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SINC AND THE NUMERICAL SOLUTION OF
VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
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Abstract. A numerical method based on sinc approximation is developed
to solve linear and nonlinear Volterra-Fredholm integro-differential equations. Sinc
approximation are typified by errors of the form O

(
e−k/h

)
, where k > 0 is a constant

and h is a step size. The equations are reduced to systems of linear and nonlinear
algebraic equations. Numerical examples are provided to illustrate the accuracy and
computational efficiency of the method. The examples include convolution type,
singular as well as singularly-perturbed problems.
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1. Introduction

Nonlinear phenomena, that appear in many applications in scientific fields, such as
fluid dynamics, solid state physics, plasma physics, mathematical biology and chem-
ical kinetics, can be modelled by partial differential equation, integral equations or
by integro-differential equations (IDEs). For example, IDEs arise in the mathemati-
cal modelling of epidemic and various biological models[57]. They also model a lot of
physical process such as nano-hydrodynamics [61], glass forming process [59], drop
wise condensation [55], wind ripple in the desert [10] and studies of polymer chains
[37].

The initial value problem for a nonlinear system of integro-differential equations
was used to model the competition between tumor cells and the immune system [7].
In [1] a nonlinear problem involving fluid waves with an oceanographical applica-
tion was reduced to a system of integro-differential equations. Nonlinear integro-
differential equations are usually hard to solve analytically and exact solutions are
scarce. Therefore, they are treated numerically or semi analytic numerical methods
are used. Several numerical methods have been developed for solving integral and
IDEs . Each of these methods has its inherent advantages and disadvantages.
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The search for alternative, more general, easier and more accurate numerical
methods is a continuous and ongoing process. The numerical solution of nonlin-
ear integro-differential equations has two major aspects. First, the equations are
discretized, generally by replacing them with a sequence of finite dimensional ap-
proximations following the discretization, the resulting finite dimensional problem
may be solved by some type of iteration scheme such as Newton or quasi-Newton
method. Existence theory for these equations was discussed in [46]. The upper and
lower bounds of the solutions were studied in [9, 13, 15, 34]. Properties, Uniqueness
and stability were discussed in [2, 31, 37].

The nonlinear Volterra-Fredholm integral equation was treated in [28] using ho-
motopy perturbation method (HPM), in [11] using spline collocation, in [36, 63]
using Taylor polynomials, in [30] using Trapezoidal Nystrom method and in [64]
using Legendre wavelets. Existence and uniqueness of solutions to linear IDEs was
discussed by Agarwal [3].

The solution of Linear Volterra-Fredholm integro-difference equation was pre-
sented in [62] using Taylor collocation. The decomposition method was used in [19]
to treat high order linear Volterra-Fredholm IDEs. Recent paper by Maleknejad et
al. [40] uses Berstein operational matrix to treat a system of high order linear V-F
IDEs and includes other methods to solve these equations.

Solutions of nonlinear Volterra-IDEs up to 2010 were considered by the authors
in [42]. A comparison between wavelet-Galerkin method and HPM was given in [28].
More recent contributions include the use of differential transform method [56]. For
solutions of nonlinear Fredholm IDEs : Adomian’s decomposition method [17, 51]
was employed to treat coupled nonlinear system of Fredholm IDEs. In [18] the
method was applied to a first order special nonlinear Fredholm IDEs in two variables.
Optimal order spline methods were used in [22]. Neta [38] employed Galerkin’s
method to a special first order nonlinear Fredholm IDEs in two unknowns. In [21]
orthogonal collocation was applied to a second order Fredholm IDE. Homotopy
perturbation was employed in [25, 23]. Sine-cosine wavelet-Galerkin was used in
[26] ,while Haar wavelet method was applied in [33].

The solution of both nonlinear Volterra and Fredholm IDEs was given in [52] us-
ing homotopy analysis method (HAM) while homotopy perturbation method (HPM)
was used in [50] . The modified decomposition method was used in [60] and compared
with the direct direct computation as well as the series solution method. Chebyshev
polynomials were used in [14]. Use of HPM is given in [27]. An optimal control
approach was used in [20].

