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MINIMIZING POLYNOMIALS ON COMPACT SETS

V.T. PHAN

ABSTRACT. In this paper, the problem of minimizing a polymonial g, = 12(f )g(x)
xES(F

in the compact case is investigated. It is known that such problem is severely ill-
posed. We use results of positive performed theorems of Putinar ([8]) and Schmiidgen
([9]) to solve it. A numerical example is given to illustrate the efficiency of the pro-
posed method works.
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1. INTRODUCTION

Given a polynomial function g € R[x] = R[z1, z9, ..., x,]— the polynomial ring. Fix
a finite subset F' = {f1, fa,..., fm} C R[z]. Denote

S(F):={zeR"| fi(x) >0,i=1,...,m}

is the basic closed semialgebraic set generated by F. We consider the problem of
minimizing a polymonial g on S(F) : g, = inf g(z). ()
z€S(F)

Finding the optimal solution of the problem (*) is NP-hard problem (see [2], [4]).
Based on the results of performing non-negative polynomials on the semi algebraic
sets, some authors (eg, [1], [3], [7], ...) have developed a series of positive semidefi-
nited programming ((SDP for short) (see [2], [4]) which their optimal values converge
monotonically increasing to the optimum value of the problem (*). The idea traces
back to work of Shor 1987 ([12]) and is further developed by Parrilo 2000 ([6]), by
Lasserre 2001 ([1])and by Parrilo and Sturmfels 2003 ([7]).

In [1] Lasserre describes an extension of the method to minimizing a polynomial on
an arbitrary basic closed semialgebraic set and uses a result due to Putinar ([8]) to
prove that the method produces the exact minimum in the compact case. In the
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general case it produces a lower bound for the minimum. However, the assumption
that S is compact set is strict and not to be missed in the methods of Lasserre.
The purpose of this paper is to introdue the problem of minimizing a polymonial

g = in(f : g(z) in the compact case. Uses results of positive performed theorems
zeS(F

of Putinar ([8]) and Schmiidgen ([9]), we will build a series of positive semidefinited
programming which their optimal values converge monotonically increasing to the
optimum value g,.

2. PRELIMINARIES

Given a finite subset F' = {f1, fa,..., fm} C R[z]. Denote

S(F) :={z e R"|fi(z) >0,i=1,...,m}

is the basic closed semialgebraic set generated by F';

M(F) := {ao toifi+ ot omfm|oi € ZR[x]Z}

is the quadratic module in R]z];

P(F):={ > ocfloc€ ) Rla]?, Ve e {0,137

ec{0,1}™

is the preordering generated by F.

Property 1. M(F) is the quadratic module, that is

M(F)+ M(F)C M(F), a>M(F) Cc M(F),Va € R[z] and 1 € M(F).

Property 2. P(F) is the preordering, that is
P(F)+ P(F) C P(F), P(F).P(F) C P(F) and a? € P(F),Ya € R[z].
Definition 1. M(F) is archimedean if 3k > 1| k — ile € M(F).
Example 1. Take n = 1, F = {—2%} C R[x]. We have
M(F) = {oo — 12?0 € Y _R[a]’}.

Take k = 1. Then k — 22 = 1 — 22 € M(F). Thus M(F) is archimedean.
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Example 2. Take n =2, F = {z — %,y — %, 1 — 2y} C Rlz,y]. Then

M(F) = {00 +oi(z — %) + ooy — %) +o3(1—zy)|o; € ZR[x,y]Q} :

We be alble to build quadratic module @ C R[z,y] ([4, Example 7.3.1]) which
satisfies

QU -Q =R[z,y,QN-Q = {0},

r—3,y—51-ayeq,( to M(G)CQ),

k—(22+y?) € Q,Vk € Z, k > 1.

Then M(F) C Q, k — (2®> +y?) € Q,Vk € Z,k > 1, and
k— (2> + %) & M(F),Vk € Z,k > 1.
Thus M(F) is not archimedean.

Theorem 1. ([9]) Suppose S(F) is compact and g € R[z]. If g > 0 on S(F), then
g € P(F).

Theorem 2. (/8]) Suppose M(F) is archimedean and g € R[x]. If g > 0 on S(F),
then g € M(F).

Remark 1. If M(F) is archimedean, then S(F) is compact.

