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1. Introduction

Throughout this paper X, Y will denote Banach spaces, and E, F will denote
Banach lattices. BX is the closed ball of X.

In [3] the authors studied the L-weak (resp. M-weak) compactness of semi-
compact operators. They proved that if E and F are nonzero Banach lattices, then
each semi-compact operator T : E −→ F is L-weakly compact if, and only if, the
norm of F is order continuous [[3], Theorem 1]. Also, if F is Dedekind σ−complete,
then each positive semi-compact operator T : E −→ F is M-weakly compact if,
and only if, the norms of E′ and F are order continuous or E is finite dimensional
[[3], Theorem 2]. Our objective in this paper is to continue the investigation of
Banach lattices on which each limited operator is L-weakly compact (resp. M-weakly
compact) and the converse.

The article is organized as follows, after the introduction, we give notations,
definitions and what we will need from the Banach lattice theory in a preliminary
section. In section 3, we start with a characterization for limited (compact) operators
being L-weakly compact (Theorem 1). Also, we give necessary conditions under
which each L-weakly compact operator is limited (Theorem 3). Finally, in section 4
we characterize Banach lattices on which each positive limited operators is M-weakly
compact (Theorem 6), and we give some sufficient conditions for which the class of
regular limited operators coincides with that of L-weakly compact operators and
M-weakly compact (Corollary 8).
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2. Preliminaries

A bounded subset A of X is called limited if, for every weak* null sequence (x′n) in
the dual space X ′, we have x′n(x) −→ 0 uniformly for x in A. Based on this concept,
the class of limited operators, first appeared in 1984 in connection with studying
problems of the strictly cosingular operators (see [2]). We recall that an operator
T : X −→ Y is said to be limited if T (BX) is a limited subset of Y . Alternatively,
the operator T is limited if, and only if, ‖T ′(fn)‖ −→ 0 for every weak* null sequence
(fn) ⊂ Y ′.

It is well known that each compact operator is limited but there exists a limited
operator which is not compact. Indeed, the canonical injection i : c0 ↪→ `∞ is
limited (see [1, Theorem 4.67]) but fails to be compact. On the other hand, an
operator T from E into X is M-weakly compact if, ‖T (xn)‖ −→ 0 holds for every
norm bounded disjoint sequence (xn) in E. An operator T from X into E is called
L-weakly compact if, ‖yn‖ −→ 0 holds for every disjoint sequence (yn) in the solid
hull of T (BX). That L-weakly compact and M-weakly compact operators are weakly
compact operators was shown by P. Meyer-Nieberg [5, Proposition 3.6.12].

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and its
norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we
have ‖x‖ ≤ ‖y‖. A norm ‖ · ‖ of a Banach lattice E is order continuous if for
each generalized sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the
norm ‖ · ‖ where the notation xα ↓ 0 means that (xα) is decreasing, its infimum
exists and inf(xα) = 0. For the element x in a Riesz space E, if the order ideal
generated by x coincides with the vector space generated by x then x is called a
discrete element of E. The Riesz space E is called discrete if all discrete elements
of E are order dense. For instance, the spaces c, c0 and `p (1 ≤ p ≤ ∞) are discrete
Riesz spaces but the spaces (`∞)′ and L2[0, 1] are not discrete. If all limited sets
in Banach space X are relatively compact, then X is said to be a Gelfand-Phillips
space (has GP-property). For example, the classical Banach spaces c0 and `1 have
the GP-property and every separable Banach space, every Schur space (i.e., weak
and norm convergence of sequences in X are coincide), and spaces containing no
copy of `1, such as reflexive spaces, have the same property [2].

Note that if E is a Banach lattice, its topological dual E′, endowed with the
dual norm and the dual order, is also a Banach lattice. Also, a vector lattice E
is Dedekind σ-complete if every majorized countable nonempty subset of E has a
supremum. The lattice operations in E (resp. in E′) are called weak (resp. weak*)
sequentially continuous if the sequence (|xn|) (resp. (|fn|)) converges to 0 in the
weak (resp. weak*) topology, whenever the sequence (xn) (resp. (fn)) converges
weakly (resp. weak*) to 0 in E (resp. in E′). A subset A of a Riesz space is called
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solid whenever |x| ≤ |y| and y ∈ A imply x ∈ A. The solid hull of a set A is the
smallest solid set including A and is exactly the set

Sol(A) := {x ∈ E : ∃y ∈ A with |x| ≤ |y|}.

