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ABSTRACT. In this paper, we obtain univalence conditions for a new general
integral operator defined on the space of normalized analytic functions in the open
unit disk U. Some corollaries follow as special cases.
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1. INTRODUCTION

Let U = {z : |2| < 1} be the open unit disk of the complex plane and A the class of
all functions of the form

f(2) =24 a92® +az2®..., (1)

which are analytic in U and satisfy the condition f(0) = f (0) — 1 = 0.
Consider S = {f € A: f is univalent in U}.

A function f € A is said to be starlike of order 0, 0 < § < 1, that is f € S*(9),
if and only if

2f (2)
f(2)

A function f € A is said to be convex of order 4, 0 < ¢ < 1, that is f € K(0), if
and only if

Re

]>5 (z€U).

2f (2)
f(2)

It is well known that S*(0) = S* and K(0) = K are the classes of starlike and
convex functions in U, respectively.

Re

+1| > (z€0).
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Frasin and Jahangiri [8] defined the family B(u, A), 1 > 0,0 < A < 1 consisting
of functions f € A which satisfy the condition

]M—1‘<1—)\, (zeU). (2)

The family B(u, A) is a comprehensive class of analytic functions. For instance, we
have B(1,\) = S*(\) and B(2,\) = B(\) (see Frasin and Darus [9]).
In the present paper, we define a new integral operator given by

z n / @i ¢
Fn,<<z>—<< /0 tC—ﬂIweW] dt) : (3)

where parameters ( € C~\{0}, a; € C and the functions f;,g;, h; € A, i € {1,...,n},
are so constrained that the integral operator (3) exists.

The operator F, ¢ extend the following integral operatorS'
(i) For ¢ = 1, eM®) =1, g;(t) = t and oy > 0 we have I, ( = Jo [T [ dt,
that was defined by D. Breaz, S. Owa and N. Breaz in [1], and this operator is a

=

Z

generalization of the integral operator In(f)(2z) = [; [f/ (t)rdt, discussed in [10,
16, 18].

1) For ¢ = i(t) =1 we get t which was studie
(i) For ¢ = 1, gi(t) get Gu(z) = [ 11[1 ﬂ dt which died
by A. Oprea and D. Breaz in [14] and this operator is a generalization of the integral
operator I1(f,h)(z) = [§ | f [ h(t)} dt, defined and studied by N. Ularu and D.
Breaz in [12, 13].
(ili) For ¢ = 1 and e"(® = 1 we obtain I,(z) = [; ] [tfl (tt))] dt, that was
introduced by R. Bucur and D. Breaz in [6] and this operator extends the integral
operator Io(z) = [ [tJ; o) } dt, defined and studied in [2].
(iv) For ¢ =1, n = 1 and fi(t) = t we have Gu(2) = [; [tz}(lt(;)]adt defined and
disscused by R. Bucur, L. Andrei and D. Breaz in [3].
1

’ « <
(v) For n =1 and e"® = 1 we have IS (z {Cf oot [J;((;))} dt} ; which was
studied by R. Bucur, L. Andrei and D. Breaz in [4] ,
(vi) For ¢ = 1 we obtain the integral operator F(z) = [J ]/, [ P () oh (t)] dt,

introduced and studied by R. Bucur and D. Breaz in [5]
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Recently, many authors studied the sufficient conditions for the univalence and
convexity of certain families of integral operators in the open unit disk and some of
them motivated our work(see [7, 19]).

In order to derive our main results, we have to recall here the following:

Lemma 1. (Pascu [15]) Let v be a complex number, Rey > 0 and let the function
feA If

1 2R |2f"(2)
)

for all z € U, then for any complex number ¢, Re( > Rev, the function

<1

— )

Rey

Sl

He(2) = [c [ <t>dt] (1)

1s reqular and univalent in U.

Lemma 2. (Pescar [17]) Let ¢, ¢ be complex numbers with Re( > 0 and |c¢| < 1, ¢ #
—1. If f € A satisfies

zf (%)
¢f'(z)

for all z € U, then the function H¢ given by (4) is univalent in U.

2 + (1 = [2%)2

<1, (5)

Lemma 3. (The General Schwarz Lemma [11]) Let f be reqular function in the disk
Ur ={z € C: |z| < R} with |f(2)| < M, for M fized. If f has in z = 0 one zero
with multiply bigger than m, then

FE) < lel™s (= € Un).