The solution of nonlinear Volterra and Fredholm integro-differential equations
was given in [4, 58] using homotopy analysis method (HAM), in [4] using modified
Adomian decomposition ,in [12, 16, 40] using Taylor polynomials and in [21] using
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optimal order splines. The problem was treated in [6] using triangular function and
its operational matrix and in [5] using operational matrix with block pulse func-
tions (BPFs) to treat specific linear and nonlinear V-FIDEs. Orthogonal Legendre
polynomials were used in [53] while orthogonal Chebyshev polynomials were used in
[41].

In the present study, the basic ideas of previous works using sinc-collocation are
developed and applied to linear and nonlinear Volterra-Fredholm integro-differential
equations. Sinc approximation are typified by errors of the form O

(
e−k/h

)
, where

k > 0 is a constant and h is a step size. The equations have the form:

n∑
i=0

µi(x)u(i)(x) = f(x) + λ1

∫ x

a
K1(x, t) [u(t)]ν d t+ λ2

∫ b

a
K2(x, t) [u(t)]σ d t,

x ∈ J = [a, b]

nu(a) = γ n (n− 1)u(b) = β

(1)

where K1(x, t),K2(x, t), f(x), u(x) and µi(x), i = 0, 1, 2, are analytic functions and
λ1 and λ2 are parameters, and γ and β are real constant and ν ≥ 1, σ ≥ 1 . It will
always be assumed that (1) possesses a unique solution u ∈ Cn(J).

The organization of the paper is as follows. In Section 2, we describe the basic
formulation in terms of sinc functions required for our subsequent development. In
Section 3 we introduce the sinc-collocation method and show how the method is used
to solve linear Volterra-Fredholm integro-differential equations with homogeneous
boundary conditions. Section 4 is devoted to the solution of nonlinear Volterra-
Fredholm integro-differential equations. Section 5 presents appropriate techniques
to treat nonhomogeneous boundary conditions. The examples include convolution
type, singular as well as singularly-perturbed problems in Section 6. The conclusion
is given in Section 7.

2. Sinc function

Sinc methods have increasingly been recognized as powerful tools for attacking prob-
lems in applied physics and engineering. Previous treatments of integral and integro-
differential equations using the sinc approximation include: Sinc-Nystrom method
for numerical solution of one- dimensional, Cauchy singular integral equations on a
smooth arc in the complex plane [8]. Ref [47] used the sinc method to treat first
order linear FIDE. Sinc-collocation for linear FIE of second kind [48]. Ref. [45]
used single and double exponential sinc-collocation to treat Volterra and Fredholm
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integral equations. Mohsen and El-Gamel[42] used sinc-collocation for second order
linear FIDE and for linear and nonlinear VIDE [44].

The sinc-collocation approach for solving Fredholm IDEs presented by Mohsen
and El-Gamel [42] and extended by the same authors to linear and nonlinear Volterra
IDEs [44] is used here. A general review of sinc function approximation is given in
[35, 43, 54]. Hence, only properties important to the present goals are outlined in
this section.
If f(x) is defined on the real line, then for h > 0 the Whittaker cardinal expansion
of f is given by:

fm(x) =
N∑

k=−N
fk S(k, h)(x), m = 2N + 1

where fk = f(xk), xk = h k, and the mesh size is given by

h =

√
π d

αN
, 0 < α ≤ 1, d ≤ π

2
(2)

where N is suitably chosen and α depends on the asymptotic behavior of f(x). The
n-th derivative of the function f at the sampling points xk = k h can be approximated
using a finite number of terms as:

f (n)(xk) ∼= h−n
N∑

k=−N
δ
(n)
j k fk

where

δ
(n)
j k =

dn

d xn
S(j, h)(x)|x=xk

In particular,

δ
(0)
jk = [S(j, h)(x)] |x=xk =


1, j = k,

0, j 6= k,

(3)

δ
(1)
jk =

d

d x
[S(j, h) (x)] |x=xk =


0, j = k,

(−1)k−j
k−j , j 6= k,

(4)

and

δ
(2)
jk =

d2

d x2
[S(j, h) (x)] |x=xk =


−π2

3 , j = k,

−2(−1)k−j
(k−j)2 , j 6= k.

