ µ(T ) <∞

(this is the Sugeno integral of f with respect to µ).

Remarks. 1. One has the formula

(S)

∫
A

fdµ = (S)

∫
fϕAdµ ≤ (S)

∫
fdµ.

2. In case µ(T ) ≤M one has

(S)

∫
A

fdµ = sup
α∈[0,M ]

(α ∧ µ (Fα ∩A))

because, for α > M , one has

α ∧ µ (Fα ∩A) = µ (Fα ∩A) ≤ µ (FM ∩A) = M ∧ µ (FM ∩A) .

3. In case µ is continuous, it follows that the function α 7→ ϕ(α) =
= µ (Fα ∩A) is decreasing and continuous. Hence, the function α 7→ u(α) =
= ϕ(α)−α is strictly decreasing and continuous, with u(0) ≥ 0 and lim

α→∞
u(α) =

= −∞. The unique zero of u, call it α0, has the property that α0=(S)

∫
A

fdµ.
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4. Consequently, we have the following geometric interpretation of the
Sugeno integral if T ⊂ R is an interval, µ is the Lebesgue measure and f : T → R+

is continuous and unimodal. Namely, in this case (S)

∫
fdµ is the edge’s length of

the largest square between the graph of f and the x− axis.
5. M. Sugeno called his integral “fuzzy integral” (see his doctoral thesis [9]).

Now, the name Sugeno integral is much more in use. �

Here are some properties of the Sugeno integral (f1, f2, f : T → R+ measurable,
A, B in T and a ∈ [0,∞)).

Theorem 13. 1. If µ(A) = 0 then (S)

∫
A

fdµ =0;

2. If µ is continous and (S)

∫
A

fdµ = 0 then µ(A ∩ {t ∈ T | f(t) > 0})= 0;

3. If f1 ≤ f2 then (S)

∫
A

f1dµ ≤
∫
A

f2dµ;

4. If A ⊂ B then (S)

∫
A

fdµ ≤ (S)

∫
B

fdµ.

5. (S)

∫
A

adµ = a ∧ µ(A).

6. (S)

∫
A

(f + a)dµ ≤ (S)

∫
A

fdµ+ (S)

∫
A

adµ.

B. The Choquet integral (basics)
Let us consider a measurable space (T, T ), a measurable function

f : T → R+, a generalized measure µ : T → R+ and A ∈ T .

As always, for any α ∈ R+ write Fα
def
== Fα(f) and consider again the decreasing

function ϕ : [0,∞) → [0,∞) given via ϕ(α) = µ (Fα ∩A). If L is the Lebesgue
measure on R+, it is possible to integrate ϕ with respect to L and we write

∞∫
0

µ (Fα ∩A) dα
def
==

∫
ϕdL ≤ ∞.

Definition 12. Within the framework from above, the Choquet integral of f with
respect to µ on A is

(C)

∫
A

fdµ
def
==

∞∫
0

µ (Fα ∩A) dα ≤ ∞.

42
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In case A = T we write only (C)

∫
fdµ =

∞∫
0

µ (Fα) dα

(this is the Choquet integral of f with respect to µ).

In case (C)

∫
A

fdµ <∞, we say that f is Choquet integrable with respect to µ.

Remarks 1. We have the formula

(C)

∫
A

fdµ = (C)

∫
A

fϕAdµ ≤ (C)

∫
fdµ.

2. The definition of the Choquet integral is a generalization of the usual abstract
Lebesgue integral. Indeed, if µ is a classical measure (i.e. µ is σ− additive), then
we have the equality

(C)

∫
A

fdµ =

∫
A

fdµ

the last integral being classical. �

Here are some properties of the Choquet integral (f1, f2, f : T → R+ measurable,
A, B in T and a ∈ [0,∞)).

Theorem 14. 1. If µ(A) = 0 then (C)

∫
A

fdµ = 0.

2. If µ (A ∩ {t ∈ T | f(t) > 0}) = 0, then (C)

∫
A

fdµ = 0. Conversely, if µ is

continuous and (C)

∫
A

fdµ = 0, then µ (A ∩ {t ∈ T | f(t) > 0}) = 0.

3. If f1 ≤ f2 then (C)

∫
A

f1dµ ≤ (C)

∫
A

f2dµ.

4. If A ⊂ B then (C)

∫
A

fdµ ≤ (C)

∫
B

fdµ.

5. (C)

∫
A

1dµ = µ(A).

6. (C)

∫
A

afdµ = a(C)

∫
A

fdµ.

7. (C)

∫
A

(f + a)dµ = (C)

∫
A

fdµ+ aµ(A).
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C. Sugeno and Choquet integrals for sequences of measurable func-
tions

C.1. Sugeno integral
We shall work with a generalized measure µ : T → R+ which is continuous.