The equality case hold only if f(z) = eleé\ﬁ[nzm, where 0 is constant.

2. MAIN RESULTS

In the folowing theorem we give sufficient conditions of univalence of the operator
F, ¢ defined in (3), by using Pascu univalence criterion.

Theorem 4. Let v, a; € C, Rey > 0 and N;, M;, P, > 1,3 € {1,...,n}, such that

+1
(2Rey + 1) 2Fer Zya,\ (2 - )\)N’“_l]—l—2ReyZ]al IM; + (2 — m)PY]
i=1

2Rev+1

< Rey(2Rey + 1) 2Rev . (6)
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If fi € A, gi € B(ui, \i), hi € B(vi,m;) satisfies

1"

fi(2)
for all z € U, i € {1,...,n}, then for every complex number , Re( > Rev, the
function F, ¢ given by (3) is in the class S.

<M, gi(2)] < Ni,  |hi(2)] < B, (7)

Proof. We begin by considering the function J be defined by

2) = T tfi/ﬁehi(t) h P
J(z) /oi[[l[gi(t) ] dt, zeU. (8)

After we calculate the first-order and the second-order derivatives, we obtain

2J"(2) B - N zfi”(z) B zg;(z) (s
) —; T T e T hi( )]. 9)
Therefore

- " P n .// p , p i i(z pi—1
1 sZ\ai\{H\z\- L0+l ()] [ 2

i=1 ( v

/ z \V ]hz(z)\”z
i (55) | ey o

By applying the General Schwarz Lemma to the functions g1, ..., gn, h1,..., hn,
we obtain

lgi(2)] < Nilz| and |hi(2)| < Pilz| (z€U,i€{l,...,n}). (11)

17

Replacing (11) in inequality (10), we find that
" f (Z) ’ z Hi 1
<D lail - g1+ [zl | 2=+ | [9i(2) — L +1) NP
2 { 712) 5(2)

+|z[~<h

Next, using the hypothesis, we obtain

Z
z

J (z)
J'(2)

1— 2?87 20" (2) 1 — |z|?Rey Z .
| D lail - [T+ (2= MNP
Revy J'(2) Revy po
1— ’Z‘QRe'y n L.
Riev‘\z|-2|ail~[Mi+(2—m)Pﬂ]. (13)
i=1
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Since
1 — |z|2Rey 2
max—— - 2| = , 14
o Rey (2Rery + 1) 2her .
we have
1—|z[2Re | 20" (2) 1 & 1
. < il -1 2— N\ NHi
e | | < ey bl [+ XN
2 - L.
+ 2Rey+1 Z || - [M; + (2 —mi) ;"] (15)
(2Rey + 1) 2Rev ;54
If we make use of (6), the last inequality yields
1—|z|2Rey | 20" (2)
. <1 U. 16
Rey J(z) |~ Z€ (16)

Finally by applying Theorem 1, it results that function F;, ¢ is in the class S.

Letting p; = v; = M; = N; = P, = 1 and n; = \; for all i € {1,...,n} in
Theorem 4, we have

Corollary 5. Let v, ay,...,a, € C, Rey > 0, 0 < \; < 1 such that

2Rev+41 n 2Revy+41
[(ZRev 4+ 1) 2Rer 2Re'y} Z li|(3 — \i) < Rey(2Rey 4+ 1) 2Rev , i€ {1,...,n}.
i=1
(17)
If fi € A, gi, hi € S*(\;) and

7) | | B

72 <1, |g(z)| <1, Jhi(2)|<1 (z€U;i€e{l,...,n}), (18)
(=

then for every complex number ¢, Re¢ > Revy, the function F, ¢ given by (3) is in
the class S.

Letting n = 1 in Theorem 4, we have

Corollary 6. Let v, « € C with Rey > 0 and N, M, P > 1. Suppose that f €
A, g€ B(u,\), h € B(v,n) such that

f(2)
f(2)

<M, [g(z)] <N, [h(z)] <P, (19)

21



R. Bucur, D. Breaz — Univalence conditions ...

for all z € U. If

2Revy+1
(2Rey + 1) 28 [al[l + (2 — AN#71] 4 2Req|a|[M + (2 — )P]
2Rev+1

< Rey(2Rey + 1) 2Rev | (20)

then for every complexr number ¢, Re( > Rev, the function
o\
® it | £ ne
Fe(2) = C/ta+<1€() dt 21
¢(2) ( ; ) (21)

Letting ¢i(z) = 2z, ¢ € {1,...,n}, Theorem 4 reduces to the following result.