(5)
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We note that
δ
(0)
k j = δ

(0)
j k , δ

(2)
k j = δ

(2)
j k and δ

(1)
k j = −δ(1)j k .

The interpolation formula for f(x) over [a, b] takes the form

f(x) ≈
N∑

k=−N
fk S(k, h) ◦ φ(x), (6)

where the basis functions on (a, b) are then given by

S(k, h) ◦ φ(x) = sinc

(
φ(x)− k h

h

)
and the transformation function

φ(x) = ln

(
x− a
b− x

)
(7)

transforms [a, b] to the infinite range [−∞,∞]. The interpolation points {xk} are
then given by:

xk =
a+ b ekh

1 + ekh

The quadrature formula of F (x) is given by∫ b

a
F (x) d x ≈ h

N∑
k=−N

F (xk)

φ′(xk)
, (8)

Corollary 1. [54] Let N be a positive integer, let δ
(−1)
k be defined as

δ
(−1)
k j =

1

2
+

∫ k−j

0

sin (π t)

π t
d t. (9)

and let h be defined as (2). Then there exists a constant C, which is independent of
N , such that ∣∣∣∣∣∣

∫ x

a
F (t) d t− h

N∑
j=−N

δ
(−1)
k j

F (xj)

φ′(xj)

∣∣∣∣∣∣ ≤ C e−(π dαN)1/2 . (10)

then define I(−1) by the Toeplitz matrix [29]

I(−1) =
[
δ
(−1)
k j

]
, k, j = −N, . . . , N.
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3. Linear Volterra-Fredholm Integro-differential Equations

For case ν = 1, and σ = 1, we assume that u(x), the solution of (1), is approximated
by the finite expansion of sinc basis functions

um(x) =
N∑

j=−N
uj S(j, h) ◦ φ(x), m = 2N + 1. (11)

Application of (8) to the first kernel integral in (1) gives∫ b

a
K1(x, t)u(t) d t ≈ h

N∑
j=−N

K1(x, tj)

φ′(tj)
uj , (12)

Application of (10) to the second kernel integral in (1) gives∫ x

a
K2(x, t)u(t) d t ≈ h

N∑
j=−N

δ
(−1)
k j

K2(x, xj)

φ′(xj)
uj , (13)

where uj denotes an approximate value of u(xj). If we replace the integration terms
on the right-hand side of (1) with the right-hand side of (12) and (13) we have

N∑
j=−N

[
n∑
i=0

µi(x)
di

d xi
S(j, h) ◦ φ(x)− hλ1

K1(x, tj)

φ′(tj)
− λ2 h δ(−1)k j

K2(x, xj)

φ′(xj)

]
uj = f(x).

(14)
Setting

di

dφi
[S(j, h) ◦ φ(x)] = S

(i)
j (x), 0 ≤ i ≤ 2, (15)

we note

d

dx
[S(j, h) ◦ φ(x)] = S

(1)
j (x)φ′(x)

d2

dx2
[S(j, h) ◦ φ(x)] = S

(2)
j (x)

[
φ′(x)

]2
+ S

(1)
j (x)φ′′(x).

(16)

Using (15) and (16) and substituting x = xk in (14) and applying the collocation to
it, we eventually obtain the following theorem

Theorem 2. If the assumed approximate solution of the problem (1) is (11), then
the discrete sinc-collocation system for the determination of the unknown coefficients
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{uj ,−N ≤ j ≤ N} is given by

N∑
j=−N

 n∑
i=0

gi(xk)
(−1)iδ

(i)
k j

hi
− hλ1

K1(xk, tj)

φ′(tj)
− hλ2 δ(−1)k j

K2(xk, xj)

φ′(xj)

 uj = fk,

k = −N,−N + 1, . . . , N

(17)

where for n = 0, 1 and 2 we have

g0(xk) = µ0(xk), g2(xk) = µ2(xk)
[
φ′(xk)

]2
,

g1(xk) = µ1(xk)φ
′(xk) + µ2(xk)φ

′′(xk).

