No. 42/2015 pp. 171-180

doi: 10.17114/j.aua.2015.42.11

SOME NEW DISTORTION THEOREMS FOR STARLIKE HARMONIC FUNCTIONS OF ORDER ALPHA

H. E. Özkan Uçar, M. Aydoğan, Y. Polatoğlu

ABSTRACT. Let $f(z) = h(z) + \overline{g(z)}$ where h(z) and g(z) are analytic functions in \mathbb{U} . If f(z) satisfies the condition $(|h'(z)|^2 - |g'(z)|^2) > 0$, then f(z) is called sense-preserving harmonic univalent function and denoted by \mathcal{S}_H . We also note that $f(z) = h(z) + \overline{g(z)} \in \mathcal{S}_H$ if and only if $g'(z) = \omega(z)h'(z)$ where $\omega(z)$ is second dilatation of f(z). Moreover, let $H(\mathbb{U})$ be the linear space of all analytic functions defined on the simply connected domain $\mathbb{U} \subset \mathbb{C}$. A log-harmonic mapping F is a solution of the non-linear elliptic partial differential equation $\overline{\frac{F_z}{F}} = \omega_1(z) \frac{F_z}{F}$, where the second dilatation function $\omega_1(z) \in H(\mathbb{U})$ is such that $|\omega_1(z)| < 1$ for all $z \in \mathbb{U}$. It has been shown that if F is non-vanishing log-harmonic mapping, then F can be expressed on $F = H(z)\overline{G(z)}$, where H(z) and G(z) are analytic functions in \mathbb{U} with the normalization H(0) = G(0) = 1, and the class of non-vanishing log-harmonic functions is denoted by \mathcal{S}_{LH}^* .

The aim of this paper is to give the relation between the classes \mathcal{S}_{H}^{*} and \mathcal{S}_{LH}^{*} the new distortion theorems of starlike harmony univalent functions of LH order α .

2010 Mathematics Subject Classification: 30C45.

Keywords: Harmonic functions, Log-harmonic functions, Univalent functions, Distortion theorem.

1. Introduction

Let $S^*(\alpha)$ denote the class of functions $s(z) = z + a_2 z^2 + \ldots$ which are analytic in the open unit disc $\mathbb{U} = \{z : |z| < 1\}$ and satisfy

$$Re\left(z\frac{s'(z)}{s(z)}\right) > \alpha$$
 (1)

for all $z \in \mathbb{U}$.

Next, let Ω be the family of functions $\phi(z)$ which are analytic in \mathbb{U} and satisfy the conditions $\phi(0) = 0$, $|\phi(z)| < 1$ for all $z \in \mathbb{U}$. Let \mathcal{P} denote the family of functions $p(z) = 1 + p_1 z + p_2 z^2 + \ldots$ which are regular and satisfy the conditions $\operatorname{Re} p(z) > \alpha$, p(0) = 1 for all $z \in \mathbb{U}$, and we note that $p(z) \in \mathcal{P}$ if and only if

$$p(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)} \tag{2}$$

for some function $\phi(z) \in \Omega$ and every $z \in \mathbb{U}$, see [4].

Moreover, let $f_1(z) = z + d_2 z^2 + \ldots$ and $f_2(z) = z + e_2 z^2 + \ldots$ be analytic functions in \mathbb{U} . If there exists a function $\phi(z) \in \Omega$ such that $f_1(z) = f_2(\phi(z))$, we then say that $f_1(z)$ is subordinate to $f_2(z)$ and we write $f_1(z) \prec f_2(z)$.

Finally, a function f is said to be a complex valued harmonic function in $\mathbb U$ if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are real harmonic in $\mathbb U$. Every such f can be uniquely represented by $f=h(z)+\overline{g(z)}$, where h(z) and g(z) are analytic with the normalization $h(0)=g(0)=0,\ h'(0)=1.$ A complex-valued harmonic function f which is not identically constant and satisfies f=h(z)+g(z) is said to be sense-preserving in $\mathbb U$ if it satisfies the equation

$$g'(z) = \omega(z)h'(z) \tag{3}$$

where $\omega(z)$ is analytic in \mathbb{U} with $|\omega(z)| < 1$ for every $z \in \mathbb{U}$ and $\omega(z)$ is called the second dilatation of f. The Jacobian of f is defined by