The opposite of Remark 1 is not true. For example, we consider Example 2, we have

1
S(F)={(z.y) €R* |z — 5 > 0,y — 5 > 0,1~ ay > 0}

N =

is compact, and

M(F) = {09+ o1(z — %) + ooy — %) +os(l—ay)|oi € > Rlz,y’}

is not archimedean.

3. SEMIDEFINITED PROGRAMMING (SDP)

The problem SDP:

inf G5,
P 1)
G(CE) = G() =+ .fClGl + -+ ann t 07

where z = (21,...,2,) € R". ¢ = (c1,...,¢,) € R" and G; € Sym(R¥9) is the
symmetric matrix (i = 0,...,n).
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Remark 2. Problem (1) can not achieve min. This can be seen in the following
example.

Example 3. Consider the problem SDP

inf x1,

We have n =d =2,cl'z = (1 0) <x1> and

T2
(o 1) [0 1 10 00
F(”“”)_<1 x2>_<1 o>”1<0 o>+x2<0 1)‘
—_—— —— —_——
Fo F Py

I‘lf)\ 1

Consider the equation det < 1 Ty — A

> =0, A € R. Reduced, we obtain

)\2 — (1'1 + .%'2))\ + 2120 — 1 =0. (2)

The condition G(x) * 0 is equivalent to eigenvalues of matric G(x) is non negative.
This is equivalent to Equation (2) has two non negative solutions, that is S = %b =
1 +x9 > 0and P = g = 2129 — 1 > 0. Then x; > 0,22 > 0 and the objective
function ¢’z = 21 can not achieve min on {x = (21, 72) € R? |21 +29 > 0, 1729 —1 >

0}, and p, = 0.

The dual problem (DP for short) of (1) is

sup —(Go, Z),
<GZ‘,Z>:CZ',Z'=1,...,71, (3)
Z = 0.

Remark 3.

e SDP and DP are convexr optimization problems. Using the polynomial algo-
rithm to solve them.

e Opt - value (SDP) > Opt - value (DP).
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4. THE CASE M(F') 1S ARCHIMEDEAN

For g € R[z] and S(F) is the basic closed semialgebraic set generated by F, we
consider the problem

g« :=1inf{g(z) |z € S(F)}.

Remark 4. This is NP-hard problem. There is no efficient algorithm to solve
it, unless the case g is linear, S(F') is convex polyhedron, then using the simplex
algorithm to solve it.

Remark 5. For v € R, test g — v > 0 on S(F) is generally difficult. However, test
g—7 € M(F) can do (using SDP).

Property 3. sup v < gx.
g—yE M(F)

Fix a positive integer N > degg. Denote
m .
My(F) = { £ oi0sl0; € SRIP desloig) < Nyi =0, |
i=0
X~ :={L :R[z]y — Rlinear|L(1) =1, and L >0 on My(F)},
g9+, v = if{L(g)[ L € xn}, (4)

gy =sup{y € R|g—~v € Mn(F)}. (5)

Proposition 1. (/3/)
(¢) 9y < 9+ N < gx-

(b) 94,8 < g+, N+1; 98 < N1
(¢) If M(F') is archimedean, then lim g% = g.. Hence lim gy n = g«.
N—o00 N—o0

Proposition 2. Problem (4) is SDP.

Proof. Without loss generality, we assume f; Z 0 and deg f; < N, = 1,...,m.
Because if deg(o;f;) < N and deg f; > N, then o; = 0, so o;f; = 0 : not have any
contribution to My (F'). We see R[z]y generated by the basic set {z%| |a| < N},
number of elements of that basic is C’flv v~ We consider linear mapping

L: R[:E]N — R,L(p) =L Z paxa = Z paL(ﬂja).
jal<N <N
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Putting yo, = L(z®), || < N then L corresponds to a vector (y,), |a] < N,y, € R.
We have yo = 1. L > 0 on My(F') is equivalent to

L (i O’Zfl) >0,0; € ZR[w}Q,deg(aifi) <N,
=0

or
ZL(aifi) 20,0i € ZR[x]Q’deg(Uifi) <N,
=0
or
L(oifi) > 0,Vi,o; € Y Rlz]? deg(oif;) < N,
or . d
L(p*fi) > 0,p € Rlz],degp < —;g(f)
Test

d <
egPp = B

Indeed, since p?f; € My (F) we have

deg(prl) < N7

or
degp2 +degfz S Nv
or
2degp +deg f; < N,
or

N —d ;
degp < Y —dee i
2
We write g = > goz®, thus
lo|<N
Lig)= > gal@®) =Y gatla=90+ Y Gala-
lal<N lal<N la|<N,a-£0