To obtain a matrix representation of the equations in (17), recall the notation
of Toeplitz matrices [29]. Let D(g(xj)) denote the m×m diagonal matrix with

D(g(x))i j =

{
g(xi) i = j,

0 i 6= j.

Let u be the m-vector with j-th component given by uj , and 1 is an m-vector each
of whose components is 1. In this notation the system in (17) takes the matrix form

Au = Θ, (18)

where
Θ = D (f) 1,

u = [u−N , u−N+1, . . . , uN ]τ ,

and

A =
n∑
i=0

1

hi
I(i)D (gi)− hλ1

K1(xk, tj)

φ′(tj)
− hλ2

(
I(−1)D

(
1

φ′(xj)

))
◦ k,

where
k = [K2(xk, xj)],

The notation ” ◦ ” denotes the Hadamard matrix multiplication and

I(i) =
[
δ
(i)
kj

]
, i = −1, 0, 1, 2, k, j = −N, . . . , N.

Now we have a linear system of m equations for the m unknown coefficients, namely,
{uj}Nj=−N . We can obtain the coefficient of the approximate solution by solving
this linear system by Q-R method. The solution u = (u−N , . . . , uN )τ gives the
coefficients in the approximate sinc-collocation solution um(x) of u(x).
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4. Non-Linear Volterra-Fredholm Integro-differential Equations

The main objective of this section is to find the numerical solutions of the nonlinear
Volterra-Fredholm integro-differential equation (1), namely, for case ν > 1 and σ >
1, we assume that u(x), the solution of (1), is approximated by the finite expansion
of sinc basis functions

um(x) =
N∑

j=−N
uj S(j, h) ◦ φ(x), m = 2N + 1.

Application of equation (10) to the kernel integral in (1) gives the following lemma

Lemma 3. The following relation holds∫ xk

a
K2(x, t)u

ν(t) d t ≈ h
N∑

j=−N
δ
(−1)
k j

K2(xk, xj)

φ′(xj)
uνj , (19)

and ∫ b

a
K1(x, t)u

σ(t) d t ≈ h
N∑

j=−N

K1(x, tj)

φ′(tj)
uσj , (20)

where uj denotes an approximate value of u(xj).

If we replace the integration terms on the right-hand side of (1) with the right-
hand side of (19) and (20) we have

N∑
j=−N

[
n∑
i=0

µi(x)
di

d xi
S(j, h) ◦ φ(x)

]
uj − hλ1

N∑
j=−N

K1(xx, tj)

φ′(tj)
uσj

− hλ2
N∑

j=−N
δ
(−1)
k j

K2(xk, xj)

φ′(xj)
uνj = f(x). (21)

Using (15) and (16) and substituting x = xk in (21) and applying the collocation to
it, we eventually obtain the following theorem

Theorem 4. If the assumed approximate solution of the problem (1) is (11), then
the discrete sinc-collocation system for the determination of the unknown coefficients
{uj ,−N ≤ j ≤ N} is given by

N∑
j=−N

 n∑
i=0

gi(xk)
(−1)iδ

(i)
k j

hi

 uj − hλ1
N∑

j=−N

K1(xx, tj)

φ′(tj)
uσj

− hλ2
N∑

j=−N
δ
(−1)
k j

K2(xk, xj)

φ′(xj)
uνj = fk, k = −N,−N + 1, . . . , N (22)
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Let u be the m-vector with j-th component given by uj , and let uν be the
m-vectors with j-th component given by unj and 1 is an m-vector each of whose
components is 1. In this notation the system in (22) takes the matrix form

Au + Buσ + Cuν = Θ, (23)

where
Θ = D (f) 1,

u = [u−N , u−N+1, . . . , uN ]τ ,

A =
n∑
i=0

1

hi
I(i)D (gi) .