We will use the term operator T : E −→ F to mean a bounded linear mapping.
It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. Note that each positive
linear mapping on a Banach lattice is continuous. If an operator T : E −→ F is
positive then, its adjoint T ′ : F ′ −→ E′ is likewise positive, where T ′ is defined by
T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E.

Note that

Ea = {x ∈ E : every monoton sequence in [0, |x|] is convergent}

is the maximal closed order ideal in E on which the induced norm is order continuous.
The following facts are basic and will be used in the rest of this paper very often
(see [5], p. 212).

1. Every L-weakly compact subset A of a Banach lattice E is contained in Ea.

2. Every relatively compact subset of Ea is L-weakly compact. In particular, if
E has an order continuous norm then every relatively compact subset of E is
L-weakly compact so that every compact operator from X into E is L-weakly
compact.

We refer the reader to [[1], [5]] for unexplained terminologies on Banach lattice
theory and positive operators

3. Limited and L-weakly compact operators

Note that there exists an operator which is compact (resp. limited) but not L-weakly
compact (resp. M-weakly compact). In fact, the operator T : `1 −→ `∞ defined by

T ((λn)n) = (
∞∑
n=1

λn)(1, 1, . . .)

for all (λn) ∈ `1. It is clear that T is a compact (and hence a limited) operator
but it is neither L-weakly compact nor M-weakly compact [[1], p. 322]. Conversely,
there exists an operator which is L-weakly compact (resp. M-weakly compact) but
not limited ( see Remark 1).

The following result characterizes pairs of Banach lattices E,F for which every
limited (resp. compact) operator T : E −→ F is L-weakly compact.
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Theorem 1. The following assertions are equivalent:

1. each limited operator T : E −→ F is L-weakly compact;

2. each compact operator T : E −→ F is L-weakly compact;

3. one of the following conditions is valid:

(a) E = {0};
(b) the norm of F is order continuous.

Proof. (1) =⇒ (2) Obvious.
(2) =⇒ (3) Assume by way of contradiction that E 6= {0} and the norm of F is

not order continuous. To finish the proof, we have to construct a compact operator
T : E −→ F which is not L-weakly compact. Since E 6= {0}, it follows from [12,
Theorem 39.3] that there exist a ∈ E+ and ψ ∈ (E′)+ such that ‖ψ‖ = 1 and
ψ(a) = ‖a‖ = 1.

On the other hand, since the norm of F is not order continuous, it follows from
[5, Theorem 2.4.2] that there exists an order bounded disjoint sequence (un) ⊆ F+

which is not norm convergent to zero. We can assume that there is u ∈ F+ with
0 ≤ un ≤ u for all n. As |un| = un −→ 0 for σ(E,E′) (see Remark of ([1], page
192), it follows from [4, Corollary 2.6], that there exists a bounded disjoint sequence
(fn) ⊂ (F ′)+ such that fn(un) ≥ ε for every n (ε > 0 fixed). Define the operator
T : E −→ F by T (x) = ψ(x)u for each x ∈ E, and note that T is compact (because
its rank is one). But is not L-weakly compact. In fact, since (fn) is a bounded
positive disjoint sequence in F ′ and

‖T ′(fn)‖ = ‖fn(u)ψ‖ ≥ ‖fn(un)ψ‖ ≥ ε

for every n. This show that T ′ is not M-weakly compact. Hence by [5, Proposition
3.6.11] T is not L-weakly compact.

(3; a) =⇒ (1) Obvious.
(3; b) =⇒ (1) Let T : E −→ F be a limited operator and let (fn) be a disjoint

sequence in BF ′ . As the norm of F is order continuous then, it follows from [5,
corollary 2.4.3] that (fn) is a weak* null sequence. Now, as T is limited, ‖T ′(fn)‖ −→
0. Then T ′ is M-weakly compact and hence T is L-weakly compact.