If p= > paz®, then P’ = > papﬂxa+5, therefore
« a, B

L(p*) = papsL(x*"") = " papsyass-
a7 B a7 ﬁ
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We write f; =) fiy2”. Similar to the above, we have
Bt

Pfi=> papsr® P fi= > papsfina® it
a, ﬁ Q, B7 v

VL(P?fi) = Y. paPsfivVatptry = O (Z fmyawﬂ) Paps- Putting
Y

Oé,ﬁ,'y @,

M(fz * y) = (Z fi'yya+ﬂ+’y>
vy

Then, M(f; *y) is the matrix which size is D; x D;, where

a’/g

N —deg f;

Di = #{alla] < =

}.
Note that M (1 *y) = M(y). Then
L f) =) (Z fm?/a+ﬁ+v> Paps = p" M(fi*y)p.
o, B el

Therefore, condition L(p?f;) > 0 is equivalent to p” M (f;*y)p > 0. This is equivalent
to M(f; xy) = 0. Thus

L(1) =1, - {yo =1,

Lexy <& .
L>0 on My(G) M(fi*xy) = 0,i=0,...,m.

Putting G(y) = diag(M(fi * y),..., M(fi * y)). The size of the matrix G(y) is
Z Dl X Z Dl Then,

1=0 1=0
y0:1, o y(]:la
M(fixy)»=0,i=0,...,m G(y) = 0.

For |a| < N, we define e(®) := (e,(ga)), where

(a) 0, if B#«
e =
p 1, if B=a.
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So {el®), o # 0} is basic vector of freedom variables space ¥ = (ya), |a| < N,a # 0,

that is y = > yae®,Vy = (Ya), la| < N,a #0. Then G(y) = Go+ > 5aG?,
] <Na0

Geo = G(el), and

Yo = 1, Yo =1,
G(y) = 0 TN G+ T paG* 0.
- la|<N,a#0

So g+, n = inf{L(g)|L € xn} = inf{go + > ga¥a} = go + inf 3_ gaya. We see
a#0 a#0
that problem calculate g n with constrain L € xn same as problem calculate

go +1inf > gaya with constrain
a#0

Yo =1,
GO + E yO&Ga t 07
la|<N,a#0
or with constrain G(y) > 0. Therefore Problem (4) is SDP.
Proposition 3. Problem (5) is duality of Problem (/).
Proof. Take v € R so that g — v =09 + o1f1 + -+ + om fm, Wwhere

N—degfi i

i=0,...,m.
2 m

0; € ZR[w]Q,deg o <
For o; € Y R[z]?, there exists a positive semidefinite (PSD for short) matrix which

size is Dy x Dy : AW = (Agiﬁ))(g,g so that o; = ) A§2x6+6. Then

6,8
m m .
s=1=3 ani= 3 S A,
i=0 i=0 5,5

We write f; =Y fiyz?. Then
2]

g-—v= Em: S A fiyat T,
] Y

For

9= 9ar®=go+ Y gar"
o

a#0
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we have .
G0+ Y ga® = =D > A firat
a0 =065 7
or
m .
n1+ 3 ot =35 A
a0 i=0 6,8

Identify coefficients two sides the above equation, we get
4@
go— = > Ago fio = (Go, A),
i=0

Ga=> X AQfi=(Ga,A)for a#0,
i=0 6+ p+7=a
where A := diag(A©), ..., A™) G, := G(el®). We have A is PSD and
gy = sup{y[g—~ € My(F)}
= sup{go - <G07 A>‘A = 0,90 = <GonA>7a 7'é 0}
= 9o -+ Sup{_<G07A>’A t 07904 = <GC¥7 A>7 « 7é 0}
Thus, Problem (5) is duality of Problem (4).

Remark 6. Exist g € R[z] such that ¢°°° < g,.. For instance, we consider some the
following examples.

Example 4. [5, 6.2].
(1) Take g(z,y) = 2*y? + 22y* + 1 — 322y € R[z,y]. Then

g« = 0,97 = —o0.
(2) Take g(z,y) = 2* + 22 + y° — 32%y? € R[z,y]. Then
g« = 0,9 = —729/4096.