C = −hλ K1(xk, tj)

φ′(tj)
,

B = −hλ
(
I(−1)D

(
1

φ′(xj)

))
◦ k,

k = K2(xk, xj),

and
I(i) =

[
δ
(i)
k j

]
, for i = −1, 0, 1, 2.

Now we have a nonlinear system of m equations for the m unknown coefficients,
namely, {uj}Nj=−N . We can obtain the coefficients of the approximate solution by
solving this nonlinear system using Newton’s method.

Starting from an initial estimate u0, the corrections are made using

uj+1 = uj + J−1(uj)
{

Θ−Auj −Buσj −Cuνj
}

J(uj) = A + σBuσ−1j + νCuν−1j .

Here, uj is the current iterate, and uj+1is the new iterate. A common numerical
practice is to stop the Newton iteration whenever the distance between two iterates
is less than a given tolerance, i.e when

‖uj+1 − uj‖ ≤ ε,

where the Euclidean norm is used. The solution u gives the coefficients in the
approximate sinc-collocation solution um(x) of u(x).
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5. Treatment of Boundary Condition

In the previous section the development of the sinc-collocation technique for homo-
geneous boundary conditions provided a practical approach since, the sinc functions
composed with the various conformal maps, S(j, h) ◦ φ, are zero at the endpoints of
the interval. For n = 2, if the boundary conditions are nonhomogeneous, then these
conditions need be converted to homogeneous conditions via an interpolation by a
known function . Using the transformation

y(x) = u(x)− Λ(x),

where Λ(x) is the interpolating polynomial that satisfies Λ(a) = γ
2 and Λ(b) = β

2

Λ(x) =
(b− x)

2 (b− a)
γ +

(x− a)

2 (b− a)
β

to the problem (1) yields the differential equation

2∑
i=0

µi(x) y(i)(x) = f̂(x) + λ1

∫ b

a
K1(x, t)

(
σ−1∑
r=0

(
ν

r

)
[y(t)]σ−r [Λ(t)]r

)
d t

+ λ2

∫ x

a
K2(x, t)

(
ν−1∑
r=0

(
ν

r

)
[y(t)]ν−r [Λ(t)]r

)
d t x ∈ J = [a, b]

y(a) = 0 y(b) = 0

(24)

where

f̂(x) = f(x)− β − γ
2 (b− a)

µ1(x)−
(

(β − γ)x− a β + b γ

2 (b− a)

)
µ0(x)

+ λ1

∫ b

a
K1(x, t)

(
(β − γ) t+ γ b− a β

2 (b− a)

)
[Λ(t)]σ d t

+ λ2

∫ x

a
K2(x, t)

(
(β − γ) t+ γ b− a β

2 (b− a)

)
[Λ(t)]ν d t

The resulting discrete system for the coefficients in the approximate sinc solution

ym(x) =
N∑

j=−N
yj S(j, h) ◦ φ(x) + Λ(x), (25)

is exactly the system in (17), with f in that system replaced by f̂ . Notice that if
γ = β = 0, the problem reduces to the homogeneous case.
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6. Numerical Examples

In this section, we report the numerical results of some examples solved by the sinc-
collocation method described in this paper. We calculated with 32 digits of accuracy
with MATLAB programming.

In the examples, the maximum absolute error at sinc points xi is taken as

‖Esinc−col‖ = max
0≤i≤N

∣∣uexact (xi)− usinc-collocation(xi)
∣∣ ,

Example 1: [32] Let us first consider the linear Volterra-Fredholm integro-
differential equation given by

u = f(x) +

∫ x

0
cos(x− t)u(t) d t+

∫ 1

0
sin(x+ t)u(t) d t 0 ≤ x, t ≤ 1.

where

f(x) =
1

2
[ex − e sin(x− 1)− e cos(x− 1)]− cos(x),

subject to the boundary conditions

u(0) = 1, u(1) = e,

whose exact solution is
u(x) = ex.