As a consequence, we obtain a characterization of the order continuity of the
norm of a Banach lattice.

Corollary 2. The following statements are equivalent:

1. every limited operator T from E into E is L-weakly compact;
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2. every compact operator T from E into E is L-weakly compact;

3. the norm of E is order continuous.

It should be noted that a subset A ⊂ X is limited if, and only if, fn (xn) → 0
for every sequence (xn) in A and every weak* null sequence (fn) in X ′.

Now, we give the converse of Theorem 1. In fact, we give necessary conditions
under which each L-weakly compact operator is limited.

Theorem 3. If each L-weakly compact operator T from E into F is limited, then
one of the following assertions is valid:

1. the norm of E′ is order continuous;

2. each order bounded subset of F a is limited.

Proof. It suffices to prove that if the norm of E′ is not order continuous, then each
order bounded subset of F a is limited i.e., For each y ∈ (F a)+, (yn) ⊆ [−y, y] and
weak* null sequence (gn) ⊆ (F a)′, we have gn(yn) −→ 0.

Since the norm of E′ is not order continuous, there exists a positive order
bounded disjoint sequence (x′n) ⊂ E′ satisfying ‖x′n‖ = 1 for all n ([5, Theorem
2.4.2]). Let x′ ∈ (E′)+ such that 0 ≤ x′n ≤ x′ for all n.

Now, consider the operators:

P : E → `1, x 7−→ P (x) = (x′n(x))∞n=1 ,

S : `1 → F, (λn)∞n=1 7−→
∞∑
n=1

λnyn .

Since
∑∞

n=1 |x′n(x)| ≤
∑∞

n=1 x
′
n|x| ≤ x′|x| for each x ∈ E, the operator P take values

in `1.
Let T = S ◦P : E −→ `1 −→ F such that T (x) =

∑∞
n=1 x

′
n(x)yn for each x ∈ E.

Note that for all x ∈ BE , we have

|T (x)| ≤
∞∑
n=1

|x′n(x)||yn| ≤ (

∞∑
n=1

x′n)|x|y ≤ x′|x|y ≤ ‖x′‖y.

So that T (BE) ⊆ ‖x′‖[−y, y], then T is L-weakly compact (because y ∈ (F a)+) and
hence by our hypothesis T is limited. As (gn) is a weak* null sequence in F ′, we
have for every n

|T ′(gn)| =
∞∑
i=1

|gn(yi)|x′i ≥ |gn(yn)|x′n ≥ 0.
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Thus,
|gn(yn)| = |gn(yn)|‖x′n‖ ≤ ‖T ′(gn)‖ −→ 0.

This ends the proof of the Theorem.

In the remark we will need the following Lemma,

Lemma 4. Let A be a norm bounded subset of X. If for each ε > 0 there exists
some limited subset Aε in X such that A ⊂ Aε + εBX then, A is limited in X.

Proof. Let S : X −→ c0 be an operator and ε > 0, then by our hypothesis there
exists a limited subset Aε in X such that A ⊂ Aε + εBX hence, S(A) ⊂ S(Aε) +
ε‖S‖Bc0 . As Aε is a limited set then, S(Aε) is relatively compact in c0 [7, Theorem
2.3.] and hence by [1, Theorem 3.1], S(A) is relatively compact in c0. This shows
by [7, Theorem 2.3.] that A is a limited set in X.

Remark 1. 1. The first necessary condition of Theorem 3 is not sufficient. In-
deed, let E = `∞ and F = L2[0, 1]. Since E′ and F are not discrete, it follows
from [8, Theorem 1] that there exist two operators S, T : E −→ F such that
0 ≤ S ≤ T with T is compact (and hence is L-weakly compact because the norm
of F is order continuous) and S is not compact (hence is not limited because
F has the GP-property). Since the class of L-weakly compact operators satis-
fies the domination problem [1, Exercise 2 in Section 5.3], then S is L-weakly
compact. We conclude that there exists a positive operator S : E −→ F which
is L-weakly compact (resp. M-weakly compact because E′ and F have order
continuous norms [5, Theorem 3.6.17]) but it is not limited. Although, the
norm of E′ is order continuous.