Remark 7. Can happen case gy # g+, n. However, if M (F) N —M(F) = {0}, then
gy = g+~ (See [4, Proporition 10.5.1]).

Example 5. [2, Problem 4.6, 4.7] We consider the optimization problem
inf g(x) := —z1 — x9,
X
zy < 221 — 823 + 823 + 2,
ro < 4xt — 3223 + 8822 — 96z1 + 36,
0<z1 <3,0< 29 <4.

Then g} = g« = —5.5079.
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Example 6. [2, Problem 4.6, 4.7] We consider the optimization problem

inf g(7) := —1221 — Tae + 23,
x

—2rf +2— 13 =0,
0§$1§2,0§.€C2§3.

Then g5 = g« = —16.73889.

5. THE CASE M (F) 1S NOT ARCHIMEDEAN

We have the same results as above if we replace the quadratic module My (F') by
the preordering

Py(F):={ > ocfloc €Y Rlz]*,dego.f® < N,e € {0,1}"
ec{0,1}m
We denote
XN :={L:R[z]y - R linear |L(l1)=1land L >0 on Pn(F)},
9+.~ = inf{L(g) | L € xn}, (6)

gy :=sup{y € R|g— v € Pn(F)}. (7)

Proposition 4.
(a) gv < g+,N < gs.

(b) 9+.N < g+ N+1; 9N < Inyg1-
(¢c) If S(F') is compact, then lim gy = g«. Hence lim g, n = gs.
N—o00 N—o00
Proof. (a)We prove g1 n < g«. Taking arbitrary a € S(F’), define

Lq: Rlz]y = R, La(q) = q(a).

We have L,(1) =1, L, Yoo oef )= > La(oef)= >, oefela) >0.
ec{0,1}™ ec{0,1}™ ec{0,1}™
Then L, € xn. Because

g+, n = inf{L(g)|L € xn},
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we get
9+,N < La(g) = g(a).
By a € S(F) is arbitrary, we have

< 1nf a) = (gx.
g+,N_a€S(F)g() g

Next, we prove gy < g4+ n. Take v € R such that g — v € Py(F) and L € xn is
arbitrary. We have

0<L(g—n) = L(g) = L(v) = L(g) = -
Then L(g > . Therefore
inf{L(g) | L € xn} 2 sup{y € R[g —~ € Pn(F)},
that is g+ N > gy
(b) We have Py(F) C Py41(F) and xny4+1 € xn. Take v € R such that
g —7 € Pn(F),

we get g —v € Pn41(F). Thus gy < INf1-

Next, we prove g+ v < g+ n+1. Take L € xn41 is abitrary. Put

then L' € xn and L'(g) = L(g). Therefore

inf{L(g)| L € xn} <inf{L(g)| L € xn41},

that is g+, N < g+, N+1-

(c) Take v € R,y < g«. We have g — v > 0 on S(G). From Theorem 1, we get
g—v€P(F), that is g—y= Y  ocf°,
ec{0,1}™

where o, € > R[z]?. Choose N = max deg(c.f¢), then g — v € Py(F), so v < gi-
Thus

¥ < gn < g«

For v 1 g«, then gy 1T g« From gy N=oo, g« and gy < gy N < g+, We obtain
N
94N = g
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Proposition 5. Problem (6) is SDP.

Proof. Similar to the proof of Proposition 2.
Proposition 6. Problem (7) is duality of Problem (6).
Proof. Similar to the proof of Proposition 3.

Example 7. We consider problem

inf (z,y) =24y,
(I’y)es( y) y

S={(z,y) eR?|z>Ly>1ay<1}
Then
9 =g« =1

Example 8. Problem

inf T,Y) =—T —Y,
(w)esg( Y) Y

S={(z,y) eR?* [z > 3,y > 5,2y <1}

has
g5 = g« = —2,5.
6. CONCLUSION
The paper found out the problem of minimizing a polymonial g, = inf g¢(z) in

z€S(F)

case S(F) is compact, where g € R[z] and S(F) is the basic closed semialgebraic set
generated by F.
The paper presented positive performed theorems:

e Putinar,

e Schmiidgen.
Using results of positive performed theorems of Putinar ([8]) and Schmiidgen ([9]),
we can build a series of positive semidefinited programming which their optimal
values converge monotonically increasing to the optimum value g.. Finally, the nu-
merical results show that the proposed method works effectively.
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