$$J_{f(z)} = |h'(z)|^2 - |g'(z)|^2 \tag{4}$$

Let $H(\mathbb{U})$ be the linear space of all analytic functions defined on the open unit disc \mathbb{U} . A log-harmonic mapping F is the solution of the non-linear elliptic partial differential equation

$$\frac{F_z}{F} = \omega(z) \frac{F_z}{F} \tag{5}$$

where $\omega(z)$ is the second dilatation of F and $\omega(z) \in H(\mathbb{U})$, $|\omega(z)| < 1$ for every $z \in \mathbb{U}$. It has been show that if F is a non-vanishing log-harmonic function, then F can be expressed as

$$F = H(z) \cdot \overline{G(z)} \tag{6}$$

where H(z) and G(z) are analytic in \mathbb{U} with the normalization H(0) = G(0) = 1. The class of non-vanishing log-harmonic functions is denoted by \mathcal{S}_{LH}^0 . Also, the class of log-harmonic functions is denoted by \mathcal{S}_{LH} . For details, see [1], [2], and [3].

In [5], Jack's lemma states that for the (non-constant) function $\omega(z)$ which is analytic in \mathbb{U} with $\omega(0) = 0$, if $|\omega(z)|$ attains its maximum value on the circle |z| = r < 1 at a point $z_0 \in \mathbb{U}$, then $z_0 \omega'(z_0) = k\omega(z_0)$, where k is a real number and $k \ge 1$.

2. Main Results

Theorem 1. $f = h(z) + \overline{g(z)} \in \mathcal{S}_H^* \iff F = H(z)\overline{G(z)} = e^{h(z) + \overline{g}(z)} \in \mathcal{S}_{LH}^0$.

Proof. Let $f = h(z) + \overline{g(z)} \in \mathcal{S}_H$. Then we have

$$\omega(z) = \frac{g'(z)}{h'(z)}. (7)$$

Now we define the function

$$\begin{cases} H(z) = e^{h(z)} \\ G(z) = e^{g(z)} \end{cases} \implies F = H(z) \cdot \overline{G(z)} = e^{h(z) + \overline{g(z)}}, \tag{8}$$

then we have

$$\begin{cases} \log H(z) = h(z) \Longrightarrow h'(z) = \frac{H'(z)}{H(z)} \\ \log G(z) = g(z) \Longrightarrow g'(z) = \frac{G'(z)}{H'(z)} \end{cases}$$
(9)

$$\begin{cases} H(0) = e^{h(0)} = e^0 = 1 \\ G(0) = e^{g(0)} = e^0 = 1 \end{cases} \implies F(0) = H(0)\overline{G(0)} = 1, \tag{10}$$

$$\omega(z) = \frac{g'(z)}{h'(z)} = \frac{G'(z)/G(z)}{H'(z)/H(z)} \Longleftrightarrow \frac{\overline{F}_{\overline{z}}}{\overline{F}} = \omega(z)\frac{F_z}{F}.$$
 (11)

Therefore, $F = H(z)\overline{G(z)} \in \mathcal{S}_{LH}^0$

Conversely, let $F = H(z)\overline{G(z)} \in \mathcal{S}_{LH}^0$. Then we define the following functions

$$\begin{cases} \log H(z) = h(z) \\ \log G(z) = g(z) \end{cases}$$
 (12)

Then,

$$\begin{cases} h(0) = \log H(0) = \log 1 = 0 \\ g(0) = \log G(0) = \log 1 = 0 \end{cases}$$

h(z) and g(z) are analytic in $\mathbb U$ and also we have (11). Using (9) in (11) we obtain $\omega(z)=\frac{g'(z)}{h'(z)}$ this shows that $f=h(z)+g(z)\in\mathcal S_H$.