Theorem 15. (Monotone Convergence). Let (fn)n be a sequence of positive mea-
surable functions which is monotone and let f = lim

n
fn.

Then, for any A ∈ T one has

(S)

∫
A

fdµ = lim
n

(S)

∫
A

fndµ.

(in case (fn)n is increasing, this means (S)

∫
A

fdµ = sup
n

(S)

∫
A

fndµ and in case

(fn)n is decreasing this means (S)

∫
A

fdµ = inf
n

(S)

∫
A

fndµ).

The analogue of Fatou’s Lemma follows:

Theorem 16. For any sequence (fn)n of positive measurable functions and any
A ∈ T one has

(S)

∫
A

lim inf
n

fndµ ≤ lim inf
n

(S)

∫
A

fndµ.

Theorem 17. (Uniform Convergence). Assume the sequence (fn)n of positive mea-
surable functions converges uniformly to f . Then, for any A ∈ T one has

(S)

∫
A

fdµ = lim
n

(S)

∫
A

fndµ.

Remark In the case of the Sugeno integral, the Sugeno-mean convergence co-
incides with the usual convergence in measure. More precisely: the fact that the
sequence (fn)n of positive measurable functions (S) converges in mean to the posi-

tive measurable f (i.e. (S)

∫
|fn − f |dµ −→

n
0) is equivalent to the fact that for any

a > 0 one has
µ {t ∈ T | |fn(t)− f(t)| ≥ a} −→

n
0. �

C.2. Choquet integral
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Again we shall work with a generalized measure µ : T → R+ which is continu-
ous.

We shall use the following concepts, concerning a sequence (fn)n of positive
measurable functions and a positive measurable function f .

Definition 13. We say that (fn)n (C)−convergence in mean to f if

(C)

∫
|fn − f |dµ −→

n
0.

We say that (fn)n converges in measure to f if, for any a > 0, one has

µ ({t ∈ T | |fn(t)− f(t)| ≥ a}) −→
n

0.

Theorem 18. We have the implications:

((fn)n converges uniformly to f)⇒ ((fn)n (C)− converges in mean to f)⇒

⇒ ((fn)n converges in measure to f) .

Theorem 19. (Dominated Convergence). Let (fn)n be a sequence of positive mea-
surable functions, f and g positive measurable functions and A ∈ T . Assume that
fn −→

n
f pointwise, fn ≤ g for any n and g is Choquet integrable (with respect to µ).

Then

(C)

∫
A

fndµ −→
n

(C)

∫
A

fdµ.

and fn, f are all Choquet integrable (with respect to µ).

Theorem 20. (Uniform Convergence). Let (fn)n be a sequence of positive measur-
able functions, which converges uniformly to f and fn, f are Choquet integrable with
respect to µ and let A ∈ T . Then

(C)

∫
A

fndµ −→
n

(C)

∫
A

fdµ.

D. Sugeno and Choquet integrals: special properties

The first result of this section shows that any Sugeno integral on an abstract space
can be computed as a Sugeno integral on R+ with respect to Lebesgue measure.

So, let us consider a measurable space (T, T ) and a generalized measure µ : T →
R+. We consider also the measurable space (R+,B+), where B+ stands for the Borel
sets of R+ and the Lebesgue measure L : B+ → R+.
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Theorem 21. (Transformation Theorem) For any positive measurable function f :
T → R+ and any A ∈ T , one has

(S)

∫
A

fdµ = (S)

∫
ϕdL,

where ϕ : [0,∞)→ [0,∞) is the decreasing function which acts via

ϕ(t) = µ (A ∩ Ft(f)) .

Remarks. 1. Clearly ϕ(t) ≤ µ(T ) for any t ∈ [0,∞). According to the
definition

(S)

∫
ϕdL = sup

α∈[0,∞)
(α ∧ L (Fα(ϕ))) .

For any α ∈ [0,∞), one has

Fα(ϕ) = {u ∈ [0,∞) | ϕ(u) ≥ α} = {u ∈ [0,∞) | µ (A ∩ Fu(f)) ≥ α}

hence Fα(ϕ) = ∅ for α > µ(T ).
It follows that

(S)

∫
ϕdL = sup

α∈[0,µ(T )]
(α ∧ L (Fα(ϕ))) .

It is worth noticing that, for any 0 < α <∞, the set Fα(ϕ) is a bounded interval
with left extremity 0 in [0,∞), hence only the finite values of the measure L are used

in the computation of (S)

∫
ϕdL. Actually, we allowed here for L to have infinite

values (which are not used!) in computing (S)

∫
ϕdL.

2. The formula in Theorem 3.12 is often written as follows

(S)

∫
A

fdµ = (S)

∞∫
0

µ (A ∩ Fα) dα. �

The second result of this section pertains to the parametric continuity of a “flow”
of Sugeno and Choquet integrals with respect to a “flow” of Sugeno measures, which
is canonically generated by a fixed probability. The precise facts follow.