2. The second necessary condition of Theorem 3 is sufficient. In fact, if T : E −→
F is L-weakly, then by [5, Proposition 3.6.2] for each ε > 0 there exists x ∈ F a
such that T (BE) ⊆ [−y, y] + εBFa. Since each order bounded subset of F a is
limited it follows from Lemma 4 that T is limited.

As consequence of Theorem 3 and Remark 1 we have the following characteriza-
tion,

Corollary 5. The following assertions are equivalent:

1. each L-weakly operator T from `1 into E is limited.

2. each order bounded subset of Ea is limited.
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4. Limited and M-weakly compact operators

In the following result, we characterize Banach lattice on which each positive limited
operator is M-weakly compact.

Theorem 6. Let F be a Dedekind σ−complete and F ′ has weak* sequentially con-
tinuous lattice operations. Then the following assertions are equivalent:

1. each positive limited operator T : E −→ F is M-weakly compact;

2. one of the following conditions is valid:

(a) E is finite dimensional;

(b) F = {0};
(c) The norms of E′ and F are order continuous.

Proof. (1) =⇒ (2) It suffices to establish the following two separate claims.

(a) if the norm on F is not order continuous then E is infinite dimensional,

(b) if the norm on E′ is not order continuous then F = {0}.

Indeed, Assume that E is infinite dimensional and that the norm of F is not order
continuous. By [10, Proposition 0.2.11] there exists a positive disjoint sequence (xn)
of E such that ‖xn‖ ≥ ε. As ‖xn‖ = sup{f(xn) : f ∈ (BE′)+}, for each n there exists
fn ∈ (BE′)+ such that fn(xn) ≥ ε. Applying [10, Proposition 0.3.11] and its proof,
we find a positive disjoint sequence (gn) of E′ such that gn ≤ fn, gn(xn) = fn(xn)
for all n and gn(xm) = 0 for n 6= m. Consider the positive operator P : E −→ `∞

defined by P (x) = (gn(x))n and note that P (BE) ⊆ B`∞ . On the other hand, since
the norm of F is not order continuous, it follows from [5, Theorem 2.4.2] that there
exists an order bounded disjoint sequence (yn) ⊆ F+ which is not norm convergent
to zero. We can assume that there is y ∈ F+ with 0 ≤ yn ≤ y for all n. It follows
from the proof of [11, Theorem 117.3] that the operator

S : `∞ −→ F, (λk) 7−→
∞∑
k=1

λkyk

defines a positive operator from `∞ into F where the convergence is in the sense of
the order.

Now, we consider the operator T = S ◦ P : E −→ F defined by

T (x) =

∞∑
k=1

gk(x)yk for each x ∈ E
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is well defined and limited. Indeed, note that for all (λk) ∈ B`∞ and from the
disjointness of the sequence (yn), we have

|S((λk))| ≤
∞∑
k=1

|λk||yk| ≤ (sup
k
|λk|)

∞∑
k=1

|yk| ≤ y.

Since T (BE) = S(P (BE)) ⊆ [−y, y] and the order interval [−y, y] is limited ([6,
Proposition 3.1]), then T (BE) is limited so that T is limited. But T is not M-weakly
compact. To see this, note that ‖T (xn)‖ = ‖S ◦ P (xn)‖ = ‖S(en)‖ = ‖yn‖9 0.

To prove claim (b), we suppose that the norm on E′ is not order continuous and
F 6= {0}. By [11, Theorem 116.1] there is a norm bounded disjoint sequence (un)
of positive elements in E which does not converge weakly to zero. Hence, we may
assume that ‖un‖ ≤ 1 for all n and also that for some 0 ≤ φ ∈ E′ and some ε > 0
we have φ(un) > ε for all n. Then it follows from [11, Theorem 116.3] that the
components φn of φ in the carriers Cun form an order bounded disjoint sequence in
(E′)+ such that

φn(un) = φ(un) for all n and φn(um) = 0 if n 6= m.

Now, we define a positive operator P : E −→ `1 by

P (x) = (φn(x)φ(un)
)∞n=1 for all x ∈ E.