The maximum absolute error,‖Esinc−col‖ , is reported in Table 5.1 as N increases
from N = 10 to N = 60.

Table 5.1 Maximum absolute errors for Example 1

N ‖Esinc−col‖
10 8.0966E-05

20 2.8788E-06

30 6.6664E-08

40 2.2772E-08

50 3.1328E-09

60 5.1405E-10

Maximum absolute error are tabulated in Table 5.2 for sinc-collocation together
with the analogous results of Laeli Dastjerdi and Maalek Ghaini [32].

Table 5.2 Maximum absolute error for Example 1
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sinc-collocation Results of [32]

5.1405E-10 8.0E-07

Example 2: Now we turn to a singular linear Volterra-Fredholm integro-differential
equation of the convolution type

u′′+
1

x
u′+

1

x2
u = f(x)+

∫ x

0
sin (x−t)u(t) d t+

∫ 1

0
cos(x−t)u(t) d t 0 ≤ x, t ≤ 1.

where

f(x) =
2

x
− 7− x+ x2 − sin(x) + 3 cos(x) + cos(x− 1) + 2 sin(x− 1),

subject to the boundary conditions

u(0) = 0, u(1) = 0,

whose exact solution is
u(x) = x− x2.

The maximum absolute error,‖Esinc−col‖ , is reported in Table 5.3 as N increases
from N = 10 to N = 40.

Table 5.3 Maximum absolute errors for Example 2

N ‖Esinc−col‖
5 0.002004

10 9.4886E-005

20 1.1318E-006

30 3.9761E-008

40 3.6348E-009

Example 3: Now we turn to a singularly perturbed Volterra-Fredholm integro-
differential equation

ε u′′ + 2u′ + u = f(x) +

∫ x

0
u(t) d t+

∫ 1

0
u(t) d t 0 ≤ x, t ≤ 1.

where

f(x) = e−
x
ε

(
1 + ε− 1

ε

)
+ ε

(
e−

1
ε − 2

)
subject to the boundary conditions

u(0) = 1, u(1) = e−
1
ε ,
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whose exact solution is
u(x) = e−

x
ε .

The maximum absolute error,‖Esinc−col‖ , is reported in Table 5.4 for different ε
as N increases from N = 30 to N = 70.

Table 5.4 ‖Esinc−col‖ for Example 3 for different ε

N ε = 10−2 ε = 10−4 ε = 10−6

30 4.49440E-005 1.99630E-004 0.01972

40 7.53207E-006 1.88998E-005 0.00152

50 3.39109E-006 3.43889E-006 1.52588E-004

70 1.70045E-006 4.33292E-007 2.82403E-006

Example 4: Our last example is the nonlinear Volterra-Fredholm integral equa-
tion

u(x) = f(x) +

∫ x

0
u2(t) d t+

∫ 1

0
u(t) d t 0 ≤ x, t ≤ 1.

where

f(x) = x− x2 −
(
x4

4
− 3

5
x5 +

1

2
x6 − 1

7
x7
)
,

whose exact solution is
u(x) = x− x2.

The maximum absolute error,‖Esinc−col‖ , is reported in Table 5.5 as N increases
from N = 10 to N = 100.

Table 5.5 Maximum absolute errors for Example 4

N ‖Esinc−col‖
10 4.3820E-006

20 1.3169E-007

30 8.1748E-009

50 7.2002E-011

100 2.7117E-014

7. Discussion of Results and Conclusions

In this paper, we calculated the approximate solutions of the linear and nonlinear
Volterra-Fredholm integro-differential equations by using sinc-collocation method.
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Numerical examples including regular, singular, convolution type as well as singu-
larly perturbed problems are presented. As expected, the accuracy increases as the
number of terms N in the sinc expansion increases.

The sinc-collocation method is a simple method with high accuracy for solving
a large variety of nonlinear Volterra-Fredholm integral and integro-differential prob-
lems. So it may be easily applied by researchers and engineers familiar with the sinc
method.
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