18 in the class S.

Example 1. Let v, a; € C, Rey > 0 and M;, P, > 1,1 € {1,...,n}, such that

n n
2Revy+1 "
3(2Rey +1) 5 3 [os] + 2Rey Y Jau|[M; + (2 — m)P}]

i=1 i=1
2Rev+1
< Revy(2Rey + 1) 2Rev | (22)
If fi € A, h; € B(v;,m;) satisfies
LC <, o)l < P (23

for all z € U,i € {1,...,n}, then for every complex number ¢, Re( > Rev, the
function

Ii(z) = (c /O ] [ o] dt) R (24)
i=1

s in the class S.
Theorem 7. Let ¢, ay,...,ap, ( € C with Re( > 0 and M;, N;, P, > 1,1 €
{1,...,n}. Suppose that f; € A, g; € B(ui, \i), hi € B(vi,n;) satisfies

2f; (2)

fi(2)

<M, gi(2)| < N;, |zhi(2)| <P, zeUie{l,...,n}. (25)
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If
Re¢ > ) los|[1+ M; + Pi + (2 — AN
i=1

and

1 O -
el <1— R—GCZIaiHl—i—MH-Pi +(2 = AN
=1

for alli € {1,...,n}, then the function F, ¢ given by (3) is in the class S.

Proof. Let the function J be defined in (8). So, for a given constant ¢ € C, we
obtain

2¢ 2¢ ZJ”(Z)
clz|>+(1—|z y
£ 4 (1= ) 25
1 & 2fi (2)  2g:(2) /
= lc|z]? + (1= 2)3) - |14 2 — == 4 zh(2)
1< zf; (2) zg,(2) /
el o D el - |1+ (22 (2 ani ) | (26)
Now, applying the General Schwarz Lemma to the functions g1, ..., g,, we find
that
|9i(2)| < Nilz]. (27)

Using the hypothesis and (27) in inequality (26), we have

2J"(2)
¢J'(2)

1 n
S|c[—|—m2|ai|- |:1+Mi+Pi+<
i=1

cl2 + (1~ |2*)

—

o i) )]

1 __1
< . . . ). Hi < 1.
<ol + g ;:1:\041\ 14+ M+ Pt 2= MNP <1

(28)

Finally, by applying Lemma 2 to the function J, we deduce that function F;, ¢ is in
the class S.
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Letting ; = v, = M; = N, = P, = land n; = A for all i € {1,...,n} in
Theorem 7, we have

Corollary 8. Let ¢, aq,...,ap, ¢ € C with Re( > 0. Suppose that f; € A, g;, h; €
S*(\;) satisfies

<1, lgi(2)| <1, |zhi(2)] <1, (29)

forallze U and i € {1,...,n}. If
n 1 n
Re( > ; 0i](5 = %) and || S1- g ; o (5 — i),
foralli e {1,...,n}, then the function F, ¢ given by (3) is in the class S.
Letting n = 1 in Theorem 7, we have

Corollary 9. Let ¢, a, ¢ € C with Re( > 0 and M, N, P > 1. Suppose that f €
A, g € B(u,\), h € B(v,n) satisfies

2f"(2)

f'(2)

<M, |g(z)| <N, |zh'(2)| <P, (30)

forall z € U. If
Re¢ > |a|[l + M+ P + (2 — A)NA1]

and

le] <1 - }'{1[1+M+P+(2—)\)N“1],

then the function F; given by (21) is in the class S.
Letting ¢i(z) = 2z, ¢ € {1,...,n}, Theorem 7 reduces to the following result.

Example 2. Let ¢, ay,...,a,, ¢ € C with ReC >0 and M;, P, > 1,i € {1,...,n}.
Suppose that f; € A, h; € B(v;,m;) satisfies

2f; (2)
fi(2)

< M;, |zhi(2)| <P, zeUie{l,...,n}. (31)

24



R. Bucur, D. Breaz — Univalence conditions ...

If
Re¢ > > o] (3+ M; + Py)
i=1

and
1 n
<1l—— | (3 + M; + P;
|e| < RGC;’%‘( + M; + F;)

forallie{1,...,n},

(z) = (c | I1 [£: e )™ dt) , (32)
i=1

e

s in the class S.

Remark 1. Many other interesting corollaries of Theorems 4 and 7 can be obtained
by suitably specializing the parameters and the functions involved.
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