Lemma 2. The starlike condition of $F = H(z).\overline{G(z)} = e^{h(z)+\overline{g(z)}}$ is

$$Re(zh'(z) - zg'(z)) > 0. (13)$$

Proof.

$$F = H(z).\overline{G(z)} = e^{h(z) + \overline{g(z)}}$$

$$\Rightarrow F_z = h'(z).e^{h(z) + \overline{g(z)}} \Rightarrow zF_z = zh'(z).e^{h(z) + \overline{g(z)}}$$

$$F_{\overline{z}} = \overline{g'(z)}.e^{h(z) + \overline{g(z)}} \Rightarrow \overline{z} \Rightarrow F_{\overline{z}} = \overline{z}\overline{g'(z)}e^{h(z) + \overline{g(z)}}$$

$$\Rightarrow \frac{zF_z - \overline{z}F_{\overline{z}}}{F} = \frac{e^{h(z) + \overline{g(z)}} \cdot [zh'(z) - \overline{z}\overline{g'(z)}]}{e^{h(z) + \overline{g(z)}}} = zh'(z) - \overline{z}\overline{g'(z)}$$

$$\Rightarrow Re\left(\frac{zF_z - \overline{z}F_{\overline{z}}}{F}\right) = Re(zh'(z) - \overline{z}\overline{g'(z)}) = Re(zh'(z) - zg'(z)) > 0.$$

Lemma 3. Let $f = h(z) + \overline{g(z)}$ be an element of \mathcal{S}_H^* . Then,

$$Re(zh'(z) - zg'(z)) = r\frac{\partial}{\partial r}\log\left|e^{h(z) - \overline{g(z)}}\right|$$
 (14)

Proof.

$$\begin{split} e^{h(re^{i\theta})-\overline{g(re^{i\theta})}} &= \left| e^{h(re^{i\theta})-g(re^{i\theta})} \right| e^{i\theta} \\ &\Rightarrow \log(e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}) = \log|e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}|e^{i\theta} \\ &\Rightarrow h(re^{i\theta}) - \overline{g(re^{i\theta})} = \log|e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}| + i\theta \log e = \log|e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}| + i\theta \\ &\Rightarrow e^{i\theta} \cdot h'(re^{i\theta}) - \overline{e^{i\theta} \cdot g(re^{i\theta})} = \frac{\partial}{\partial r} \log|e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}| \\ &\Rightarrow re^{i\theta} \cdot h'(re^{i\theta}) - \overline{re^{i\theta} \cdot g'(re^{i\theta})} = r\frac{\partial}{\partial r} \log|e^{h(re^{i\theta})-\overline{g(re^{i\theta})}}| \\ &\Rightarrow zh'(z) - \overline{zg'(z)} = r\frac{\partial}{\partial r} \log|e^{h(z)-\overline{g(z)}}| \\ &\Rightarrow Re(zh'(z) - \overline{zg'(z)}) = r\frac{\partial}{\partial r} \log|e^{h(z)-\overline{g(z)}}| \\ &\Rightarrow Re(zh'(z) - zg'(z)) = r\frac{\partial}{\partial r} \log|e^{h(z)-\overline{g(z)}}|. \end{split}$$

Theorem 4. Let f = h(z) + g(z) be an element of S_H^* . The function f satisfies the condition

$$zh'(z) - zg'(z) \prec \frac{2(1-\alpha)z}{1-z}$$
 (15)

if and only if $F = ze^{h(z) + \overline{g(z)}} \in \mathcal{S}_{LH}^*(\alpha)$.

Proof. Let f satisfies (15). We define the function $\phi(z) \in \Omega$ by

$$e^{h(z)-g(z)} = (1 - \phi(z))^{-2(1-\alpha)},$$
 (16)

where $(1 - \phi(z))^{-2(1-\alpha)}$ has the value 1 at z = 0 (we consider the corresponding Riemann branch). Then $\phi(z)$ is analytic and $\phi(0) = 0$. If we take the logarithmic derivative of (16) and after the brief calculations we get

$$h'(z) - g'(z) = \frac{-2(1-\alpha)(-\phi'(z))}{1-\phi(z)}$$

and then

$$zh'(z) - zg'(z) = \frac{2(1-\alpha)z\phi'(z)}{1-\phi(z)}.$$
(17)