Since
∑∞

n=1 |
φn(x)
φ(un)

| ≤ 1
ε

∑∞
n=1 φn(|x|) ≤ 1

ε |φ(|x|)| holds for each x ∈ E, the operator

P is well defined. On the other hand, as F 6= {0}, there exists a non-null element
u ∈ F+. We consider the positive operator defined by S : `1 −→ E defined by

S((λn)) = (
∞∑
n=1

λn)u for all (λn) ∈ `1.

Now, we consider the composed operator T = S ◦ P : E −→ `1 −→ E defined by

T (x) = (
∞∑
n=1

φn(x)
φ(un)

)u for all x ∈ E.

Note that T is compact (and hence is limited). Since (un) is a disjoint sequence in
BE and ‖T (un)‖ = ‖S ◦ P (un)‖ = ‖S(en)‖ = ‖u‖ for all n, it follows that T is not
M-weakly compact, and this gives a contradiction with our hypothesis (1).

(2; a) =⇒ (1) and (2; b) =⇒ (1) are obvious.
(2; c) =⇒ (1) It follow from (2; b) =⇒ (1) of Theorem 1 and [5, Theorem 3.6.17].
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Remark 2. The conditions “F is Dedekind σ-complete” and “F ′ has weak* se-
quentially continuous lattice operations ” are not an accessory in the above theorem.
Indeed, each operator T : `∞ −→ c is weakly compact (see the proof of [9, Proposi-
tion 1]). Since `∞ is an AM-space, T is M-weakly compact [1, Theorem 5.62]. Yet
none of the three possible conditions listed holds.

In [6], the authors considered a weak version of the class of limited operators,
so called order limited operators. Recall that an operator T from E into X is said
to be order limited, if T carries each order bounded subset in E to a limited one in
X, equivalently, |T ′(fn)| −→ 0 for σ(E′, E) for each sequence (fn) ⊂ X ′ such that
fn −→ 0 for σ(X ′, X) [6, Theorem 3.3 (3)].

Note that, there exists an order limited operator which is not limited. Indeed,
the identity operator of the Banach lattice l1 is order limited, but is not limited. In
our last major result, we show that each operator between Banach lattices is limited
whenever it is both order limited and M-weakly compact.

Theorem 7. Each operator T : E −→ F is limited whenever it is both order limited
and M-weakly compact.

Proof. Consider an operator T : E −→ F which is order limited and M-weakly
compact.

Let (fn) ⊂ F ′ be a weak* null sequence. We shall show that‖T ′(fn)‖ −→ 0.
By [4, Corollary 2.7], it suffices to prove that |T ′(fn)| −→ 0 for σ(E′, E) and
(T ′(fn))(xn) −→ 0 for every disjoint and norm bounded sequence (xn) ⊂ E+. In-
deed:

- as T is order limited then, |T ′(fn)| −→ 0 for σ(E′, E).
- as fn −→ 0 for σ(F ′, F ), (fn) is norm bounded Hence and since T is M-weakly,

we obtain |T ′(fn)(xn)| = |fn(T (xn))| ≤ ‖fn‖‖T (xn)‖ −→ 0. This complete the
proof.

An operator T : E −→ F is regular if T = T1 − T2 where T1 and T2 are positive
operators from E into F .

As a consequence of Theorem 7, we give some sufficient conditions under which,
the class of L-weakly compact, M-weakly compact and limited operators to coincide.

Corollary 8. If E′ and F have order continuous norms. Then, for each regular
order limited operator T : E −→ F the following statements are equivalent:

1. T is L-weakly compact;

2. T is M-weakly compact;

3. T is limited.
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Proof. (1) =⇒ (2) Follows from [5, Theorem 3.6.17].
(2) =⇒ (3) Follows from Theorem 7.
(3) =⇒ (1) Follows from Theorem 1.

Note that if E′ has weak* sequentially continuous lattice operations, then every
operator T from E into an arbitrary Banach space is order limited. The following
consequence of Theorem 7 gives a sufficient condition under which each M-weakly
compact operator is limited.

Corollary 9. If E′ has weak* sequentially continuous lattice operations. Then, each
M-weakly compact operator from E into F is limited.
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