Let (T, T ) be a measurable space. A suitable interpretation of the already men-
tioned Z.Wang’s theorem ([10] and [11]) leads to the following theorem:
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Theorem 22. Denote by M the set of all probabilities µ : T → R+ (i.e.µ are
σ−additive and µ(T ) = 1). For any λ ∈ (−1,∞), denote by Sλ the set of all λ−
Sugeno measures m : T → R+ (of course, S0 =M).

Then, for fixed λ ∈ (−1,∞), there exists a bijection B(λ) :M→ Sλ acting via

B(λ)(µ) = m(λ, µ)

where, for any A ∈ T , one has

m(λ, µ)(A) =


(λ+ 1)µ(A) − 1

λ
, if λ 6= 0

µ(A), if λ = 0.

Remark. Remembering the representability facts, let us consider, for any λ ∈
(−1,∞), the transfer function hλ : [0, 1])→ [0, 1] given via

hλ(t) =


(1 + λ)t − 1

λ
, in case λ 6= 0

t, in case λ = 0.

It is seen that B(λ)(µ) = hλ ◦ µ in all cases. Then B(λ)−1 : Sλ → M acts via
B(λ)−1(m) = h−1λ ◦m where h−1λ : [0, 1]→ [0, 1] is defined via

h−1λ (y) =


ln(1 + λy)

ln(1 + λ)
, in case λ 6= 0

y, in case λ = 0

(see Theorem 5 and the afferent remarks). �
Now, we can state the promised parametric continuity theorems (see [2] and [3]).

Theorem 23. Let (T, T ) be a measurable space, f : T → R+ a measurable function
and µ : T → R+ a probability.

Then, for any A ∈ T , the function V : (−1,∞)→ R+, given via

V (λ) = (S)

∫
A

fdm(λ, µ)

is continuous.

Theorem 24. Let (T, T ) be a measurable space, µ : T → R+ a probability and
f : T → R+ a µ−integrable function. Then:

1. The function f is Choquet integrable with respect to m(λ, µ) for any λ ∈
(−1,∞).
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2. For any A ∈ T , the function W : (−1,∞)→ R+ given via

W (λ) = (C)

∫
A

fdm(λ, µ)

is continuous.

We also can study the asymptotic behaviour, i.e. we can try to extend the
previous continuity results to “the marginal values” λ = −1 and λ =∞ (see[2] and
[3]).

For the same fixed probability µ : T → R+ the asymptotic (marginal) mea-
sures m(−1, µ) : T → R+ and m(∞, µ) : T → R+ are defined as follows:

m(−1, µ)(A) = lim
λ→−1

m(λ, µ)(A)

m(∞, µ)(A) = lim
λ→∞

m(λ, µ)(A).

Theorem 25. The marginal measures are computed as follows (for any A ∈ T ):

m(−1, µ)(A) =

{
0, if µ(A) = 0
1, if µ(A) > 0

m(∞, µ)(A) =

{
0, if µ(A) < 1
1, if µ(A) = 1,

being both atomic (T is an atom) generalized measures.
For any −1 < λ1 < λ2 < ∞, one has m(−1, µ) ≥ m (λ1, µ) ≥ m (λ2, µ) ≥

m(∞, µ).
Also: m(−1, µ) is countably subadditive and m(∞, µ) is countably superadditive.
Supplementarily: 1) In case µ is atomic (T is an atom), one has m(−1, µ) =

m(∞, µ) = m(λ, µ) = µ for any λ ∈ (−1,∞).
2) In case µ is not atomic:

a) m(−1, µ) is “−1−additive” (i.e.

m(−1, µ)(A ∪B) = m(−1, µ)(A) +m(−1, µ)(B)−m(−1, µ)(A)m(−1, µ)(B),

whenever A, B are in T and A ∩ B = ∅) and m(−1, µ) is not λ−additive for any
λ ∈ (−1,∞);

b) m(∞, µ) is not λ−additive for any λ ∈ [−1,∞).

The result concerning the asymptotic behaviour follows.
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Theorem 26. Assume f : T → R+ is measurable. Then, for any A ∈ T one has:

lim
λ→−1

(S)

∫
A

fdm(λ, µ) = (S)

∫
A

fdm(−1, µ);

lim
λ→∞

(S)

∫
A

fdm(λ, µ) = (S)

∫
A

fdm(∞, µ).

Theorem 27. Assume f : T → R+ is µ−integrable. Then, for any A ∈ T one has

lim
λ→−1

(C)

∫
A

fdm(λ, µ) = (C)

∫
A

fdm(−1, µ);

lim
λ→∞

(C)

∫
A

fdm(λ, µ) = (C)

∫
A

fdm(∞, µ);
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