On the other hand, the function $w:=\frac{2(1-\alpha)z}{1-z}$ maps |z|=r onto the circle with the radius $\rho=\rho(r)=\frac{2(1-\alpha)r}{1-r^2}$ and the center $c=c(r)=\left(\frac{2(1-\alpha)r^2}{1-r^2},0\right)$. Now it is easy to realize that the subordination (15) is equivalent to $|\phi(z)|<1$ for all $z\in\mathbb{U}$. Indeed, let us assume to the contrary. Then there is a $z_1\in\mathbb{U}$ such that $|\phi(z_1)|=1$. By Jack?s Lemma, $z_1\phi'(z_1)=k\phi(z_1)$ for some $k\geq 1$, so for such z_1 we have

$$z_1 h'(z_1) - z_1 g'(z_1) = \frac{2(1-\alpha)k\phi(z_1)}{1-\phi(z_1)} = kw(\phi(z_1)) \notin \mathcal{S}(\mathbb{U})$$

but this contradicts to (15); so our assumption is wrong, i.e., $|\phi(z)| < 1$ for every $z \in \mathbb{U}$. By using the condition (15) we get

$$1 + zh'(z) - zg'(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)}.$$
 (18)

On the other hand, using Theorem 1, Lemma 2, and Lemma 3 and after simple calculations we get

$$F = zH(z).\overline{G(z)} = ze^{h(z)+\overline{g(z)}} \in \mathcal{S}_{LH}^*$$

$$\Rightarrow \log F = \log z + \log H(z) + \log \overline{G(z)} = \log z + \log h(z) + \log \overline{g(z)}$$

$$\Rightarrow \begin{cases} \frac{F_z}{F} = \frac{1}{z} + \frac{H'(z)}{H(z)} = \frac{1}{z} + h'(z) \Rightarrow \frac{zF_z}{F} = 1 + z\frac{H'(z)}{H(z)} = 1 + zh'(z) \\ \frac{F_{\overline{z}}}{F} = \frac{\overline{G'(z)}}{G(z)} = \overline{g'(z)} \Rightarrow \frac{\overline{z}F_{\overline{z}}}{F} = \overline{z}\frac{\overline{G'(z)}}{\overline{G(z)}} = \overline{z}\overline{g'(z)} \end{cases}$$

$$\Rightarrow Re\left(\frac{zF_z - \overline{z}F_{\overline{z}}}{F}\right) = Re\left(1 + z\frac{H'(z)}{H(z)} - \overline{z}\frac{\overline{G'(z)}}{\overline{G(z)}}\right) = Re(1 + zh'(z) - \overline{z}\overline{g'(z)}). \tag{19}$$

Considering (18) and (19) together we obtain the desired result.

For the converse, let $F=ze^{h(z)+\overline{g(z)}}$ be an element of $\mathcal{S}^*_{LH}(\alpha)$. It follows that $Re\left(\frac{zF_z-\overline{z}F_{\overline{z}}}{F}\right)>\alpha$ and

$$\frac{zF_z - \overline{z}F_{\overline{z}}}{F} = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)}.$$

On the other hand,

$$\frac{zF_z - \overline{z}F_{\overline{z}}}{F} = 1 + zh'(z) - \overline{z}\overline{g'(z)}$$

$$\Rightarrow Re\left(\frac{zF_z - \overline{z}F_{\overline{z}}}{F}\right) = Re(1 + zh'(z) - \overline{z}\overline{g'(z)}) > \alpha$$

$$\Rightarrow 1 + zh'(z) - zg'(z) = \frac{1 + (1 - 2\alpha)\phi(z)}{1 - \phi(z)}$$

$$\Rightarrow zh'(z) - zg'(z) = \frac{2(1 - \alpha)\phi(z)}{1 - \phi(z)}.$$

This shows that $zh'(z) - zg'(z) \prec \frac{2(1-\alpha)z}{1-\gamma}$.

Theorem 5. Let $f(z) = h(z) + \overline{g(z)}$ be an element of $\mathcal{S}_H^*(\alpha)$. Then,

$$\frac{(1+r)^{2\alpha-3}}{r(1-r)} \le |e^{h(z)-\overline{g(z)}}| \le \frac{(1-r)^{2\alpha-3}}{r(1+r)}.$$

This inequality is sharp because if we consider the following simple calcula??tions

$$h(z) - g(z) = \log(1 - z)^{-2(1 - \alpha)}$$

$$\Rightarrow h(z) - g(z) = -2(1 - \alpha)\log(1 - z)$$

$$\Rightarrow h'(z) - g'(z) = \frac{2(1 - \alpha)}{1 - z}$$

$$\Rightarrow zh'(z) - zg'(z) = \frac{2(1 - \alpha)z}{1 - z}$$

$$\Rightarrow 1 + zh'(z) - zg'(z) = 1 + \frac{2(1 - \alpha)z}{1 - z} = \frac{1 + (1 - 2\alpha)z}{1 - z}$$

then the extremal function is the solution of the following differential equation

$$h(z) - g(z) = \log(1 - z)^{-2(1 - \alpha)}$$
$$g_{\overline{z}} = \overline{f}_z - \overline{h}_z = 0.$$

Proof. The set of the values of the function $\frac{2(1-\alpha)z}{1-z}$ is the closed disc with the center c and the radius ρ , where

$$c = c(r) = \left(\frac{??2(1-\alpha)r^2}{1-r^2}, 0\right), \qquad \rho = \rho(r) = \frac{2(1-\alpha)r}{1-r^2}.$$

Using the subordination, we can write

$$\begin{aligned} \left| (zh'(z) - zg'(z) + 1) - \frac{2(1 - \alpha)r^2}{1 - r^2} \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ \Rightarrow \left| (zh'(z) - zg'(z)) + 1 - \frac{2(1 - \alpha)r^2}{1 - r^2} \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ \Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{2(1 - \alpha)r^2}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ \Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{2(1 - \alpha)r^2 - 1 + r^2}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ \Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{(2(1 - \alpha) + 1)r^2 - 1}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ \Rightarrow \left| (zh'(z) - zg'(z)) - \left(\frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} - 1 \right) \right| &\leq \frac{2(1 - \alpha)r}{1 - r^2} \\ - \frac{2(1 - \alpha)r}{1 - r^2} &\leq - \left| (zh'(z) - zg'(z)) - \left(\frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} - 1 \right) \right| \end{aligned}$$

$$\leq Re\left[(zh'(z) - zg'(z)) - \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2}\right]$$

$$\left|(zh'(z) - zg'(z)) - \left(\frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} - 1\right)\right| \leq \frac{2(1 - \alpha)r}{1 - r^2}$$

$$\Rightarrow -\frac{2(1 - \alpha)r}{1 - r^2} \leq Re[zh'(z) - zg'(z)] - \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} \leq \frac{2(1 - \alpha)r}{1 - r^2}$$

$$\Rightarrow \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} - \frac{2(1 - \alpha)r}{1 - r^2} \leq Re[zh'(z) - zg'(z)] \leq \frac{(3 - 2\alpha)r^2 - 1}{1 - r^2} + \frac{2(1 - \alpha)r}{1 - r^2}$$

$$\Rightarrow \frac{(3 - 2\alpha)r^2 - 2(1 - \alpha)r - 1}{1 - r^2} v \leq Re[zh'(z) - zg'(z)] \leq \frac{(3 - 2\alpha)r^2 + 2(1 - \alpha)r - 1}{1 - r^2}$$

$$(20)$$

On the other hand, from Lemma 3 we have

$$Re[zh'(z) - zg'(z)] = r\frac{\partial}{\partial r}\log\left|e^{h(z) - \overline{g(z)}}\right|.$$
 (21)

Considering (20) and (21) together, then the inequality (20) can be written in the following form

$$\frac{(3-2\alpha)r^2 - 2(1-\alpha)r - 1}{1-r^2} \le r \frac{\partial}{\partial r} \log \left| e^{h(z) - \overline{g(z)}} \right| \le \frac{(3-2\alpha)r^2 + 2(1-\alpha)r - 1}{1-r^2}
\frac{(3-2\alpha)r^2 - 2(1-\alpha)r - 1}{r(1-r^2)} \le \frac{\partial}{\partial r} \log \left| e^{h(z) - \overline{g(z)}} \right| \le \frac{(3-2\alpha)r^2 + 2(1-\alpha)r - 1}{r(1-r^2)}$$
(22)

Since

$$\frac{(3-2\alpha)r^2-2(1-\alpha)r-1}{r(1-r^2)}=-\frac{1}{r}+\frac{1}{1-r}+\frac{2\alpha-3}{1+r},$$

It follows that

$$\int \frac{(3-2\alpha)r^2 - 2(1-\alpha)r - 1}{r(1-r^2)} dr = \log \frac{(1+r)^{2\alpha-3}}{r(1+r)}$$
 (23)

Similarly, since

$$\frac{(3-2\alpha)r^2+2(1-\alpha)r-1}{r(1-r^2)}=-\frac{1}{r}-\frac{1}{1-r}+\frac{3-2\alpha}{1-r},$$

it follows that

$$\int \frac{(3-2\alpha)r^2 + 2(1-\alpha)r - 1}{r(1-r^2)} dr = \log \frac{(1-r)^{2\alpha-3}}{r(1+r)}.$$
 (24)

Considering (22), (23), (24) and integrating both sides of (22) we obtain

$$\frac{(1+r)^{2\alpha-3}}{r(1-r)} \le \le \left| e^{h(z) - \overline{g(z)}} \right| \le \frac{(1-r)^{2\alpha-3}}{r(1+r)}.$$

Corollary 6. Let $f(z) = h(z) + \overline{g(z)}$ be an element of $\mathcal{S}_H^*(\alpha)$. Then,

$$\left| (e^{h(z) - g(z)})^{\frac{1}{2(1-\alpha)}} - 1 \right| < 1.$$

This inequality is the Marx-Strohhacker inequality [4] for the starlike har-monic univalent functions of order α .

Proof. Using Theorem 4, we have

$$e^{h(z)-g(z)} = (1 - \phi(z))^{-2(1-\alpha)}$$
.

This equality shows that

$$e^{h(z)-g(z)} = \frac{1}{(1-\phi(z))^{-2(1-\alpha)}} \Rightarrow \left| (e^{h(z)-g(z)})^{\frac{1}{2(1-\alpha)}} - 1 \right| = |-\phi(z)| < 1.$$

Corollary 7. Let $f(z) = h(z) + \overline{g(z)}$ be an element of $\mathcal{S}_H^*(\alpha)$. Then,

$$|h'(z) - g'(z)| < \frac{2(1-\alpha)}{1-r}.$$

Proof. Let $s(z) := (e^{h(z)-g(z)})^{\frac{1}{2(1-\alpha)}} - 1$. Then by Corollary 7 and (16), we have s(0) = 0, |s(z)| < 1 and $s(z) = z\phi(z)$. Since

$$z\phi(z) = (e^{h(z)-g(z)})^{\frac{1}{2(1-\alpha)}} - 1$$

?we have

$$h(z) - g(z) = 2(1 - \alpha)\log(1 + z\phi(z)).$$

So,

$$h'(z) - g'(z) = \frac{2(1 - \alpha)(\phi(z) + z\phi'(z))}{1 + z\phi(z)}$$

and hence

$$|h'(z) - g'(z)| \le \frac{2(1-\alpha)}{1-r}.$$

Acknowledgements The work presented here was partially supported by Işık University Scientific Research Funding Agency under Grant Number: BAP-14B102.

References

- [1] Z. Abdulhadi and Y. Abu Muhanna, Starlike log-harmonic mapping of order α , JIPAM, Vol. 7, issue 4 Article 123 (2006).
- [2] Z. Abdulhadi and D. Bshouty, Univalent functions $H.\overline{H}(D)$., Trans. Amer. MAth. Soc., 305(1988), 841-849.

- [3] P. Duren, *Harmonic Mappings in the Plane*, Vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge UK, (2004).
- [4] A. W. Goodman, *Univalent Functions*, Volume I, Mariner publishing Company INC, Tampa Florida, (1983).
- [5] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. 3, (1971), 369-374.

H. Esra Özkan Uçar

Department of Mathematics and Computer Science İstanbul Kültür University, İstanbul, Turkey email: e.ozkan@iku.edu.tr

Melike Aydoğan Department of Mathematics, Işık University, İstanbul, Turkey email: melike.aydogan@isikun.edu.tr

Yaşar Polatoğlu Department of Mathematics and Computer Science İstanbul Kültür University, İstanbul, Turkey email: y.polatoglu@iku.edu.tr